
Plan 9
"

Programmer�s Manual

Volume 1

Fourth Edition
2002

Computing Science Research Center
Bell Laboratories

Lucent Technologies
Murray Hill, New Jersey

Copyright © 2002 Lucent Technologies Inc. All Rights Reserved.

Portions Copyright © 2000, 1998, 1995 Aladdin Enterprises. All Rights Reserved.

Portions Copyright © 1994 by Sun Microsystems Computer Company. All rights reserved.

Portions Copyright © 2000 Compaq Computer Corporation.

Portions Copyright © 1999, Keith Packard.

Cover Design: Gerard J. Holzmann

Trademarks referenced in this document:

Plan 9 is a trademark of Lucent Technologies Inc.
Aladdin Ghostscript is a trademark of Aladdin Enterprises.
ARM is a trademark of ARM Limited.
Avanstar is a registered trademark of Star Gate Technologies, Inc.
CGA and VGA are trademarks of International Business Machines Corporation.
Silicon Graphics, IRIS Indigo, IRIS, IRIX, Challenge, and Indigo

are registered trademarks of Silicon Graphics, Inc.
Indy and POWER Series are trademarks of Silicon Graphics, Inc.
Ethernet is a trademark of Xerox Corporation.
IBM, PS/2, and PowerPC are registered trademarks of

International Business Machines Corporation.
Intel and Pentium are registered trademarks of Intel Corporation.
8088, 80286, 80386, and 80486 are trademarks of Intel Corporation.
Lucida is a registered trademark of Bigelow & Holmes.
Pellucida is a trademark of Bigelow & Holmes.
MIPS, R3000, R4000, and R4400 are registered trademarks of MIPS Technologies, Inc.
R2000 and R6000 are trademarks of MIPS Technologies, Inc.
Microsoft, Microsoft Word and Microsoft Office, and MS-DOS are

registered trademarks of Microsoft Corporation.
NFS is a registered trademark of Sun Microsystems, Inc.
PDP and VAX are registered trademarks of Digital Equipment Corp.
PostScript is a registered trademark of Adobe Systems Incorporated.
R2000, R6000, R4000, and R4400 are trademarks of MIPS Technologies, Inc.
SecureNet is a trademark of Digital Pathways, Inc.
Sound Blaster is a registered trademark of Creative Labs, Inc.
SPARC is a registered trademark of SPARC International, Inc.
Unicode is a registered certification mark of Unicode, Inc.
UNIX is a registered trademark in the USA and other countries licensed

exclusively through X/Open Company Limited.

Preface to the Fourth (2002) Edition

Plan 9 continues to grow and adapt. The fourth major release of the system incorpo
rates a number of changes, but the most central is the conversion to a new version of
the 9P file system protocol. This new version was motivated by a desire to support files
with name elements longer than 27 bytes (the old NAMELEN), but the opportunity was
taken to change a number of other things about the protocol, making it more efficient,
more flexible, and easier to encapsulate. One simple but indispensable new feature
made possible by the protocol change is that the system now records the user who last
modified a file; try ls -m to identify the culprit.

Many aspects of system security have been improved. The new security agent
factotum(4) maintains user passwords, while secstore(4) keeps them safe and enables
single sign-on to multiple domains and machines using a variety of secure protocols
and services.

Throughout the system, components have been rewritten and interfaces modified to
eliminate restrictions, improve performance, and clarify design. The full list is too long
to include here, but significant changes have occurred in a number of system calls
(wait(2), stat(2), mount(2), and errstr(2)), the thread library (thread(2)), formatted print
ing (print(2) and fmtinstall(2)), security (many pages in section 2, including auth(2),
authsrv(2)), and many others.

The changes are sweeping and are accompanied by many new programs, tools, services,
and libraries. See the manual pages and the accompanying documents for more infor
mation.

Bell Labs
Computing Science Research Center
Murray Hill NJ
April, 2002

Preface to the Third (2000) Edition

A great deal has happened to Plan 9 in the five years since its last release. Although
much of the system will seem familiar, hardly any aspect of it is unchanged. The kernel
has been heavily reworked; the graphical environment completely rewritten; many com
mands added, deleted, or replaced; and the libraries greatly expanded. Underneath,
though, the same approach to computing remains: a distributed system that uses file-
like naming to access and control resources both local and remote.

Some of the changes are sweeping:

Alef is gone, a casualty of the cost of maintaining multiple languages, compilers,
and libraries in a diverse world, but its model for processes, tasks, and communi
cation lives on in a new thread library for C.

Support for color displays is much more general, building on a new alpha-blending
graphical operator called draw that replaces the old bitblt . Plan 9 screens are
now, discreetly, colorful.

A new mechanism called plumbing connects applications together in a variety of
ways, most obviously in the support of multimedia.

The interfaces to the panoply of rotating storage devices have been unified and
extended, while providing better support for having Plan 9 coexist with other oper
ating systems on a single disk.

Perhaps most important, this release of the system is being done under an open
source agreement, providing cost-free source-level access to the software.

Plan 9 continues to be the work of many people. Besides those mentioned in the old
preface, these people deserve particular note: Russ Cox did much of the work updating
the graphics and creating the new disk and bootstrap model as well as providing a num
ber of new commands; David Hogan ported Plan 9 to the Dec Alpha; and Sape Mullender
wrote the new thread library.

Other new contributors include Bruce Ellis, Charles Forsyth, Eric Van Hensbergen, and
Tad Hunt.

Bell Labs
Computing Science Research Center
Murray Hill NJ
June, 2000

Preface to the Second (1995) Edition

Plan 9 was born in the same lab where Unix began. Old Unix hands will recognize
the cultural heritage in this manual, where venerable Unix commands live on, described
in the classic Unix style. Underneath, though, lies a new kind of system, organized
around communication and naming rather than files and processes.

In Plan 9, distributed computing is a central premise, not an evolutionary add-on.
The system relies on a uniform protocol to refer to and communicate with objects,
whether they be data or processes, and whether or not they live on the same machine or
even similar machines. A single paradigm (writing to named places) unifies all kinds of
control and interprocess signaling.

Name spaces can be built arbitrarily. In particular all programs available to a given
user are customarily united in a single logical directory. Temporary files and untrusted
activities can be confined in isolated spaces. When a portable machine connects to the
central, archival file system, the machine�s local name space is joined smoothly to that
of the archival file system. The architecture affords other unusual abilities, including:

Objects in name spaces imported from other machines (even from foreign systems
such as MS-DOS) are transparently accessible.

Windows appear in name spaces on a par with files and processes.

A historical file system allows one to navigate the archival file system in time as
well as in space; backup files are always at hand.

A debugger can handle simultaneously active processes on disparate kinds of hard
ware.

The character set of Plan 9 is Unicode, which covers most of the world�s major
scripts. The system has its own programming languages: a dialect of C with simple
inheritance, a simplified shell, and a CSP-like concurrent language, Alef. An ANSI-POSIX
emulator (APE) admits unreconstructed Unix code.

Plan 9 is the work of many people. The protocol was begun by Ken Thompson;
naming was integrated by Rob Pike and networking by Dave Presotto. Phil Winterbottom
simplified the management of name spaces and re-engineered the system. They were
joined by Tom Killian, Jim McKie, and Howard Trickey in bringing the system up on vari
ous machines and making device drivers. Thompson made the C compiler; Pike, win
dow systems; Tom Duff, the shell and raster graphics; Winterbottom, Alef; Trickey, Duff,
and Andrew Hume, APE. Bob Flandrena ported a myriad of programs to Plan 9. Other
contributors include Alan Berenbaum, Lorinda Cherry, Bill Cheswick, Sean Dorward,
David Gay, Paul Glick, Eric Grosse, John Hobby, Gerard Holzmann, Brian Kernighan, Bart
Locanthi, Doug McIlroy, Judy Paone, Sean Quinlan, Bob Restrick, Dennis Ritchie, Bjarne
Stroustrup, and Cliff Young.

Plan 9 is made available as is, without formal support, but substantial comments or
contributions may be communicated to the authors.

Doug McIlroy
March, 1995

INTRO(1) INTRO(1)

NAME
intro � introduction to Plan 9

DESCRIPTION
Plan 9 is a distributed computing environment assembled from separate machines acting as termi
nals, CPU servers, and file servers. A user works at a terminal, running a window system on a ras
ter display. Some windows are connected to CPU servers; the intent is that heavy computing
should be done in those windows but it is also possible to compute on the terminal. A separate
file server provides file storage for terminals and CPU servers alike.

Name Spaces
In Plan 9, almost all objects look like files. The object retrieved by a given name is determined by
a mapping called the name space. A quick tour of the standard name space is in namespace(4).
Every program running in Plan 9 belongs to a process group (see rfork in fork(2)), and the name
space for each process group can be independently customized.

A name space is hierarchically structured. A full file name (also called a full path name) has the
form

/e1/e2/.../en

This represents an object in a tree of files: the tree has a root, represented by the first /; the root
has a child file named e1, which in turn has child e2, and so on; the descendent en is the object
represented by the path name.

There are a number of Plan 9 services available, each of which provides a tree of files. A name
space is built by binding services (or subtrees of services) to names in the name-space-so-far.
Typically, a user�s home file server is bound to the root of the name space, and other services are
bound to conventionally named subdirectories. For example, there is a service resident in the
operating system for accessing hardware devices and that is bound to /dev by convention. Ker
nel services have names (outside the name space) that are a # sign followed by a single letter; for
example, #c is conventionally bound to /dev.

Plan 9 has union directories: directories made of several directories all bound to the same name.
The directories making up a union directory are ordered in a list. When the bindings are made (see
bind(1)), flags specify whether a newly bound member goes at the head or the tail of the list or
completely replaces the list. To look up a name in a union directory, each member directory is
searched in list order until the name is found. A bind flag specifies whether file creation is allowed
in a member directory: a file created in the union directory goes in the first member directory in
list order that allows creation, if any.

The glue that holds Plan 9 together is a network protocol called 9P, described in section 5 of this
manual. All Plan 9 servers read and respond to 9P requests to navigate through a file tree and to
perform operations such as reading and writing files within the tree.

Booting
When a terminal is powered on or reset, it must be told the name of a file server to boot from, the
operating system kernel to boot, and a user name and password. How this dialog proceeds is
environment- and machine-dependent. Once it is complete, the terminal loads a Plan 9 kernel,
which sets some environment variables (see env(3)) and builds an initial name space. See
namespace(4), boot(8), and init(8) for details, but some important aspects of the initial name
space are:

� The environment variable $cputype is set to the name of the kernel�s CPU�s architecture:
one of mips, sparc, power (Power PC), 386 (386, 486, Pentium, ...) etc. The environ
ment variable $objtype is initially the same as $cputype.

� The environment variable $terminal is set to a description of the machine running the
kernel, such as generic pc. Sometimes the middle word of $terminal encodes the
file from which the kernel is booted.

� The environment variable $service is set to terminal. (Other ways of accessing Plan
9 may set $service to one of cpu, con, or rx.)

� The environment variable $user is set to the name of the user who booted the terminal.
The environment variable $home is set to that user�s home directory.

1

INTRO(1) INTRO(1)

� /$cputype/bin and /rc/bin are unioned into /bin.

After booting, the terminal runs the command interpreter, rc(1), on
/usr/$user/lib/profile after moving to the user�s home directory.

Here is a typical profile:

bind −a $home/bin/rc /bin
bind −a $home/bin/$cputype /bin
bind −c $home/tmp /tmp
font = /lib/font/bit/pelm/euro.9.font
upas/fs
switch($service){
case terminal

plumber
prompt=(’term% ’ ’ ’)
exec rio −f $font

case cpu
bind /mnt/term/dev/cons /dev/cons
bind /mnt/term/dev/consctl /dev/consctl
bind −a /mnt/term/mnt/wsys /dev
prompt=(’cpu% ’ ’ ’)
news

case con
prompt=(’cpu% ’ ’ ’)
news

}

The first three lines replace /tmp with a tmp in the user�s home directory and union personal
bin directories with /bin, to be searched after the standard bin directories. The next starts the
mail file system; see mail(1). Then different things happen, depending on the $service environ
ment variable, such as running the window system rio(1) on a terminal.

To do heavy work such as compiling, the cpu(1) command connects a window to a CPU server; the
same environment variables are set (to different values) and the same profile is run. The initial
directory is the current directory in the terminal window where cpu was typed. The value of
$service will be cpu, so the second arm of the profile switch is executed. The root of the
terminal�s name space is accessible through /mnt/term, so the bind is a way of making the win
dow system�s graphics interface (see draw(3)) available to programs running on the CPU server.
The news(1) command reports current Plan 9 affairs.

The third possible service type, con, is set when the CPU server is called from a non-Plan-9
machine, such as through telnet (see con(1)).

Using Plan 9
The user commands of Plan 9 are reminiscent of those in Research Unix, version 10. There are a
number of differences, however.

The standard shell is rc(1), not the Bourne shell. The most noticeable differences appear only
when programming and macro processing.

The character-delete character is backspace, and the line-kill character is control-U; these cannot
be changed.

DEL is the interrupt character: typing it sends an interrupt to processes running in that window.
See keyboard (6) for instructions on typing characters like DEL on the various keyboards.

If a program dies with something like an address error, it enters a �Broken� state. It lingers, avail
able for debugging with db(1) or acid(1). Broke (see kill(1)) cleans up broken processes.

The standard editor is one of acme(1) or sam(1). There is a variant of sam that permits running
the file-manipulating part of sam on a non-Plan-9 system:

sam −r tcp!kremvax

For historical reasons, sam uses a tab stop setting of 8 spaces, while the other editors and window
systems use 4 spaces. These defaults can be overridden by setting the value of the environment
variable $tabstop to the desired number of spaces per tab.

2

INTRO(1) INTRO(1)

Machine names may be prefixed by the network name, here tcp; and net for the system default.

Login connections and remote execution on non-Plan-9 machines are usually done by saying, for
example,

con kremvax

or

rx deepthought chess

(see con(1)).

9fs connects to file systems of remote systems (see srv(4)). For example,

9fs kremvax

sets things up so that the root of kremvax�s file tree is visible locally in /n/kremvax.

Faces(1) gives graphical notification of arriving mail.

The Plan 9 file server has an integrated backup facility. The command

9fs dump

binds to /n/dump a tree containing the daily backups on the file server. The dump tree has years
as top level file names, and month-day as next level file names. For example,
/n/dump/2000/0120 is the root of the file system as it appeared at dump time on January 20,
2000. If more than one dump is taken on the same day, dumps after the first have an extra digit.
To recover the version of this file as it was on June 15, 1999,

cp /n/dump/1999/0615/sys/man/1/0intro .

or use yesterday (1).

SEE ALSO
This section for general publicly accessible commands.
Section (2) for library functions, including system calls.
Section (3) for kernel devices (accessed via bind(1)).
Section (4) for file services (accessed via mount).
Section (5) for the Plan 9 file protocol.
Section (6) for file formats.
Section (7) for databases and database access programs.
Section (8) for things related to administering Plan 9.
/sys/doc for copies of papers referenced in this manual.

The back of this volume has a permuted index to aid searches.

DIAGNOSTICS
Upon termination each program returns a string called the exit status. It was either supplied by a
call to exits(2) or was written to the command�s /proc/pid/note file (see proc(3)), causing an
abnormal termination. The empty string is customary for successful execution; a non-empty
string gives a clue to the failure of the command.

3

2A(1) 2A(1)

NAME
0a, 1a, 2a, 5a, 6a, 8a, ka, qa, va � assemblers

SYNOPSIS
2a [option ...] [name ...]
etc.

DESCRIPTION
These programs assemble the named files into object files for the corresponding architectures; see
2c(1) for the correspondence between an architecture and the character (1, 2, etc.) that specifies
it. The assemblers handle the most common C preprocessor directives and the associated
command-line options −D and −I. Other options are:

−o obj
Place output in file obj (allowed only if there is just one input file). Default is to take the
last element of the input path name, strip any trailing .s, and append .O, where O is first
letter of the assembler�s name.

FILES
The directory /sys/include is searched for include files after machine-dependent files in
/$objtype/include.

SOURCE
/sys/src/cmd/2a, etc.

SEE ALSO
2c(1), 2l(1).

Rob Pike, ��A manual for the Plan 9 assembler��

BUGS
The list of assemblers given above is only partial, not all architectures are supported on all sys
tems, some have been retired and some are provided by third parties.

4

2C(1) 2C(1)

NAME
0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C compilers

SYNOPSIS
2c [option ...] [file ...]
etc.

DESCRIPTION
These commands compile the named C files into object files for the corresponding architecture. If
there are multiple C files, the compilers will attempt to keep $NPROC compilations running con
currently. Associated with each compiler is a string objtype , for example

0c spim little-endian MIPS 3000 family

1c 68000 Motorola MC68000

2c 68020 Motorola MC68020

5c arm little-endian ARM

6c amd64 AMD64 and compatibles (e.g., Intel EM64T)

7c arm64 ARM64 (ARMv8)

8c 386 Intel i386, i486, Pentium, etc.

kc sparc Sun SPARC

qc power Power PC

vc mips big-endian MIPS 3000 family

The compilers handle most preprocessing directives themselves; a complete preprocessor is avail
able in cpp(1), which must be run separately.

Let the first letter of the compiler name be O= 0, 1, 2, 5, 6, 7, 8, k, q, or v. The output object
files end in .O. The letter is also the prefix of related programs: Oa is the assembler, Ol is the
loader. Plan 9 conventionally sets the $objtype environment variable to the objtype string
appropriate to the current machine�s type. Plan 9 also conventionally has /objtype directories,
which contain among other things: include, for machine-dependent include files; lib, for pub
lic object code libraries; bin, for public programs; and mkfile, for preconditioning mk(1).

The compiler options are:

−o obj Place output in file obj (allowed only if there is just one input file). Default is to take the
last element of the input file name, strip any trailing .c, and append .O.

−w Print warning messages about unused variables, etc.

−B Accept functions without a new-style ANSI C function prototype. By default, the compil
ers reject functions used without a defined prototype, although ANSI C permits them.

−Dname=def
−Dname Define the name to the preprocessor, as if by #define. If no definition is given, the

name is defined as 1.

−F Enable type-checking of calls to print(2) and other formatted print routines. See the dis
cussion of extensions, below.

−Idir An #include file whose name does not begin with slash or is enclosed in double
quotes is always sought first in the directory of the file argument. If this fails, the −. flag
is given or the name is enclosed in <>, it is then sought in directories named in −I
options, then in /sys/include, and finally in /$objtype/include.

−. Suppress the automatic searching for include files in the directory of the file argument.

−N Suppress automatic registerization and optimization.

−S Print an assembly language version of the object code on standard output as well as
generating the .O file.

5

2C(1) 2C(1)

−T Pass type signatures on all external and global entities. The signature is based on the C
signof operator.

−V By default, the compilers are non-standardly lax about type equality between void*
values and other pointers; this flag requires ANSI C conformance.

−p Invoke a standard ANSI C preprocessor before compiling.

−a Instead of compiling, print on standard output acid functions (see acid(1)) for examining
structures declared in the source files.

−aa Like −a except suppress information about structures declared in included header files.

−n When used with −a or −aa, places acid functions in file.acid for input file.c, and not
on standard output.

The compilers support several extensions to ANSI C:

� A structure or union may contain unnamed substructures and subunions. The fields of the sub
structures or subunions can then be used as if they were members of the parent structure or
union (the resolution of a name conflict is unspecified). When a pointer to the outer structure
or union is used in a context that is only legal for the unnamed substructure, the compiler pro
motes the type and adjusts the pointer value to point at the substructure. If the unnamed
structure or union is of a type with a tag name specified by a typedef statement, the
unnamed structure or union can be explicitly referenced by <struct variable>.<tagname>.

� A structure value can be formed with an expression such as
(struct S){v1, v2, v3}

where the list elements are values for the fields of struct S.

� Array initializers can specify the indices of the array in square brackets, as
int a[] = { [3] 1, [10] 5 };

which initializes the third and tenth elements of the eleven-element array a.

� Structure initializers can specify the structure element by using the name following a period, as
struct { int x; int y; } s = { .y 1, .x 5 };

which initializes elements y and then x of the structure s. These forms also accept the new
ANSI C notation, which includes an equal sign:

int a[] = { [3] = 1, [10] = 5 };
struct { int x; int y; } s = { .y = 1, .x = 5 };

� A global variable can be dedicated to a register by declaring it extern register in all
modules and libraries.

� A #pragma of the form
#pragma lib "libbio.a"

records that the program needs to be loaded with file /$objtype/lib/libbio.a; such
lines, typically placed in library header files, obviate the −l option of the loaders. To help iden
tify files in non-standard directories, within the file names in the #pragmas the string $M rep
resents the name of the architecture (e.g., mips) and $O represents its identifying character
(e.g., v).

� A #pragma of the form
#pragma varargck argpos error 2

tells the compiler that the second argument to error is a print-like format string (see
print(2)) that identifies the handling of subsequent arguments. The #pragma

#pragma varargck type "s" char*
says that the format verb s processes an argument of type char*. The #pragma

#pragma varargck flag ’c’
says that c is a flag character. These #pragmas are used, if the −F option is enabled, to
type-check calls to print and other such routines.

� A #pragma with any of the following forms:
#pragma incomplete type
#pragma incomplete struct tag
#pragma incomplete union tag

where type is a typedef�d name for a structure or union type, and tag is a structure or union

6

2C(1) 2C(1)

tag, tells the compiler that the corresponding type should have its signature calculated as an
incomplete type even if it is subsequently fully defined. This allows the type signature mecha
nism to work in the presence of opaque types declared in header files, with their full definitions
visible only to the code which manipulates them. With some imported software it might be nec
essary to turn off the signature generation completely for a large body of code (typically at the
start and end of a particular include file). If type is the word _off_, signature generation is
turned off; if type is the word _on_, the compiler will generate signatures.

� The C++ comment (// to end of line) is accepted as well as the normal convention of /* */.

� The compilers accept long long variables as a 64-bit type. The standard header typedefs
this to vlong. Arithmetic on vlong values is usually emulated by a run-time library, though
in at least 8c, only division and modulus use the run-time library and the other operators gen
erate in-line code (and uvlong−expression division−or−modulus (1<<constant) will turn into
in-line bit operations, as is done for shorter unsigned expressions).

Other differences with ANSI C include

� The compilers use the original "unsigned preserving", rather than ANSI C "value preserving"
rules, which means that, e.g., unsigned char gets promoted to unsigned int rather
than int.

� Parameters in macros are substituted inside of strings.

EXAMPLE
For the 68020, produce a program prog from C files main.c and sub.c:

2c −FVw main.c sub.c
2l −o prog main.2 sub.2

FILES
/sys/include system area for machine-independent #include directives.
/$objtype/include system area for machine-dependent #include directives.

SOURCE
/sys/src/cmd/cc machine-independent part
/sys/src/cmd/2c, etc. machine-dependent part

SEE ALSO
2a(1), 2l(1), cpp(1), mk(1), nm(1), pcc(1), db(1), acid(1)

Rob Pike, ��How to Use the Plan 9 C Compiler��

BUGS
The list of compilers given above is only partial, not all architectures are supported on all systems,
some have been retired and some are provided by third parties.

The default preprocessor only handles #define, #include, #undef, #ifdef, #line, and
#ifndef. For a full ANSI preprocessor, use the p option.

The default search order for include files differs to that of cpp(1).

Some features of C99, the 1999 ANSI C standard, are implemented.

switch expressions may not be either signedness of vlong on 32-bit architectures (8c at least).

The implementation of vlong assignment can use a static location and this can be disturbed by
interrupts (e.g., notes) (8c at least).

7

2L(1) 2L(1)

NAME
0l, 1l, 2l, 5l, 6l, 8l, kl, ql, vl � loaders

SYNOPSIS
2l [option ...] [file ...]
etc.

DESCRIPTION
These commands load the named files into executable files for the corresponding architectures;
see 2c(1) for the correspondence between an architecture and the character (1, 2, etc.) that speci
fies it. The files should be object files or libraries (archives of object files) for the appropriate
architecture. Also, a name like −lext represents the library libext.a in /$objtype/lib,
where objtype is one of 68000, etc. as listed in 2c(1). The libraries must have tables of contents
(see ar(1)).

In practice, −l options are rarely necessary as the header files for the libraries cause their archives
to be included automatically in the load (see 2c(1)). For example, any program that includes
header file libc.h causes the loader to search the C library /$objtype/lib/libc.a. Also,
the loader creates an undefined symbol _main (or _mainp if profiling is enabled) to force load
ing of the startup linkage from the C library.

The order of search to resolve undefined symbols is to load all files and libraries mentioned explic
itly on the command line, and then to resolve remaining symbols by searching in topological order
libraries mentioned in header files included by files already loaded. When scanning such libraries,
the algorithm is to scan each library repeatedly until no new undefined symbols are picked up,
then to start on the next library. Thus if library A needs B which needs A again, it may be neces
sary to mention A explicitly so it will be read a second time.

The loader options are:

−l (As a bare option.) Suppress the default loading of the startup linkage and libraries
specified by header files.

−o out Place output in file out. Default is O.out, where O is the first letter of the loader
name.

−p Insert profiling code into the executable output; no special action is needed during
compilation or assembly.

−e Insert (embedded) tracing code into the executable output; no special action is needed
during compilation or assembly. The added code calls _tracein at function entries
and _traceout at function exits.

−F (ARM only) Don�t generate VFP hardware floating point instructions.

−s Strip the symbol tables from the output file.

−a Print the object code in assembly language, with addresses.

−v Print debugging output that annotates the activities of the load.

−M (Kl only) Generate instructions rather than calls to emulation routines for multiply and
divide.

−Esymbol The entry point for the binary is symbol (default _main; _mainp under −p).

−x [file] Produce an export table in the executable. The optional file restricts the exported
symbols to those listed in the file.

−u [file] Produce an export table, import table and a dynamic load section in the executable.
The optional file restricts the imported symbols to those listed in the file.

−t (5l and vl only) Move strings into the text segment.

−Hn Executable header is type n. The meaning of the types is architecture-dependent; typi
cally type 1 is Plan 9 boot format and type 2 is the regular Plan 9 format, the default.
These are reversed on the MIPS. The Next boot format is 3. Type 4 in vl creates a
MIPS executable for an SGI Unix system.

8

2L(1) 2L(1)

−Tt The text segment starts at address t.

−Dd The data segment starts at address d.

−Rr The text segment is rounded to a multiple of r (if r is nonzero).

The numbers in the above options can begin with 0x or 0 to change the default base from decimal
to hexadecimal or octal. The defaults for the values depend on the compiler and the header type.

The loaded image has several symbols inserted by the loader: etext is the address of the end of
the text segment; bdata is the address of the beginning of the data segment; edata is the
address of the end of the data segment; and end is the address of the end of the bss segment,
and of the program.

FILES
/$objtype/lib for −llib arguments.

SOURCE
/sys/src/cmd/2l etc.

SEE ALSO
2c(1), 2a(1), ar(1), nm(1), db(1), prof(1)

Rob Pike, ��How to Use the Plan 9 C Compiler��

BUGS
The list of loaders given above is only partial, not all architectures are supported on all systems,
some have been retired and some are provided by third parties.

9

5E(1) 5E(1)

NAME
5e � user-mode ARM emulation

SYNOPSIS
5e [−npbF] text [arguments]

DESCRIPTION
5e simulates the execution of an ARM binary in a Plan 9 environment. Unlike its predecessor vi(1)
it supports, among others, the syscalls rfork (see fork(2)) and exec(2), which allows for the execu
tion of threaded programs (e.g., rio(1) or catclock (see games(1)).

5e executes the specified binary text, which is prepended by /bin if it does not begin with a
slash, dot or hash sign. Unless −n is specified, /bin is replaced by the union of /arm/bin and
/rc/bin.

Unlike vi(1), 5e(1) does not provide built-in debugging facilities. It does provide emulation of the
/proc directory, if the −p flag is specified, to attach a proper debugger like acid(1). There is no
equivalent of the profiling facilities, no caches or TLBs are simulated, either.

5e(1) currently has three options.

−n By default, 5e(1) replaces /bin as mentioned above and also sets the variables cputype
and objtype to arm. Supplying the −n option suppresses this behaviour.

−p The −p option activates emulation of a /proc file system, which is mounted at /proc
and also posted as /srv/armproc, cf. srv(3).

−b Supplying −b causes failing processes to call abort(2) instead of sysfatal. See below.

−F Disable emulation of VFP floating point instructions.

SOURCE
/sys/src/cmd/5e

SEE ALSO
vi(1)

BUGS
The host is required to be little endian and is assumed to have a floating point implementation
conforming to IEEE 754.

Broken processes are simulated in a rather unsatisfactory manner. The −b option leaks memory.
The emulator does not post sys: notes.

Obscure opcodes, in particular uncommon operations on R15, are not implemented.

Accesses spanning segment boundaries will be treated as page faults. Many syscalls such as pread
(see read(2)) will shuffle data around (in most cases unnecessarily) if invoked on potentially shared
segments of variable length, in particular the bss segment.

FPA emulation leaves much to be desired, rounding modes are ignored, all calculations are per
formed at extended precision. Floating point exceptions crash the emulator.

Several syscalls, most notably the segattach(2) family, are not implemented (this should not be
hard to fix). The emulator notes the value of errstr(2) only under obvious circumstances; with
most syscalls only if the return value is negative.

/proc emulation is more than unsatisfactory.

The text argument should behave more like it would if it had been entered as an argument to
rc(1).

HISTORY
5e first appeared in 9front (June, 2011).

10

ABACO(1) ABACO(1)

NAME
abaco � browse the World-Wide Web

SYNOPSIS
abaco [−p] [−c ncols] [−m mtpt] [−t charset] [url]

DESCRIPTION
Abaco is a lightweight web browser with the appearance of acme(1) with ncols columns (one by
default). Given a url, it will start by displaying that page. Clicking mouse button 3 on a link opens
it in a new abaco window. −t selects an alternate character set; −m an alternate mount point for
webfs. Normally the standard error of subshells is closed, but −p prevents this.

FILES
/mnt/web default webfs mount point

SOURCE
/sys/src/cmd/abaco

SEE ALSO
mothra(1), webfs(4)

BUGS
Abaco is a work in progress; many features of giant web browsers are absent.

11

ACID(1) ACID(1)

NAME
acid, truss, trump � debugger

SYNOPSIS
acid [−kqw] [−l library] [−m machine] [pid] [textfile]

acid −l truss textfile

acid −l trump [pid] [textfile]

DESCRIPTION
Acid is a programmable symbolic debugger. It can inspect one or more processes that share an
address space. A program to be debugged may be specified by the process id of a running or
defunct process, or by the name of the program�s text file (8.out by default). At the prompt,
acid will store function definitions or print the value of expressions. Options are

−w Allow the textfile to be modified.

−q Print variable renamings at startup.

−l library Load from library at startup; see below.

−m machine Assume instructions are for the given CPU type (one of amd64, 386, etc., as listed
in 2c(1), or sunsparc or mipsco for the manufacturer-defined instruction nota
tion for those processors) instead of using the magic number to select the CPU type.

−k Debug the kernel state for the process, rather than the user state.

At startup, acid obtains standard function definitions from the library file
/sys/lib/acid/port, architecture-dependent functions from
/sys/lib/acid/$objtype, user-specified functions from $home/lib/acid, and further
functions from −l files. Definitions in any file may override previously defined functions. If the
function acidinit() is defined, it will be invoked after all libraries have been loaded. See 2c(1) for
information about creating acid functions for examining data structures.

Language
Symbols of the program being debugged become integer variables whose values are addresses.
Contents of addresses are obtained by indirection. Local variables are qualified by function name,
for example main:argv. When program symbols conflict with acid words, distinguishing $
signs are prefixed. Such renamings are reported at startup if the option −q is enabled.

Variable types (integer, float, list, string) and formats are inferred from assignments. Truth values
false/true are attributed to zero/nonzero integers or floats and to empty/nonempty lists or
strings. Lists are sequences of expressions surrounded by {} and separated by commas.

Expressions are much as in C, but yield both a value and a format. Casts to complex types are
allowed. Lists admit the following operators, with subscripts counted from 0.

head list
tail list
append list, element
delete list, subscript

Format codes are the same as in db(1). Formats may be attached to (unary) expressions with \,
e.g. (32*7)\D. There are two indirection operators, * to address a core image, @ to address a
text file. The type and format of the result are determined by the format of the operand, whose
type must be integer.

Statements are

if expr then statement [else statement]
while expr do statement
loop expr, expr do statement
defn name(args) { statement }
defn name
name(args)
builtin name(args)
local name

12

ACID(1) ACID(1)

return expr
whatis [name]

The statement defn name clears the definition for name. A defn may override a built-in func
tion; prefixing a function call with builtin ignores any overriding defn, forcing the use of the
built-in function.

Here is a partial list of functions; see the manual for a complete list.

stk() Print a stack trace for current process.
lstk() Print a stack trace with values of local variables.
gpr() Print general registers. Registers can also be accessed by name, for example

*R0.
spr() Print special registers such as program counter and stack pointer.
fpr() Print floating-point registers.
regs() Same as spr();gpr().
fmt(expr,format)

Expression expr with format given by the character value of expression
format.

src(address) Print 10 lines of source around the program address.
Bsrc(address) Get the source line for the program address into a window of a running

sam(1) and select it.
line(address) Print source line nearest to the program address.
source() List current source directories.
addsrcdir(string)

Add a source directory to the list.
filepc(where) Convert a string of the form sourcefile:linenumber to a machine address.
pcfile(address) Convert a machine address to a source file name.
pcline(address) Convert a machine address to a source line number.
bptab() List breakpoints set in the current process.
bpset(address) Set a breakpoint in the current process at the given address.
bpdel(address) Delete a breakpoint from the current process.
wptab() List watchpoints set in the current process.
wpset(type,addr,len)

Set a watchpoint for the len bytes at the given address. type is "r", "w" or
"rw" to trap read accesses, write accesses or both, respectively.

wpdel(address) Delete all watchpoints set for the given address.
cont() Continue execution of current process and wait for it to stop.
step() Execute a single machine instruction in the current process.
func() Step repeatedly until after a function return.
stopped(pid) This replaceable function is called automatically when the given process

stops. It normally prints the program counter and returns to the prompt.
asm(address) Disassemble 30 machine instructions beginning at the given address.
mem(address,string)

Print a block of memory interpreted according to a string of format codes.
dump(address,n,string)

Like mem(), repeated for n consecutive blocks.
print(expr,...) Print the values of the expressions.
newproc(arguments)

Start a new process with arguments given as a string and halt at the first
instruction.

new() Like newproc(), but take arguments (except argv[0]) from string variable
progargs.

win() Like new(), but run the process in a separate window.
start(pid) Start a stopped process.
kill(pid) Kill the given process.
setproc(pid) Make the given process current.
rc(string) Escape to the shell, rc(1), to execute the command string.

Libraries
There are a number of acid �libraries� that provide higher-level debugging facilities. Two notable
examples are truss and trump, which use acid to trace system calls (truss) and memory allocation

13

ACID(1) ACID(1)

(trump). Both require starting acid on the program, either by attaching to a running process or by
executing new() on a binary (perhaps after setting progargs), stopping the process, and then
running truss() or trump() to execute the program under the scaffolding. The output will be
a trace of the system calls (truss) or memory allocation and free calls (trump) executed by the pro
gram. When finished tracing, stop the process and execute untruss() or untrump() fol
lowed by cont() to resume execution.

EXAMPLES
Start to debug /bin/ls; set some breakpoints; run up to the first one:

% acid /bin/ls
/bin/ls: mips plan 9 executable
/sys/lib/acid/port
/sys/lib/acid/mips
acid: new()
70094: system call _main ADD $−0x14,R29
70094: breakpoint main+0x4 MOVW R31,0x0(R29)
acid: pid
70094
acid: argv0 = **main:argv\s
acid: whatis argv0
integer variable format s
acid: *argv0
/bin/ls
acid: bpset(ls)
acid: cont()
70094: breakpoint ls ADD $−0x16c8,R29
acid:

Display elements of a linked list of structures:

complex Str { ’D’ 0 val; ’X’ 4 next; };
complex Str s;
s = *headstr;
while s != 0 do{

print(s.val, "\n");
s = s.next;

}

Note the use of the . operator instead of −>.

Display an array of bytes declared in C as char array[].

*(array\s)

This example gives array string format, then prints the string beginning at the address (in acid
notation) *array.

Trace the system calls executed by ls(1):

% acid −l truss /bin/ls
/bin/ls:386 plan 9 executable

/sys/lib/acid/port
/sys/lib/acid/kernel
/sys/lib/acid/truss
/sys/lib/acid/386
acid: progargs = "−l lib/profile"
acid: new()
acid: truss()
open("#c/pid", 0)

return value: 3
pread(3, 0x7fffeeac, 20, −1)

return value: 12
data: " 166 "

14

ACID(1) ACID(1)

...
stat("lib/profile", 0x0000f8cc, 113)

return value: 65
open("/env/timezone", 0)

return value: 3
pread(3, 0x7fffd7c4, 1680, −1)

return value: 1518
data: "EST −18000 EDT −14400

9943200 25664400 41392800 57718800 73447200 89168400
104896800 ..."
close(3)

return value: 0
pwrite(1, "−−rw−rw−r−− M 9 rob rob 2519 Mar 22 10:29 lib/profile
", 54, −1)
−−rw−rw−r−− M 9 rob rob 2519 Mar 22 10:29 lib/profile

return value: 54
...
166: breakpoint _exits+0x5 INTB $0x40
acid: cont()

FILES
/proc/*/text
/proc/*/mem
/proc/*/ctl
/proc/*/note
/sys/lib/acid/$objtype
/sys/lib/acid/port
/sys/lib/acid/kernel
/sys/lib/acid/trump
/sys/lib/acid/truss
$home/lib/acid

SOURCE
/sys/src/cmd/acid

SEE ALSO
2a(1), 2c(1), 2l(1), mk(1), db(1)
Phil Winterbottom, ��Acid Manual��.

DIAGNOSTICS
At termination, kill commands are proposed for processes that are still active.

BUGS
There is no way to redirect the standard input and standard output of a new process.
Source line selection near the beginning of a file may pick an adjacent file.
With the extant stepping commands, one cannot step through instructions outside the text seg
ment and it is hard to debug across process forks.

15

ACME(1) ACME(1)

NAME
acme, win � interactive text windows

SYNOPSIS
acme [−aib] [−c ncol] [−f varfont] [−F fixfont] [−l loadfile | file ...]

win [command]

DESCRIPTION
Acme manages windows of text that may be edited interactively or by external programs. The
interactive interface uses the keyboard and mouse; external programs use a set of files served by
acme; these are discussed in acme(4).

Any named files are read into acme windows before acme accepts input. With the −l option, the
state of the entire system is loaded from loadfile, which should have been created by a Dump com
mand (q.v.), and subsequent file names are ignored. Plain files display as text; directories display
as columnated lists of the names of their components, as in ls −p directory|mc except that
the names of subdirectories have a slash appended.

The −f (−F) option sets the main font, usually variable-pitch (alternate, usually fixed-pitch); the
default is /lib/font/bit/lucidasans/euro.8.font
(.../lucm/unicode.9.font). Tab intervals are set to the width of 4 (or the value of
$tabstop) numeral zeros in the appropriate font.

Windows
Acme windows are in two parts: a one-line tag above a multi-line body. The body typically con
tains an image of a file, as in sam(1), or the output of a program, as in an rio(1) window. The tag
contains a number of blank-separated words, followed by a vertical bar character, followed by any
thing. The first word is the name of the window, typically the name of the associated file or direc
tory, and the other words are commands available in that window. Any text may be added after
the bar; examples are strings to search for or commands to execute in that window. Changes to
the text left of the bar will be ignored, unless the result is to change the name of the window.

If a window holds a directory, the name (first word of the tag) will end with a slash.

Scrolling
Each window has a scroll bar to the left of the body. The scroll bar behaves much as in sam(1) or
rio(1) except that scrolling occurs when the button is pressed, rather than released, and continues
as long as the mouse button is held down in the scroll bar. For example, to scroll slowly through a
file, hold button 3 down near the top of the scroll bar. Moving the mouse down the scroll bar
speeds up the rate of scrolling.

Layout
Acme windows are arranged in columns. By default, it creates two columns when starting; this can
be overridden with the −c option. Placement is automatic but may be adjusted using the layout
box in the upper left corner of each window and column. Pressing and holding any mouse button
in the box drags the associated window or column. For windows, just clicking in the layout box
grows the window in place: button 1 grows it a little, button 2 grows it as much as it can, still leav
ing all other tags in that column visible, and button 3 takes over the column completely, temporar
ily hiding other windows in the column. (They will return en masse if any of them needs attention.)
The layout box in a window is normally white; when it is black in the center, it records that the file
is �dirty�: acme believes it is modified from its original contents.

Tags exist at the top of each column and across the whole display. Acme pre-loads them with use
ful commands. Also, the tag across the top maintains a list of executing long-running commands.

Typing
The behavior of typed text is similar to that in rio(1) except that the characters are delivered to the
tag or body under the mouse; there is no �click to type�. (The experimental option −b causes typ
ing to go to the most recently clicked-at or made window.) The usual backspacing conventions
apply. As in sam(1) but not rio, the ESC key selects the text typed since the last mouse action, a
feature particularly useful when executing commands. A side effect is that typing ESC with text
already selected is identical to a Cut command (q.v.).

16

ACME(1) ACME(1)

Most text, including the names of windows, may be edited uniformly. The only exception is that
the command names to the left of the bar in a tag are maintained automatically; changes to them
are repaired by acme.

When a window is in autoindent mode (see the Indent command below) and a newline character
is typed, acme copies leading white space on the current line to the new line. The option −a
causes each window to start in autoindent mode.

When a window is in spacesindent mode (see the Spaces command below) and a tab character is
typed, acme indents the line with spaces equal to the current tabstop for the window. The option
−i causes each window to start in spacesindent mode.

Directory context
Each window�s tag names a directory: explicitly if the window holds a directory; implicitly if it holds
a regular file (e.g. the directory /adm if the window holds /adm/users). This directory provides
a context for interpreting file names in that window. For example, the string users in a window
labeled /adm/ or /adm/keys will be interpreted as the file name /adm/users. The directory
is defined purely textually, so it can be a non-existent directory or a real directory associated with
a non-existent file (e.g. /adm/not−a−file). File names beginning with a slash are assumed
to be absolute file names.

Errors
Windows whose names begin with − or + conventionally hold diagnostics and other data not
directly associated with files. A window labeled +Errors receives all diagnostics produced by
acme itself. Diagnostics from commands run by acme appear in a window named
directory/+Errors where directory is identified by the context of the command. These error
windows are created when needed.

Mouse button 1
Mouse button 1 selects text just as in sam(1) or rio(1), including the usual double-clicking con
ventions.

Mouse button 2
By an action similar to selecting text with button 1, button 2 indicates text to execute as a com
mand. If the indicated text has multiple white-space-separated words, the first is the command
name and the second and subsequent are its arguments. If button 2 is �clicked��indicates a null
string�acme expands the indicated text to find a command to run: if the click is within button-1-
selected text, acme takes that selection as the command; otherwise it takes the largest string of
valid file name characters containing the click. Valid file name characters are alphanumerics and _
. − + /. This behavior is similar to double-clicking with button 1 but, because a null command is
meaningless, only a single click is required.

Some commands, all by convention starting with a capital letter, are built−ins that are executed
directly by acme:

Cut Delete most recently selected text and place in snarf buffer.

Del Delete window. If window is dirty, instead print a warning; a second Del will succeed.

Delcol
Delete column and all its windows, after checking that windows are not dirty.

Delete
Delete window without checking for dirtiness.

Dump Write the state of acme to the file name, if specified, or $home/acme.dump by default.

Edit Treat the argument as a text editing command in the style of sam(1). The full Sam lan
guage is implemented except for the commands k, n, q, and !. The = command is slightly
different: it includes the file name and gives only the line address unless the command is
explicitly =#. The �current window� for the command is the body of the window in which
the Edit command is executed. Usually the Edit command would be typed in a tag;
longer commands may be prepared in a scratch window and executed, with Edit itself in
the current window, using the 2-1 chord described below.

Exit Exit acme after checking that windows are not dirty.

17

ACME(1) ACME(1)

Font With no arguments, change the font of the associated window from fixed-spaced to
proportional-spaced or vice versa. Given a file name argument, change the font of the win
dow to that stored in the named file. If the file name argument is prefixed by var (fix),
also set the default proportional-spaced (fixed-spaced) font for future use to that font.
Other existing windows are unaffected.

Get Load file into window, replacing previous contents (after checking for dirtiness as in Del).
With no argument, use the existing file name of the window. Given an argument, use that
file but do not change the window�s file name.

ID Print window ID number (q.v.).

Incl When opening �include� files (those enclosed in <>) with button 3, acme searches in direc
tories /$objtype/include and /sys/include. Incl adds its arguments to a sup
plementary list of include directories, analogous to the −I option to the compilers. This
list is per-window and is inherited when windows are created by actions in that window, so
Incl is most usefully applied to a directory containing relevant source. With no arguments,
Incl prints the supplementary list. This command is largely superseded by plumbing (see
plumb(6)).

Indent
Set the autoindent mode according to the argument: on and off set the mode for the cur
rent window; ON and OFF set the mode for all existing and future windows.

Kill Send a kill note to acme-initiated commands named as arguments.

Load Restore the state of acme from a file (default $home/acme.dump) created by the Dump
command.

Local
When prefixed to a command run the command in the same file name space and environ
ment variable group as acme. The environment of the command is restricted but is suffi
cient to run bind(1), 9fs (see srv(4)), import(4), etc., and to set environment variables such
as $objtype.

Look Search in body for occurrence of literal text indicated by the argument or, if none is given,
by the selected text in the body.

New Make new window. With arguments, load the named files into windows.

Newcol
Make new column.

Paste
Replace most recently selected text with contents of snarf buffer.

Put Write window to the named file. With no argument, write to the file named in the tag of the
window.

Putall
Write all dirty windows whose names indicate existing regular files.

Redo Complement of Undo.

Send Append selected text or snarf buffer to end of body; used mainly with win.

Snarf
Place selected text in snarf buffer.

Sort Arrange the windows in the column from top to bottom in lexicographical order based on
their names.

Spaces
Set the spacesindent mode according to the argument: on and off set the mode for the
current window; ON and OFF set the mode for all existing and future windows.

Tab Set the width of tab stops for this window to the value of the argument, in units of widths
of the zero character. With no arguments, it prints the current value.

Undo Undo last textual change or set of changes.

18

ACME(1) ACME(1)

Zerox
Create a copy of the window containing most recently selected text.

<|> If a regular shell command is preceded by a <, |, or > character, the selected text in the
body of the window is affected by the I/O from the command. The < character causes the
selection to be replaced by the standard output of the command; > causes the selection to
be sent as standard input to the command; and | does both at once, �piping� the selection
through the command and replacing it with the output.

A common place to store text for commands is in the tag; in fact acme maintains a set of com
mands appropriate to the state of the window to the left of the bar in the tag.

If the text indicated with button 2 is not a recognized built-in, it is executed as a shell command.
For example, indicating date with button 2 runs date(1). The standard and error outputs of com
mands are sent to the error window associated with the directory from which the command was
run, which will be created if necessary. For example, in a window /adm/users executing pwd
will produce the output /adm in a (possibly newly-created) window labeled /adm/+Errors; in a
window containing /sys/src/cmd/sam/sam.c executing mk will run mk(1) in
/sys/src/cmd/sam, producing output in a window labeled
/sys/src/cmd/sam/+Errors. The environment of such commands contains the variable $%
with value set to the filename of the window in which the command is run, and $winid set to the
window�s id number (see acme(4)).

Mouse button 3
Pointing at text with button 3 instructs acme to locate or acquire the file, string, etc. described by
the indicated text and its context. This description follows the actions taken when button 3 is
released after sweeping out some text. In the description, text refers to the text of the original
sweep or, if it was null, the result of applying the same expansion rules that apply to button 2
actions.

If the text names an existing window, acme moves the mouse cursor to the selected text in the
body of that window. If the text names an existing file with no associated window, acme loads the
file into a new window and moves the mouse there. If the text is a file name contained in angle
brackets, acme loads the indicated include file from the directory appropriate to the suffix of the
file name of the window holding the text. (The Incl command adds directories to the standard
list.)

If the text begins with a colon, it is taken to be an address, in the style of sam(1), within the body
of the window containing the text. The address is evaluated, the resulting text highlighted, and
the mouse moved to it. Thus, in acme, one must type :/regexp or :127 not just /regexp or
127. (There is an easier way to locate literal text; see below.)

If the text is a file name followed by a colon and an address, acme loads the file and evaluates the
address. For example, clicking button 3 anywhere in the text file.c:27 will open file.c,
select line 27, and put the mouse at the beginning of the line. The rules about Error files, directo
ries, and so on all combine to make this an efficient way to investigate errors from compilers, etc.

If the text is not an address or file, it is taken to be literal text, which is then searched for in the
body of the window in which button 3 was clicked. If a match is found, it is selected and the
mouse is moved there. Thus, to search for occurrences of a word in a file, just click button 3 on
the word. Because of the rule of using the selection as the button 3 action, subsequent clicks will
find subsequent occurrences without moving the mouse.

In all these actions, the mouse motion is not done if the text is a null string within a non-null
selected string in the tag, so that (for example) complex regular expressions may be selected and
applied repeatedly to the body by just clicking button 3 over them.

Chords of mouse buttons
Several operations are bound to multiple-button actions. After selecting text, with button 1 still
down, pressing button 2 executes Cut and button 3 executes Paste. After clicking one button,
the other undoes the first; thus (while holding down button 1) 2 followed by 3 is a Snarf that
leaves the file undirtied; 3 followed by 2 is a no-op. These actions also apply to text selected by
double-clicking because the double-click expansion is made when the second click starts, not
when it ends.

19

ACME(1) ACME(1)

Commands may be given extra arguments by a mouse chord with buttons 2 and 1. While holding
down button 2 on text to be executed as a command, clicking button 1 appends the text last
pointed to by button 1 as a distinct final argument. For example, to search for literal text one
may execute Look text with button 2 or instead point at text with button 1 in any window,
release button 1, then execute Look, clicking button 1 while 2 is held down.

When an external command (e.g. echo(1)) is executed this way, the extra argument is passed as
expected and an environment variable $acmeaddr is created that holds, in the form interpreted
by button 3, the fully-qualified address of the extra argument.

Support programs
Win creates a new acme window and runs a command (default /bin/rc) in it, turning the window
into something analogous to an rio(1) window. Executing text in a win window with button 2 is
similar to using Send.

Applications and guide files
In the directory /acme live several subdirectories, each corresponding to a program or set of
related programs that employ acme’s user interface. Each subdirectory includes source, binaries,
and a readme file for further information. It also includes a guide, a text file holding sample
commands to invoke the programs. The idea is to find an example in the guide that best matches
the job at hand, edit it to suit, and execute it.

Whenever a command is executed by acme, the default search path includes the directory of the
window containing the command and its subdirectory $cputype. The program directories in
/acme contain appropriately labeled subdirectories of binaries, so commands named in the guide
files will be found automatically when run. Also, acme binds the directories /acme/bin and
/acme/bin/$cputype to the beginning of /bin when it starts; this is where acme-specific
programs such as win reside.

FILES
$home/acme.dump default file for Dump and Load; also where state is written if acme dies

or is killed unexpectedly, e.g. by deleting its window.
/acme/*/guide template files for applications
/acme/*/readme informal documentation for applications
/acme/*/src source for applications
/acme/*/mips MIPS-specific binaries for applications

SOURCE
/sys/src/cmd/acme
/acme/bin/source/win

SEE ALSO
emacs(1) acme(4)
Rob Pike, Acme: A User Interface for Programmers.

BUGS
With the −l option or Load command, the recreation of windows under control of external pro
grams such as win is just to rerun the command; information may be lost.

20

ALARM(1) ALARM(1)

NAME
alarm � ask for delayed note

SYNOPSIS
alarm time command [arg ...]

DESCRIPTION
Alarm causes an alarm note (see notify(2)) to be sent to the process indicated by command after
time seconds.

SOURCE
/sys/src/cmd/alarm.c

SEE ALSO
sleep(2)

21

AP(1) AP(1)

NAME
ap � fetch Associated Press news articles

SYNOPSIS
ap [article−name]

DESCRIPTION
ap fetches Associated Press news articles from http://www.newsday.com. Without any arguments
it provides a two column list of article keys and descriptions. When invoked with an article key it
fetches that article.

SOURCE
/rc/bin/ap

22

AR(1) AR(1)

NAME
ar � archive and library maintainer

SYNOPSIS
ar key [posname] afile [file ...]

DESCRIPTION
Ar maintains groups of files combined into a single archive file, afile. The main use of ar is to cre
ate and update library files for the loaders 2l(1), etc. It can be used, though, for any similar pur
pose.

Key is one character from the set drqtpmx, optionally concatenated with one or more of
vuaibclo. The files are constituents of the archive afile. The meanings of the key characters
are:

d Delete files from the archive file.

r Replace files in the archive file, or add them if missing. Optional modifiers are
u Replace only files with modified dates later than that of the archive.
a Place new files after posname in the archive rather than at the end.
b or i Place new files before posname in the archive.

q Quick. Append files to the end of the archive without checking for duplicates. Avoids qua
dratic behavior in for (i in *.v) ar r lib.a $i.

t List a table of contents of the archive. If names are given, only those files are listed.

p Print the named files in the archive.

m Move the named files to the end or elsewhere, specified as with r.

o Preserve the access and modification times of files extracted with the x command.

x Extract the named files. If no names are given, all files in the archive are extracted. In nei
ther case does x alter the archive file.

v Verbose. Give a file-by-file description of the making of a new archive file from the old
archive and the constituent files. With p, precede each file with a name. With t, give a
long listing of all information about the files, somewhat like a listing by ls(1), showing

mode uid/gid size date name

l Local. Normally ar places its temporary files in the directory /tmp. This option causes
them to be placed in the local directory.

When a d, r, or m key is specified and all members of the archive are valid object files for the same
architecture, ar inserts a table of contents, required by the loaders, at the front of the library. The
table of contents is rebuilt whenever the archive is modified, except when the q key is specified or
when the table of contents is explicitly moved or deleted.

EXAMPLE
ar cr lib.a *.v

Replace the contents of library lib.a with the object files in the current directory.

FILES
/tmp/v* temporaries

SOURCE
/sys/src/cmd/ar.c

SEE ALSO
2l(1), ar(6)

BUGS
If the same file is mentioned twice in an argument list, it may be put in the archive twice.
This command predates Plan 9 and makes some invalid assumptions, for instance that user id�s
are numeric.

23

ASCII(1) ASCII(1)

NAME
ascii, unicode � interpret ASCII, Unicode characters

SYNOPSIS
ascii [−8cnt] [−dox | −b n] [text]

unicode hexmin−hexmax

unicode [−t] hex [...]

unicode [−n] characters

look hex /lib/unicode

DESCRIPTION
Ascii prints the ASCII values corresponding to characters and vice versa; under the −8 option, the
ISO Latin-1 extensions (codes 0200-0377) are included. The values are interpreted in a settable
numeric base; −o specifies octal, −d decimal, −x hexadecimal (the default), and −bn base n.

With no arguments, ascii prints a table of the character set in the specified base. Characters of
text are converted to their ASCII values, one per line. If, however, the first text argument is a valid
number in the specified base, conversion goes the opposite way. Control characters are printed as
two- or three-character mnemonics. Other options are:

−n Force numeric output.

−c Force character output.

−t Convert from numbers to running text; do not interpret control characters or insert new
lines.

Unicode is similar; it converts between UTF and character values from the Unicode Standard (see
utf(6)). If given a range of hexadecimal numbers, unicode prints a table of the specified Unicode
characters � their values and UTF representations. Otherwise it translates from UTF to numeric
value or vice versa, depending on the appearance of the supplied text; the −n option forces
numeric output to avoid ambiguity with numeric characters. If converting to UTF , the characters
are printed one per line unless the −t flag is set, in which case the output is a single string con
taining only the specified characters. Unlike ascii, unicode treats no characters specially.

The output of ascii and unicode may be unhelpful if the characters printed are not available in the
current font.

The file /lib/unicode contains a table of characters and descriptions, sorted in hexadecimal
order, suitable for look(1) on the lower case hex values of characters.

EXAMPLES
ascii −d

Print the ASCII table base 10.

unicode p
Print the hex value of �p�.

unicode 2200−22f1
Print a table of miscellaneous mathematical symbols.

look 039 /lib/unicode
See the start of the Greek alphabet�s encoding in the Unicode Standard.

FILES
/lib/unicode table of characters and descriptions.

SOURCE
/sys/src/cmd/ascii.c
/sys/src/cmd/unicode.c

SEE ALSO
look(1), tcs(1), utf(6), font(6)

24

ATARI(1) ATARI(1)

NAME
2600 � emulator

SYNOPSIS
games/2600 [−a] [−x scale] romfile

DESCRIPTION
2600 is an emulator for the Atari 2600. It exectues the romfile given as an argument, and controls
as if using a regular 4-direction 1-button joystick, using space button and directional keys. The
q, w, e and r keys correspond respectively to the reset, select, player 1 difficulty and color mode
switches. Other keys:

F1 Pause the emulator. If already paused it will step one video frame.

F12 Toggle the emulator�s speedometer. It shows in the upper left, off-viewport corner, the
ratio between the expected and observed time it took to draw 60 frames.

t Toggle tracing of the emulator.

� It uncaps the 60fps frame rate and lets emulation go as fast as possible.

Esc Pause the emulator.

Del Exit the emulator.

Command line options:

−a Enable audio output.

−x Scale the screen to a given factor regardless of the window�s size.

SOURCE
/sys/src/games/2600

BUGS
Yes.

HISTORY
2600 first appeared in 9front (November, 2014).

25

AUDIO(1) AUDIO(1)

NAME
mp3dec, mp3enc, oggdec, oggenc, flacdec, flacenc, sundec, wavdec, pcmconv, mixfs � decode and
encode audio files

SYNOPSIS
audio/mp3dec [−s seconds] [−d]
audio/oggdec [−s seconds]
audio/flacdec [−s seconds]
audio/wavdec [−s seconds]
audio/sundec

audio/oggenc
audio/mp3enc [−hprv] [−b bitrate] [−B bitrate] [−m mode] [−q q] [−s sfreq] [−V q] [
long or silly options]
audio/flacenc [−b bitspersample] [−c channels] [−l compresslevel] [−s sfreq] [−P
padding] [−T field=value]

audio/pcmconv [−i fmt] [−o fmt] [−l length]

audio/mixfs [−D] [−s srvname] [−m mtpt]

DESCRIPTION
These programs decode and encode various audio formats from and to 16-bit stereo PCM (little
endian). The decoders read the compressed audio data from standard input and produce PCM on
standard output at a sampling frequency of 44.1KHz.

Mp3dec decodes MPEG audio (layer 1, 2 and 3). The −d option enables debug output to standard
error. Oggdec, flacdec, sunwdec and wavdec are like mp3dec but decode OGG Vorbis, FLAC loss
less audio, Sun audio and RIFF wave.

Decoding options
−s seconds seek to a specific position in seconds before decoding.

The encoders read PCM on standard input and produce compressed audio on standard output.

Flacenc, oggenc and mp3enc produce FLAC, OGG Vorbis and MP3 audio. For mp3enc, the MP3 file
will use �constant bit-rate� (CBR) encoding by default, but that can be changed via −−abr (average
bitrate desired, ABR) or −v (variable bitrate, VBR).

Flacenc and oggenc accept raw PCM in the same byte order as /dev/audio (little-endian), while
mp3enc −r expects big-endian.

Encoding options
−b set minimum allowed bitrate in Kb/s for VBR, default 32Kb/s. For CBR, set the exact bitrate

in Kb/s, which defaults to 128Kb/s.
−B set maximum allowed bitrate in Kb/s for VBR, default 256Kb/s.
−h same as −q 2.
−m mode may be (s)tereo, (j)oint, (f)orce or (m)ono (default j). force forces mid/side stereo on

all frames.
−p add CRC error protection (adds an additional 16 bits per frame to the stream). This seems

to break playback.
−q sets output quality to q (see −V).
−r input is raw pcm
−s set sampling frequency of input file (in KHz) to sfreq, default is 44.1.
−v use variable bitrate (VBR) encoding
−V set quality setting for VBR to q. Default q is 4; 0 produces highest-quality and largest files,

and 9 produces lowest-quality and smallest files.

Long options
−−abr bitrate sets average bitrate desired in Kb/s, instead of setting quality, and gener

ates ABR encoding.
−−resample sfreq set sampling frequency of output file (in KHz) to sfreq, default is input sfreq.
−−mp3input input is an MP3 file

26

AUDIO(1) AUDIO(1)

Silly options
−f same as −q 7. Such a deal.
−o mark as non-original (i.e. do not set the original bit)
−c mark as copyright
−k disable sfb=21 cutoff
−e emp de-emphasis n/5/c (default n)
−d allow channels to have different blocktypes
−t disable Xing VBR informational tag
−a autoconvert from stereo to mono file for mono encoding
−x force byte-swapping of input (see dd(1) instead)
−S don�t print progress report, VBR histograms
−−athonly only use the ATH for masking
−−nohist disable VBR histogram display
−−voice experimental voice mode

Pcmconv is a helper program used to convert various PCM sample formats. The −i and −o options
specify the input and output format fmt of the conversion. Fmt is a concatenated string of the fol
lowing parts:

s# sample format is little-endian signed integer where # specifies the number of bits

u# unsigned little-endian integer format

S# singed big-endian integer format

U# unsigned big-endian integer format

f# floating point format where # has to be 32 or 64 for single- or double-precision

a8 8-bit a-law format

µ8 8-bit µ-law format

c# specifies the number of channels

r# gives the samplerate in Hz

The program reads samples from standard input converting the data and writes the result to stan
dard output until it reached end of file or, if −l was given, a number of length bytes have been
consumed from input.

Mixfs is a fileserver serving a single audio file which allows simultaneous playback of audio
streams. When run, it binds over /dev/audio and mixes the audio samples that are written to it.
A service name srvname can be given with the −s option which gets posted to /srv. By default,
mixfs mounts itself on /mnt/mix and then binds /mnt/mix/audio over /dev. A alternative
mountpoint mtpt can be specified with the −m option. The −D option causes 9p debug messages
to be written to file-descriptor 2.

EXAMPLE
Play back an .mp3

audio/mp3dec <foo.mp3 >/dev/audio

Encode a .wav file as highest-quality MP3.

audio/mp3enc −q 0 −b 320 <foo.wav >foo.mp3

Create a fixed 128Kb/s MP3 file from a .wav file.

audio/mp3enc −h <foo.wav >foo.mp3

Streaming from stereo 44.1KHz raw PCM data, encoding mono at 16KHz (you may not need dd):

dd −conv swab | audio/mp3enc −a −r −m m −−resample 16 −b 24

SOURCE
/sys/src/cmd/audio

SEE ALSO
play(1), juke(7), playlistfs(7)
http://www.underbit.com/products/mad/
http://xiph.org/doc/

27

AUDIO(1) AUDIO(1)

http://flac.sourceforge.net/documentation.html

HISTORY
Pcmconv first appeared in 9front (December, 2012). Mixfs first appeared in 9front (December,
2013). Flacenc first appeared in 9front (January, 2021).

28

AWK(1) AWK(1)

NAME
awk � pattern-directed scanning and processing language

SYNOPSIS
awk [−F fs] [−d] [−mf n] [−mr n] [−safe] [−v var=value] [−f progfile | prog] [file ...]

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified literally in prog or
in one or more files specified as −f progfile. With each pattern there can be an associated action
that will be performed when a line of a file matches the pattern. Each line is matched against the
pattern portion of every pattern-action statement; the associated action is performed for each
matched pattern. The file name − means the standard input. Any file of the form var=value is
treated as an assignment, not a file name, and is executed at the time it would have been opened
if it were a file name. The option −v followed by var=value is an assignment to be done before
the program is executed; any number of −v options may be present. −F fs option defines the
input field separator to be the regular expression fs.

An input line is normally made up of fields separated by white space, or by regular expression FS.
The fields are denoted $1, $2, ..., while $0 refers to the entire line. If FS is null, the input line is
split into one field per character.

To compensate for inadequate implementation of storage management, the −mr option can be
used to set the maximum size of the input record, and the −mf option to set the maximum num
ber of fields.

The −safe option causes awk to run in ��safe mode,�� in which it is not allowed to run shell com
mands or open files and the environment is not made available in the ENVIRON variable.

A pattern-action statement has the form

pattern { action }

A missing { action } means print the line; a missing pattern always matches. Pattern-action state
ments are separated by newlines or semicolons.

An action is a sequence of statements. A statement can be one of the following:

if(expression) statement [else statement]
while(expression) statement
for(expression ; expression ; expression) statement
for(var in array) statement
do statement while(expression)
break
continue
{ [statement ...] }
expression # commonly var = expression
print [expression−list] [> expression]
printf format [, expression−list] [> expression]
return [expression]
next # skip remaining patterns on this input line
nextfile # skip rest of this file, open next, start at top
delete array[expression] # delete an array element
delete array # delete all elements of array
exit [expression] # exit immediately; status is expression

Statements are terminated by semicolons, newlines or right braces. An empty expression−list
stands for $0. String constants are quoted " ", with the usual C escapes recognized within.
Expressions take on string or numeric values as appropriate, and are built using the operators + �

* / % ^ (exponentiation), and concatenation (indicated by white space). The operators ! ++
�� += �= *= /= %= ^= > >= < <= == != ?: are also available in expressions. Vari
ables may be scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows for a form of asso
ciative memory. Multiple subscripts such as [i,j,k] are permitted; the constituents are con
catenated, separated by the value of SUBSEP.

29

AWK(1) AWK(1)

The print statement prints its arguments on the standard output (or on a file if >file or >>file is
present or on a pipe if |cmd is present), separated by the current output field separator, and ter
minated by the output record separator. file and cmd may be literal names or parenthesized
expressions; identical string values in different statements denote the same open file. The
printf statement formats its expression list according to the format (see fprintf(2)) . The built-
in function close(expr) closes the file or pipe expr. The built-in function fflush(expr)
flushes any buffered output for the file or pipe expr. If expr is omitted or is a null string, all open
files are flushed.

The mathematical functions exp, log, sqrt, sin, cos, and atan2 are built in. Other built-in
functions:

length If its argument is a string, the string�s length is returned. If its argument is an array,
the number of subscripts in the array is returned. If no argument, the length of $0 is
returned.

rand random number on (0,1)
srand sets seed for rand and returns the previous seed.
int truncates to an integer value
utf converts its numerical argument, a character number, to a UTF string
substr(s, m)

the maximum length substring of s that begins at position m counted from 1.
substr(s, m, n)

the n-character substring of s that begins at position m counted from 1.
index(s, t)

the position in s where the string t occurs, or 0 if it does not.
match(s, r)

the position in s where the regular expression r occurs, or 0 if it does not. The vari
ables RSTART and RLENGTH are set to the position and length of the matched string.

split(s, a, fs)
splits the string s into array elements a[1], a[2], ..., a[n], and returns n. The sep
aration is done with the regular expression fs or with the field separator FS if fs is not
given. An empty string as field separator splits the string into one array element per
character.

sub(r, t, s)
substitutes t for the first occurrence of the regular expression r in the string s. If s is
not given, $0 is used. & in t is replaced by the match.

gsub same as sub except that all occurrences of the regular expression are replaced; sub
and gsub return the number of replacements.

sprintf(fmt, expr, ...)
the string resulting from formatting expr ... according to the printf format fmt

system(cmd)
executes cmd and returns its exit status

tolower(str)
returns a copy of str with all upper-case characters translated to their corresponding
lower-case equivalents.

toupper(str)
returns a copy of str with all lower-case characters translated to their corresponding
upper-case equivalents.

The ��function�� getline sets $0 to the next input record from the current input file; getline
<file sets $0 to the next record from file. getline x sets variable x instead. Finally, cmd |
getline pipes the output of cmd into getline; each call of getline returns the next line of
output from cmd. In all cases, getline returns 1 for a successful input, 0 for end of file, and �1
for an error.

Patterns are arbitrary Boolean combinations (with ! || &&) of regular expressions and relational
expressions. Regular expressions are as in regexp(6). Isolated regular expressions in a pattern
apply to the entire line. Regular expressions may also occur in relational expressions, using the
operators ~ and !~. /re/ is a constant regular expression; any string (constant or variable) may
be used as a regular expression, except in the position of an isolated regular expression in a pat
tern.

30

AWK(1) AWK(1)

A pattern may consist of two patterns separated by a comma; in this case, the action is performed
for all lines from an occurrence of the first pattern though an occurrence of the second.

A relational expression is one of the following:

expression matchop regular−expression
expression relop expression
expression in array−name
(expr,expr,...) in array−name

where a relop is any of the six relational operators in C, and a matchop is either ~ (matches) or !~
(does not match). A conditional is an arithmetic expression, a relational expression, or a Boolean
combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is
read and after the last. BEGIN and END do not combine with other patterns.

Variable names with special meanings:

CONVFMT conversion format used when converting numbers (default %.6g)
FS regular expression used to separate fields; also settable by option �Ffs.
NF number of fields in the current record
NR ordinal number of the current record
FNR ordinal number of the current record in the current file
FILENAME the name of the current input file
RS input record separator (default newline)
OFS output field separator (default blank)
ORS output record separator (default newline)
OFMT output format for numbers (default %.6g)
SUBSEP separates multiple subscripts (default 034)
ARGC argument count, assignable
ARGV argument array, assignable; non-null members are taken as file names
ENVIRON array of environment variables; subscripts are names.

Functions may be defined (at the position of a pattern-action statement) thus:

function foo(a, b, c) { ...; return x }

Parameters are passed by value if scalar and by reference if array name; functions may be called
recursively. Parameters are local to the function; all other variables are global. Thus local vari
ables may be created by providing excess parameters in the function definition.

EXAMPLES
length($0) > 72

Print lines longer than 72 characters.

{ print $2, $1 }
Print first two fields in opposite order.

BEGIN { FS = ",[\t]*|[\t]+" }
{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs.

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Add up first column, print sum and average.

/start/, /stop/
Print all lines between start/stop pairs.

BEGIN { # Simulate echo(1)
for (i = 1; i < ARGC; i++) printf "%s ", ARGV[i]
printf "\n"
exit }

SOURCE
/sys/src/cmd/awk

SEE ALSO
sed(1), regexp(6),

31

AWK(1) AWK(1)

A. V. Aho, B. W. Kernighan, P. J. Weinberger, The AWK Programming Language, Addison-Wesley,
1988. ISBN 0-201-07981-X

BUGS
There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add 0 to it; to force it to be treated as a string concatenate "" to it.
The scope rules for variables in functions are a botch; the syntax is worse.
UTF is not always dealt with correctly, though awk does make an attempt to do so. The split func
tion with an empty string as final argument now copes with UTF in the string being split.

32

BASENAME(1) BASENAME(1)

NAME
basename � strip file name affixes

SYNOPSIS
basename [−d] string [suffix]

DESCRIPTION
Basename deletes any prefix ending in slash (/) and the suffix, if present in string, from string,
and prints the result on the standard output.

The −d option instead prints the directory component, that is, string up to but not including the
final slash. If the string contains no slash, a period and newline are printed.

SOURCE
/sys/src/cmd/basename.c

33

BC(1) BC(1)

NAME
bc � arbitrary-precision arithmetic language

SYNOPSIS
bc [−cdls] [file ...]

DESCRIPTION
Bc is an interactive processor for a language that resembles C but provides arithmetic on numbers
of arbitrary length with up to 100 digits right of the decimal point. It takes input from any files
given, then reads the standard input.

The −d option enables debugging output. The −l option stands for the name of an arbitrary pre
cision math library. The −s option suppresses the automatic display of calculation results; all out
put is via the print command.

The following syntax for bc programs is like that of C; L means letter a-z, E means expression, S
means statement.

Lexical
comments are enclosed in /* */
newlines end statements

Names
simple variables: L
array elements: L[E]
The words ibase, obase, and scale

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt(E)
length(E)

number of significant decimal digits
scale(E)

number of digits right of decimal point
L(E,...,E)

function call
Operators

+ − * / % ^ (% is remainder; ^ is power)
++ −−
== <= >= != < >
= += −= *= /= %= ^=

Statements
E
{ S ; ... ; S }
print E
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit
"text"

Function definitions
define L (L , ... , L){
auto L , ... , L
S ; ... ; S
return E
}

Functions in −l math library
s(x) sine
c(x) cosine

34

BC(1) BC(1)

e(x) exponential
l(x) log
a(x) arctangent
j(n, x)

Bessel function
All function arguments are passed by value.

The value of an expression at the top level is printed unless the main operator is an assignment or
the −s command line argument is given. Text in quotes, which may include newlines, is always
printed. Either semicolons or newlines may separate statements. Assignment to scale influ
ences the number of digits to be retained on arithmetic operations in the manner of dc(1). Assign
ments to ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. Automatic variables are pushed down during function calls.
In a declaration of an array as a function argument or automatic variable empty square brackets
must follow the array name.

Bc is actually a preprocessor for dc(1), which it invokes automatically, unless the −c (compile only)
option is present. In this case the dc input is sent to the standard output instead.

EXAMPLE
Define a function to compute an approximate value of the exponential. Use it to print 10 values.
(The exponential function in the library gives better answers.)

scale = 20
define e(x) {

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=1; 1; i++) {

a *= x
b *= i
c = a/b
if(c == 0) return s
s += c

}
}
for(i=1; i<=10; i++) print e(i)

FILES
/sys/lib/bclib mathematical library

SOURCE
/sys/src/cmd/bc.y

SEE ALSO
dc(1), hoc(1)

BUGS
No &&, ||, or ! operators.

A for statement must have all three Es.

A quit is interpreted when read, not when executed.

35

BIND(1) BIND(1)

NAME
bind, mount, unmount � change name space

SYNOPSIS
bind [option ...] new old

mount [option ...] servename old [spec]

unmount [new] old

DESCRIPTION
Bind and mount modify the file name space of the current process and other processes in the same
name space group (see fork(2)). For both calls, old is the name of an existing file or directory in
the current name space where the modification is to be made.

For bind, new is the name of another (or possibly the same) existing file or directory in the current
name space. After a successful bind, the file name old is an alias for the object originally named
by new; if the modification doesn�t hide it, new will also still refer to its original file. The evalua
tion of new (see intro(2)) happens at the time of the bind, not when the binding is later used.

The servename argument to mount is the name of a file that, when opened, yields an existing con
nection to a file server. Almost always, servename will be a file in /srv (see srv(3)). In the discus
sion below, new refers to the file named by the new argument to bind or the root directory of the
service available in servename after a mount. Either both old and new files must be directories, or
both must not be directories.

Options control aspects of the modification to the name space:

(none) Replace the old file by the new one. Henceforth, an evaluation of old will be translated
to the new file. If they are directories (for mount, this condition is true by definition),
old becomes a union directory consisting of one directory (the new file).

−b Both files must be directories. Add the new directory to the beginning of the union
directory represented by the old file.

−a Both files must be directories. Add the new directory to the end of the union directory
represented by the old file.

−c This can be used in addition to any of the above to permit creation in a union directory.
When a new file is created in a union directory, it is placed in the first element of the
union that has been bound or mounted with the −c flag. If that directory does not have
write permission, the create fails.

−C (Only in mount.) By default, file contents are always retrieved from the server. With this
option, the kernel may instead use a local cache to satisfy read(5) requests for files
accessible through this mount point. The currency of cached data for a file is verified at
each open(5) of the file from this client machine.

−q Exit silently if the bind or mount operation fails.

Mount takes three additional options. The first, −k keypattern, constrains the set of factotum(4)
keys used for an authenticated mount. The second, −n, causes mount to skip authentication
entirely. The third, −N, skips authentication and specifies none as the username to the fileserver.

The spec argument to mount is passed in the attach(5) message to the server, and selects among
different file trees served by the server.

The srv(3) service registry device, normally bound to /srv, is a convenient rendezvous point for
services that can be mounted. After bootstrap, the file /srv/boot contains the communications
port to the file system from which the system was loaded.

The effects of bind and mount can be undone with the unmount command. If two arguments are
given to unmount, the effect is to undo a bind or mount with the same arguments. If only one
argument is given, everything bound to or mounted upon old is unmounted.

EXAMPLES
To compile a program with the C library from July 16, 1992:

36

BIND(1) BIND(1)

mount /srv/boot /n/dump dump
bind /n/dump/1992/0716/mips/lib/libc.a /mips/lib/libc.a
mk

SOURCE
/sys/src/cmd/bind.c
/sys/src/cmd/mount.c
/sys/src/cmd/unmount.c

SEE ALSO
bind(2), open(2), srv(3), srv(4)

37

BITSYLOAD(1) BITSYLOAD(1)

NAME
bitsyload, light, pencal, keyboard, params, prompter � bitsy-specific utilities

SYNOPSIS
bitsy/bitsyload k|r [file]

bitsy/light [intensity]

bitsy/params [�f]

bitsy/pencal

bitsy/keyboard [�n]

bitsy/prompter [�n] file

DESCRIPTION
Bitsyload erases a section of flash memory on the Bitsy (iPAQ 3650 or 3830) and copies new infor
mation into it, using the format required by the Compaq boot loader. The required first argument
is the destination, either k for /dev/flash/kernel or r for /dev/flash/ramdisk. The
optional second argument is the name of the file to load. The default kernel file is
/sys/src/9/bitsy/9bitsy and the default ramdisk file is
/sys/src/9/bitsy/ramdisk.

Light sets the intensity of the display backlight. The values for intensity are:

on set intensity to maximum, the default

off turn off backlight

n sets the intensity to n, where n is a value between 0 and 128. Intensity 0 doesn�t turn off
the backlight, it just sets it to the dimmest value.

Pencal calibrates the display with the touch screen on a Bitsy. It loops prompting the user with
crosses whose center that the user must touch with the stylus. After a consistent set of touches, it
writes the calibration both to the kernel and to standard out. It is normally called by the bitsy�s
/bin/cpurc.

Params copies the contents of the file /dev/tmpparams, into the flash partition,
/dev/flash/params, or if the −f flag it set copies in the opposite direction.

Keyboard creates a virtual on-screen keyboard and, unless the −n option is specified, a scribble
area. A user inputs characters by tapping the keys or by drawing characters in the scribble area
(see scribble(2)). It is usually run as the keyboard command for rio(1) using rio�s −k option.

Prompter is a small editor used to configure parameters when a Bitsy boots. It displays the file
and starts up a keyboard and scribble pad for input. Clicking with the stylus in the text selects
where input characters will go. Pressing Button 5 (top left side of the Bitsy) or typing the Esc key
on the keyboard causes prompter to write back the updated file and exit; Del causes prompter to
exit without writing the file. The −n flag suppresses the scribble area.

EXAMPLE
Prompter, params, and calibrate are used in only one place, the Bitsy�s /rc/bin/cpurc:

set variables
ramfs
bitsy/params −f
if(! grep −s ’^calibrate=’ /tmp/tmpparams)

bitsy/pencal >>/tmp/tmpparams
if not {

eval ‘{grep ’^calibrate=’ /tmp/tmpparams}
echo calibrate $calibrate > ’#m/mousectl’

}
bitsy/prompter /tmp/tmpparams
bitsy/params

SOURCE
/sys/src/cmd/bitsy

38

BLIT(1) BLIT(1)

NAME
blit � Blit emulator

SYNOPSIS
games/blit [−m] [−b baud] [−C bg,fg] −d | −t [net!]machine[!port]

DESCRIPTION
Blit is an emulator for the Blit terminal. It connects to the host specified by the dial(2) string
[net!]machine[!port].

The colors are configurable with the −C option in the format rrggbb,rrggbb, where the first color
is the background (normally white) and the second color is the foreground (normally black).

The emulator has accurate relative timing but runs as fast as it can. By default, however, it uses a
baudrate of 40,000 baud (real hardware used 19,200). This is configurable with the −b option.
Beware that the Blit software is not able to handle baud rates that are too high.

If the −m option is set, the Plan 9 mouse cursor is not hidden.

If −d is specified instead of −t, the diagnostic ROM is booted instead.

SOURCE
/sys/src/games/blit

BUGS
It should support connections via a pipe rather than telnet.

HISTORY
Blit first appeared in 9front (Mar, 2017).

39

BULLSHIT(1) BULLSHIT(1)

NAME
bullshit � assemble a stream of bullshit from words in a file

SYNOPSIS
bullshit [file]

DESCRIPTION
Bullshit prints a one-line nonsense phrase assembled from random words. If a file is specified, the
words are taken from that file; otherwise they are selected from /lib/bullshit.

FILES
/lib/bullshit

SOURCE
/rc/bin/bullshit

HISTORY
Bullshit first appeared in 9front (August, 2011).

40

BUNDLE(1) BUNDLE(1)

NAME
bundle � collect files for distribution

SYNOPSIS
bundle file ...

DESCRIPTION
Bundle writes on its standard output a shell script for rc(1) or a Bourne shell which, when exe
cuted, will recreate the original files. Its main use is for distributing small numbers of text files by
mail(1).

Although less refined than standard archives from ar(1) or tar(1), a bundle file is self-
documenting and complete; little preparation is required on the receiving machine.

EXAMPLES
bundle mkfile *.[ch] | mail kremvax!boris

Send a makefile to Boris together with related .c and .h files. Upon receiving the mail,
Boris may save the file sans postmark, say in gift/horse, then do

cd gift; rc horse; mk

SOURCE
/rc/bin/bundle

SEE ALSO
ar(1), tar(1), mail(1)

BUGS
Bundle will not create directories and is unsatisfactory for non-text files.

Beware of gift horses.

41

CAL(1) CAL(1)

NAME
cal � print calendar

SYNOPSIS
cal [−s 1..7] [month] [year]

DESCRIPTION
Cal prints a calendar. Month is either a number from 1 to 12, a lower case month name, or a lower
case three-letter prefix of a month name. Year can be between 1 and 9999. If either month or
year is omitted, the current month or year is used. If only one argument is given, and it is a num
ber larger than 12, a calendar for all twelve months of the given year is produced; otherwise a cal
endar for just one month is printed. The calendar produced is that for England and her colonies.

−s N makes cal display N, specified as a number between 1 to 7 (Monday to Sunday), as the first
day of the week. The default is Sunday.

Try
cal sep 1752

SOURCE
/sys/src/cmd/cal.c

BUGS
The year is always considered to start in January even though this is historically naive.

Beware that cal 90 refers to the early Christian era, not the 20th century.

42

CALENDAR(1) CALENDAR(1)

NAME
calendar � print upcoming events

SYNOPSIS
calendar [−dy] [−p days] [file ...]

DESCRIPTION
Calendar reads the named files, default /usr/$user/lib/calendar, and writes to standard
output any lines containing today�s or tomorrow�s date. Examples of recognized date formats are
"4/11", "April 11", "Apr 11", "11 April", and "11 Apr". A special form may be used to represent
weekly and monthly events: "Every Tuesday" "The third Wednesday" All comparisons are case insen
sitive.

If the −y flag is given, an attempt is made to match on year too. In this case, dates of the forms
listed above will be accepted if they are followed by the current year (or last two digits thereof) or
not a year � digits not followed by white space or non-digits.

If the −p flag is given, its argument is the number of days ahead to match dates. This flag is not
repeatable, and it performs no special processing at the end of the week.

The −d flag enables debugging output.

On Friday and Saturday, events through Monday are printed.

To have your calendar mailed to you every day, use cron(8).

FILES
/usr/$user/lib/calendar personal calendar

SOURCE
/sys/src/cmd/calendar.c

43

CAT(1) CAT(1)

NAME
cat, read � catenate files

SYNOPSIS
cat [file ...]
read [−m] [−n nlines] [−c nbytes] [file ...]

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus

cat file

prints a file and

cat file1 file2 >file3

concatenates the first two files and places the result on the third.

If no file is given, cat reads from the standard input. Output is buffered in blocks matching the
input.

Read copies to standard output exactly one line from the named file, default standard input. It is
useful in interactive rc(1) scripts.

The −m flag causes it to continue reading and writing multiple lines until end of file; −n causes it
to read no more than nlines lines.

With the −c flag, read copies exactly nbytes of characters instead of lines. It is mutually exclusive
with −n and −m flag.

Read always executes a single write for each line of input, which can be helpful when preparing
input to programs that expect line-at-a-time data. It never reads any more data from the input
than it prints to the output.

SOURCE
/sys/src/cmd/cat.c
/sys/src/cmd/read.c

SEE ALSO
cp(1)

DIAGNOSTICS
Read exits with status eof on end of file or, in the −n case, if it doesn�t read nlines lines.

BUGS
Beware of cat a b >a and cat a b >b, which destroy input files before reading them.

44

CB(1) CB(1)

NAME
cb � C program beautifier

SYNOPSIS
cb [−js] [−l length] [file ...]

DESCRIPTION
Cb reads syntactically correct C programs from its input or the given files, and writes them to its
stdout with a more visually pleasing spacing and indentation. Cb understands no C++ syntax bar
newline-terminated comments; and by default all user new-lines are preserved in the output.

The options are:

−j Join split lines.

−s Print code in the so-called K&R style used in The C Programming Language .

−l Split lines that are longer than length.

SOURCE
/sys/src/cmd/cb

BUGS
Cb does not reformat structure initializers.
Punctuation hidden in macros can cause indentation errors.

45

CHGRP(1) CHGRP(1)

NAME
chgrp � change file group

SYNOPSIS
chgrp [−ou] group file ...

DESCRIPTION
The group of each named file is changed to group, which should be a name known to the server
holding the file.

A file�s group can be changed by the file�s owner, if the owner is a member of the new group, or
by the leader of both the file�s current group and the new group.

The −o and −u option are synonyms; they specify that the owner is to be set, rather than the
group. They are ineffectual unless the file server is in the bootstrap state that permits changing
file ownership.

SOURCE
/sys/src/cmd/chgrp.c

SEE ALSO
ls(1), chmod(1), stat(2)

46

CHMOD(1) CHMOD(1)

NAME
chmod � change mode

SYNOPSIS
chmod mode file ...

DESCRIPTION
The mode of each named file is changed according to mode, which may be an octal number or a
symbolic change to the existing mode. A mode is an octal number constructed from the OR of the
following modes.

0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission

The who part is a combination of the letters u (for user�s permissions), g (group) and o (other).
The letter a stands for ugo. If who is omitted, the default is a.

Op can be + to add permission to the file�s mode, − to take away permission, and = to assign
permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), a (append only), l
(exclusive access), and t (temporary file).

Only the owner of a file or the group leader of its group may change the file�s mode.

SOURCE
/sys/src/cmd/chmod.c

SEE ALSO
ls(1), stat(2), stat(5)

47

CLEANNAME(1) CLEANNAME(1)

NAME
cleanname � clean a path name

SYNOPSIS
cleanname [−d pwd] names ...

DESCRIPTION
For each file name argument, cleanname, by lexical processing only, prints the shortest equivalent
string that names the same (possibly hypothetical) file. It eliminates multiple and trailing slashes,
and it lexically interprets . and .. directory components in the name. If the −d option is present,
unrooted names are prefixed with pwd/ before processing.

SOURCE
/sys/src/cmd/cleanname.c

SEE ALSO
cleanname(2).

48

CMP(1) CMP(1)

NAME
cmp � compare two files

SYNOPSIS
cmp [−lLs] file1 file2 [offset1 [offset2]]

DESCRIPTION
Cmp compares the two files and prints a message if the contents differ.

The options are:

−l Print the byte number (decimal) and the differing bytes (hexadecimal) for each difference.

−L Print the line number of the first differing byte.

−s Print nothing for differing files, but set the exit status.

If offsets are given, comparison starts at the designated byte position of the corresponding file.
Offsets that begin with 0x are hexadecimal; with 0, octal; with anything else, decimal.

SOURCE
/sys/src/cmd/cmp.c

SEE ALSO
diff(1)

DIAGNOSTICS
If a file is inaccessible or missing, the exit status is open. If the files are the same, the exit status
is empty (true). If they are the same except that one is longer than the other, the exit status is
EOF. Otherwise cmp reports the position of the first disagreeing byte and the exit status is
differ.

49

COL(1) COL(1)

NAME
col � column alignment

SYNOPSIS
col [−bfx]

DESCRIPTION
Col overlays lines to expunge reverse line feeds (ESC-7) and half line feeds (ESC-9 and ESC-8) as
produced by nroff for .2C in ms(6) or man(6) and for tbl(1). Col is a pure filter. It normally emits
only full line feeds; option −f (fine) allows half line feeds too. Option −b removes backspaces,
printing just one of each pile of overstruck characters. Col normally converts white space to tabs;
option −x overrides this feature. Other escaped characters and non-printing characters are
ignored.

EXAMPLES
tbl file | nroff −ms | col | p

Format some tables for printing on typewriters; use col to remove reverse line feeds, and
paginate the output.

SOURCE
/sys/src/cmd/col.c

SEE ALSO
pr(1)

BUGS
Col can�t back up more than 128 lines or handle more than 800 characters per line, and under
stands VT (013) as reverse line feed.

50

COLORS(1) COLORS(1)

NAME
getmap, colors � display color map

SYNOPSIS
colors [−rx]

getmap [colormap]

DESCRIPTION
Colors presents a grid showing the colors in the current color map. If the display is true color,
colors shows a grid of the RGBV color map (see color(6)).

Clicking mouse button 1 over a color in the grid will display the map index for that color, its red,
green, and blue components, and the 32-bit hexadecimal color value as defined in allocimage(2).
If the −x option is specified, the components will also be listed in hexadecimal.

The −r option instead shows, in the same form, a grey-scale ramp.

A menu on mouse button 3 contains a single entry, to exit the program.

On 8-bit color-mapped displays, getmap loads the display�s color map (default rgbv). The
named colormap can be a file in the current directory or in the standard repository /lib/cmap.
It can also be a string of the form gamma or gammaN, where N is a floating point value for the
gamma, defining the contrast for a monochrome map. Similarly, rgamma and rgammaN define a
reverse-video monochrome map. Finally, the names screen or display or vga are taken as
synonyms for the current color map stored in the display hardware.

FILES
/lib/cmap directory of color map files

SOURCE
/sys/src/cmd/colors.c
/sys/src/cmd/getmap.c

SEE ALSO
color(6)

51

COMM(1) COMM(1)

NAME
comm � select or reject lines common to two sorted files

SYNOPSIS
comm [−123] file1 file2

DESCRIPTION
Comm reads file1 and file2, which are in lexicographical order, and produces a three column out
put: lines only in file1; lines only in file2; and lines in both files. The file name − means the stan
dard input.

Flag 1, 2, or 3 suppresses printing of the corresponding column.

EXAMPLE
comm −12 file1 file2

Print lines common to two sorted files.

SOURCE
/sys/src/cmd/comm.c

SEE ALSO
sort(1), cmp(1), diff(1), uniq(1)

52

CON(1) CON(1)

NAME
con, telnet, rx, hayes, xms, xmr � remote login, execution, and XMODEM file transfer

SYNOPSIS
con [−CdnrRsTv] [−b baud] [−l [user]] [−S svc] [−c cmd] [net!]machine

telnet [−dCrn] [−s svc] [net!]machine

rx [−eTr] [−l user] [net!]machine [command−word ...]

hayes [−pv] number [device]

xms [−1p] file

xmr file

DESCRIPTION
Con connects to the computer whose network address is net!machine and logs in if possible. With
no options, the account name used on the remote system is the same as that on the local system.
Standard input and output go to the local machine.

Options are:

−b sets the baud rate of a dial-up connection to baud.

−n if the input is a file or pipe, do not hang up the connection when EOF is received, but
instead wait for the remote end to hang up.

−l with an argument causes user to be used as the account name on the remote system when
performing BSD rlogin authentication. Without an argument this option disables automatic
login and a normal login session ensues.

−C forces cooked mode, that is, local echo.

−c runs cmd as if it had been typed as a command from the escape mode.

−v (verbose mode) causes information about connection attempts to be output to standard
error. This can be useful when trying to debug network connectivity.

−d causes debugging information to be output to standard error.

−r suppresses printing of any carriage return followed by a new line. This is useful since car
riage return is a printable character in Plan 9.

−R translates newlines to carriage returns and vice versa.

−T translates incoming carriage returns to newlines.

−s strips received characters to 7 bits to forestall misinterpretation of ASCII with parity as UTF.

−S Post a pipe as /srv/svc and connect it to standard input and output. This can be used
with −n to create a standing connection that consolefs(4), for example, can then open. For
telnet, this option is −s.

The control�\ character is a local escape. It prompts with >>>. Legitimate responses to the
prompt are

i Send a quit [sic] signal to the remote machine.
q Exit.
b Send a break.
. Return from the escape.
!cmd Run the command with the network connection as its standard input and standard output.

Standard error will go to the screen. This is useful for transmitting and receiving files over
the connections using programs such as xms.

r Toggle printing of carriage returns.

Telnet is similar to con, but uses the telnet protocol to communicate with the remote machine. It
shares con’s −C, −d, −n, and −r options.

Rx executes one shell command on the remote machine as if logged in there, but with local stan
dard input and output. A rudimentary shell environment is provided. If the target is a Plan 9
machine, $service there will be rx. Options are:

53

CON(1) CON(1)

�e a zero length message will not be written to the connection when standard input is closed.

�l runs as user on the remote machine if the remote is a BSD machine.

�r same as for con

−T same as for con

Network addresses for both con and rx have the form network!machine. Supported networks are
those listed in /net.

Hayes dials number on a Hayes-compatible modem, device. Under −p, it uses pulse dialing. Upon
connecting, bytes are copied bidirectionally between the connection and standard input and out
put.

The commands xms and xmr respectively send and receive a single file using the XMODEM proto
col. They use standard input and standard output for communication and are intended for use
with con. The −1 option to xms causes it to use kilobyte packet size of 1024 bytes. The −p option
causes it to print a progress message every ten kilobytes.

EXAMPLES
rx kremvax cat file1 >file2

Copy remote file1 to local file2.

rx kremvax cat file1 ’>file2’
Copy remote file1 to remote file2.

eqn paper | rx kremvax troff −ms | rx deepthought lp
Parallel processing: do each stage of a pipeline on a different machine.

SOURCE
/sys/src/cmd/rx.c
/sys/src/cmd/ip/telnet.c
/sys/src/cmd/con for all other commands

SEE ALSO
cpu(1), telco(4)

BUGS
Con and telnet are merely obsolescent; the other commands are obsolete and deprecated.

Under rx, a program that should behave specially towards terminals may not: e.g., remote shells
will not prompt. Also under rx, the remote standard error and standard output are combined and
go inseparably to the local standard output. Rx will consume its standard input by copying it to
the remote system, so redirect it from /dev/null if that�s not what you want.

54

CP(1) CP(1)

NAME
cp, fcp, mv � copy, move files

SYNOPSIS
cp [−gux] file1 file2
cp [−gux] file ... directory

fcp [−gux] file1 file2
fcp [−gux] file ... directory

mv file1 file2
mv file ... directory

DESCRIPTION
In the first form file1 is any name and file2 is any name except an existing directory. In the second
form the commands copy or move one or more files into a directory under their original file
names, as if by a sequence of commands in the first form. Thus cp f1 f2 dir is equivalent to
cp f1 dir/f1; cp f2 dir/f2.

Cp copies the contents of plain file1 to file2. The mode and owner of file2 are preserved if it
already exists; the mode of file1 is used otherwise. The −x option sets the mode and modified
time of file2 from file1; −g sets the group id; and −u sets the group id and user id (which is usu
ally only possible if the file server is in an administrative mode).

Fcp behaves like cp but transfers multiple blocks in parallel while copying; it is noticeably faster
than cp when the files involved are stored on servers connected over long-distance lines. It is only
appropriate to use fcp with file servers that respect the offset in read(5) and write messages. This
includes the disk-based file systems and ramfs but excludes most device file systems.

Mv moves file1 to file2. If the files are in the same directory, file1 is just renamed; otherwise mv
behaves like cp −x followed by rm file1. Mv will rename directories, but it refuses to move a direc
tory into another directory.

SOURCE
/sys/src/cmd/cp.c
/sys/src/cmd/fcp.c
/sys/src/cmd/mv.c

SEE ALSO
cat(1), dircp in tar(1), stat(2), read(5)

DIAGNOSTICS
Cp, fcp, and mv refuse to copy or move files onto themselves.

55

CPP(1) CPP(1)

NAME
cpp � C language preprocessor

SYNOPSIS
cpp [option ...] [ifile [ofile]]

DESCRIPTION
Cpp interprets ANSI C preprocessor directives and does macro substitution. The input ifile and
output ofile default to standard input and standard output respectively.

The options are:

−Dname
−Dname=def
−Idir Same as in 2c(1): add dir to the search for directives.

−M Generate no output except a list of include files in a form suitable for specifying dependen
cies to mk(1). Use twice to list files in angle brackets.

−N Turn off default include directories. All must be specified with −I, or in the environment
variable include. Without this option, /$objtype/include and /sys/include
are used as the last two searched directories for include directives, where $objtype is
read from the environment.

−V Print extra debugging information.

−P Do not insert ��#line�� directives into the output.

−. Inhibit include search in the source�s directory.

−i Print the list of directories searched when #include is found. Last listed are searched first.

In the absence of the −P option, the processed text output is sprinkled with lines that show the
original input line numbering:

#line linenumber "ifile"

The command reads the environment variable include and adds its (blank-separated) list of direc
tories to the standard search path for directives. They are looked at before any directories speci
fied with −I, which are looked at before the default directories.

The input language is as described in the ANSI C standard. The standard Plan 9 C compilers do
not use cpp; they contain their own simple but adequate preprocessor, so cpp is usually superflu
ous.

FILES
/sys/include directory for machine-independent include files
/$objtype/include directory for machine-dependent include files

SOURCE
/sys/src/cmd/cpp

SEE ALSO
2c(1)

56

CPU(1) CPU(1)

NAME
cpu � connection to CPU server

SYNOPSIS
cpu [−p] [−h server] [−u user] [−a auth−method] [−P patternfile] [−e encryption−hash−
algs] [−k keypattern] [−c cmd args ...]

cpu [−n] [−A address] [−R]

DESCRIPTION
This tool is deprecated and has been replaced by rcpu(1).

Cpu starts an rc(1) running on the server machine, or the machine named in the $cpu environ
ment variable if there is no −h option. Rc�s standard input, output, and error files will be
/dev/cons in the name space where the cpu command was invoked. Normally, cpu is run in an
rio(1) window on a terminal, so rc output goes to that window, and input comes from the key
board when that window is current. Rc�s current directory is the working directory of the cpu com
mand itself.

The name space for the new rc is an analogue of the name space where the cpu command was
invoked: it is the same except for architecture-dependent bindings such as /bin and the use of
fast paths to file servers, if available.

If a −u argument is present, cpu uses the argument as the remote user id.

If a −c argument is present, the remainder of the command line is executed by rc on the server,
and then cpu exits.

If a −P argument is present, the patternfile is passed to oexportfs(4) to control how much of the
local name space will be exported to the remote system.

The −a command allows the user to specify the authentication mechanism used when connecting
to the remote system. The two possibilities for auth−method are:

p9 This is the default. Authentication is done using the standard Plan 9 mechanisms, (see
authsrv(6)). No user interaction is required.

netkey Authentication is done using challenge/response and a hand held authenticator or the
netkey program (see passwd(1)). The user must encrypt the challenge and type the
encryption back to cpu. This is used if the local host is in a different protection domain
than the server or if the user wants to log into the server as a different user.

none This skips authentication. This requires the −n flag to be specified on the remote side.

The −e option specifies an encryption and/or hash algorithm to use for the connection. If both
are specified, they must be space separated and comprise a single argument, so they must be
quoted if in a shell command. The default is rc4_256 encryption and sha1 hashing. See ssl(3)
for details on possible algorithms. The argument clear specifies no encryption algorithm and
can be used to talk to older versions of the cpu service.

The −k flag specifies a key pattern to use to restrict the keys selected by the auth_proxy call used
for authentication.

The name space is built by running /usr/$user/lib/profile with the root of the invoking
name space bound to /mnt/term. The service environment variable is set to cpu; the
cputype and objtype environment variables reflect the server�s architecture.

The −R flag causes cpu to run the server (remote) side of the protocol. It is run from service files
such as /bin/service/tcp17010. The −n option allows using the none authentication
method for incoming connections and must be specified before the −R flag.

The −p flag pushes the aan(8) filter onto the connection to protect against temporary network out
ages.

The −A flag sets the announce-string address to use for aan(8) connections, if requested by the
initial protocol.

FILES
The name space of the terminal side of the cpu command is mounted, via oexportfs(4), on the CPU
side on directory /mnt/term. The files such as /dev/cons are bound to their standard

57

CPU(1) CPU(1)

locations from there.

SOURCE
/sys/src/cmd/cpu.c

SEE ALSO
rcpu(1), rc(1), rio(1), oexportfs(4), aan(8)

BUGS
Binds and mounts done after the terminal lib/profile is run are not reflected in the new name
space.

By default, the entire namespace of the local system is exported to the remote system. Use of the
−P option in conjunction with a customized patternfile can limit this exposure, but also limits the
usefulness of /mnt/term.

58

CROP(1) CROP(1)

NAME
crop, iconv � frame, crop, and convert image

SYNOPSIS
crop [−b red green blue] [−c red green blue] [−i n | −r minx miny maxx maxy | −x dx | −y
dy] [−t tx ty] [file]

iconv [−u] [−c chandesc] [file]

DESCRIPTION
Crop reads an image(6) file (default standard input), crops it, and writes it as a compressed
image(6) file to standard output. There are two ways to specify a crop, by color value or by geom
etry. They may be combined in a single run of crop, in which case the color value crop will be
done first.

The −c option takes a red-green-blue triplet as described in color(2). (For example, white is 255
255 255.) The corresponding color is used as a value to be cut from the outer edge of the pic
ture; that is, the image is cropped to remove the maximal outside rectangular strip in which every
pixel has the specified color.

The −i option insets the image rectangle by a constant amount, n, which may be negative to gen
erate extra space around the image. The −x and −y options are similar, but apply only to the x or
y coordinates of the image.

The −r option specifies an exact rectangle.

The −t option specifies that the image�s coordinate system should be translated by tx, ty as the
last step of processing.

The −b option specifies a background color to be used to fill around the image if the cropped
image is larger than the original, such as if the −i option is given a negative argument. This can
be used to draw a monochrome frame around the image. The default color is black.

Iconv changes the format of pixels in the image file (default standard input) and writes the result
ing image to standard output. Pixels in the image are converted according to the channel descrip
tor chandesc, (see image(6)). For example, to convert a 4-bit-per-pixel grey-scale image to an 8-
bit-per-pixel color-mapped image, chandesc should be m8. If chandesc is not given, the format is
unchanged. The output image is by default compressed; the −u option turns off the compression.

EXAMPLE
To crop white edges off the picture and add a ten-pixel pink border,

crop −c 255 255 255 −i −10 −b 255 150 150 imagefile > cropped

SOURCE
/sys/src/cmd/crop.c

SEE ALSO
image(6), color(2)

BUGS
Iconv should be able to do Floyd-Steinberg error diffusion or dithering when converting to small
image depths.

59

DATE(1) DATE(1)

NAME
date, clock � date and time

SYNOPSIS
date [option] [seconds]
clock

DESCRIPTION
Print the date, in the format

Tue Aug 16 17:03:52 CDT 1977

The options are

−u Report Greenwich Mean Time (GMT) rather than local time.

−n Report the date as the number of seconds since the epoch, 00:00:00 GMT, January 1, 1970.

−i Report the date as ISO-8601 without time and timezone suffix.

−t Report the date as ISO-8601 with time and timezone suffix.

−m Report the date as an email compatible (RFC2822) time stamp.

The conversion from Greenwich Mean Time to local time depends on the $timezone environ
ment variable; see ctime(2).

If the optional argument seconds is present, it is used as the time to convert rather than the real
time.

Clock draws a simple analog clock in its window.

FILES
/env/timezone Current timezone name and adjustments.
/adm/timezone A directory containing timezone tables.
/adm/timezone/local Default timezone file, copied by init(8) into /env/timezone.

SOURCE
/sys/src/cmd/date.c
/sys/src/cmd/clock.c

60

DB(1) DB(1)

NAME
db � debugger

SYNOPSIS
db [option ...] [textfile] [pid]

DESCRIPTION
Db is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of Plan 9 programs.

A textfile is a file containing the text and initialized data of an executable program. A memfile is
the memory image of an executing process. It is usually accessed via the process id (pid) of the
process in /proc/pid/mem. A memfile contains the text, data, and saved registers and process
state. A map associated with each textfile or memfile supports accesses to instructions and data in
the file; see �Addresses�.

An argument consisting entirely of digits is assumed to be a process id; otherwise, it is the name
of a textfile. When a textfile is given, the textfile map is associated with it. If only a pid is given,
the textfile map is associated with /proc/pid/text. When a pid is given, the memfile map is
associated with /proc/pid/mem; otherwise it is undefined and accesses to the memfile are not
permitted.

Commands to db are read from the standard input and responses are to the standard output. The
options are

−k Use the kernel stack of process pid to debug the executing kernel process. If textfile is not
specified, file /$cputype/9type is used, where type is the second word in $terminal.

−w Create textfile and memfile if they don�t exist; open them for writing as well as reading.

−Ipath
Directory in which to look for relative path names in $< and $<< commands.

−mmachine
Assume instructions are for the given CPU type (any standard architecture name, such as
amd64 or 386, plus mipsco and sunsparc, which cause disassembly to the
manufacturer�s syntax) instead of using the magic number to select the CPU type.

Most db commands have the following form:

[address] [, count] [command]

If address is present then the current position, called �dot�, is set to address. Initially dot is set to
0. Most commands are repeated count times with dot advancing between repetitions. The default
count is 1. Address and count are expressions. Multiple commands on one line must be separated
by ;.

Expressions
Expressions are evaluated as long ints.

. The value of dot.

+ The value of dot incremented by the current increment.

^ The value of dot decremented by the current increment.

" The last address typed.

integer
A number, in decimal radix by default. The prefixes 0 and 0o and 0O (zero oh) force inter
pretation in octal radix; the prefixes 0t and 0T force interpretation in decimal radix; the
prefixes 0x, 0X, and # force interpretation in hexadecimal radix. Thus 020, 0o20, 0t16,
and #10 all represent sixteen.

integer.fraction
A single-precision floating point number.

’c ’ The 16-bit value of a character. \ may be used to escape a ’.

<name
The value of name, which is a register name. The register names are those printed by the

61

DB(1) DB(1)

$r command.

symbol
A symbol is a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. \ may be used to escape other characters. The location of the symbol is cal
culated from the symbol table in textfile.

routine.name
The address of the variable name in the specified C routine. Both routine and name are
symbols. If name is omitted the value is the address of the most recently activated stack
frame corresponding to routine; if routine is omitted, the active procedure is assumed.

file:integer
The address of the instruction corresponding to the source statement at the indicated line
number of the file. If the source line contains no executable statement, the address of the
instruction associated with the nearest executable source line is returned. Files begin at
line 1. If multiple files of the same name are loaded, an expression of this form resolves to
the first file encountered in the symbol table.

(exp)
The value of the expression exp.

Monadic operators

*exp The contents of the location addressed by exp in memfile.

@exp The contents of the location addressed by exp in textfile.

−exp Integer negation.

~exp Bitwise complement.

%exp When used as an address, exp is an offset into the segment named ublock; see
�Addresses�.

Dyadic operators are left-associative and are less binding than monadic operators.

e1+e2 Integer addition.

e1−e2 Integer subtraction.

e1*e2 Integer multiplication.

e1%e2 Integer division.

e1&e2 Bitwise conjunction.

e1|e2 Bitwise disjunction.

e1#e2 E1 rounded up to the next multiple of e2.

Commands
Most commands have the following syntax:

?f Locations starting at address in textfile are printed according to the format f.

/f Locations starting at address in memfile are printed according to the format f.

=f The value of address itself is printed according to the format f.

A format consists of one or more characters that specify a style of printing. Each format character
may be preceded by a decimal integer that is a repeat count for the format character. If no format
is given then the last format is used.

Most format letters fetch some data, print it, and advance (a local copy of) dot by the number of
bytes fetched. The total number of bytes in a format becomes the currentincrement.

o Print two-byte integer in octal.
O Print four-byte integer in octal.
q Print two-byte integer in signed octal.
Q Print four-byte integer in signed octal.
d Print two-byte integer in decimal.
D Print four-byte integer in decimal.

62

DB(1) DB(1)

V Print eight-byte integer in decimal.
Z Print eight-byte integer in unsigned decimal.
x Print two-byte integer in hexadecimal.
X Print four-byte integer in hexadecimal.
Y Print eight-byte integer in hexadecimal.
u Print two-byte integer in unsigned decimal.
U Print four-byte integer in unsigned decimal.
f Print as a single-precision floating point number.
F Print double-precision floating point.
b Print the addressed byte in hexadecimal.
c Print the addressed byte as an ASCII character.
C Print the addressed byte as a character. Printable ASCII characters are represented

normally; others are printed in the form \xnn.
s Print the addressed characters, as a UTF string, until a zero byte is reached.

Advance dot by the length of the string, including the zero terminator.
S Print a string using the escape convention (see C above).
r Print as UTF the addressed two-byte integer (rune).
R Print as UTF the addressed two-byte integers as runes until a zero rune is reached.

Advance dot by the length of the string, including the zero terminator.
i Print as machine instructions. Dot is incremented by the size of the instruction.
I As i above, but print the machine instructions in an alternate form if possible:

sunsparc and mipsco reproduce the manufacturers� syntax.
M Print the addressed machine instruction in a machine-dependent hexadecimal form.
a Print the value of dot in symbolic form. Dot is unaffected.
A Print the value of dot in hexadecimal. Dot is unaffected.
z Print the function name, source file, and line number corresponding to dot (textfile

only). Dot is unaffected.
p Print the addressed value in symbolic form. Dot is advanced by the size of a

machine address.
t When preceded by an integer, tabs to the next appropriate tab stop. For example,

8t moves to the next 8-space tab stop. Dot is unaffected.
n Print a newline. Dot is unaffected.
"..." Print the enclosed string. Dot is unaffected.
^ Dot is decremented by the current increment. Nothing is printed.
+ Dot is incremented by 1. Nothing is printed.
− Dot is decremented by 1. Nothing is printed.

Other commands include:

newline
Update dot by the current increment. Repeat the previous command with a count of 1.

[?/]l value mask
Words starting at dot are masked with mask and compared with value until a match is
found. If l is used, the match is for a two-byte integer; L matches four bytes. If no match
is found then dot is unchanged; otherwise dot is set to the matched location. If mask is
omitted then ~0 is used.

[?/]w value ...
Write the two-byte value into the addressed location. If the command is W, write four
bytes.

[?/]m s b e f [?]
New values for (b, e, f) in the segment named s are recorded. Valid segment names are
text, data, or ublock. If less than three address expressions are given, the remaining
parameters are left unchanged. If the list is terminated by ? or / then the file (textfile or
memfile respectively) is used for subsequent requests. For example, /m? causes / to refer
to textfile.

>name
Dot is assigned to the variable or register named.

! The rest of the line is passed to rc(1) for execution.

63

DB(1) DB(1)

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f. If this command is executed in a file, further com
mands in the file are not seen. If f is omitted, the current input stream is termi
nated. If a count is given, and is zero, the command is ignored.

<<f Similar to < except it can be used in a file of commands without causing the file to
be closed. There is a (small) limit to the number of << files that can be open at
once.

>f Append output to the file f, which is created if it does not exist. If f is omitted, out
put is returned to the terminal.

? Print process id, the condition which caused stopping or termination, the registers
and the instruction addressed by pc. This is the default if modifier is omitted.

r Print the general registers and the instruction addressed by pc. Dot is set to pc.
R Like $r, but include miscellaneous processor control registers and floating point

registers.
f Print floating-point register values as single-precision floating point numbers.
F Print floating-point register values as double-precision floating point numbers.
b Print all breakpoints and their associated counts and commands. �B� produces the

same results.
c Stack backtrace. If address is given, it specifies the address of a pair of 32-bit val

ues containing the sp and pc of an active process. This allows selecting among
various contexts of a multi-threaded process. If C is used, the names and (long)
values of all parameters, automatic and static variables are printed for each active
function. If count is given, only the first count frames are printed.

a Attach to the running process whose pid is contained in address.
e The names and values of all external variables are printed.
w Set the page width for output to address (default 80).
q Exit from db.
m Print the address maps.
k Simulate kernel memory management.
Mmachine

Set the machine type used for disassembling instructions.

:modifier
Manage a subprocess. Available modifiers are:

h Halt an asynchronously running process to allow breakpointing. Unnecessary for
processes created under db, e.g. by :r.

bc Set breakpoint at address. The breakpoint is executed count�1 times before causing
a stop. Also, if a command c is given it is executed at each breakpoint and if it sets
dot to zero the breakpoint causes a stop.

d Delete breakpoint at address.
r Run textfile as a subprocess. If address is given the program is entered at that

point; otherwise the standard entry point is used. Count specifies how many break
points are to be ignored before stopping. Arguments to the subprocess may be
supplied on the same line as the command. An argument starting with < or >
causes the standard input or output to be established for the command.

cs The subprocess is continued. If s is omitted or nonzero, the subprocess is sent the
note that caused it to stop. If 0 is specified, no note is sent. (If the stop was due to
a breakpoint or single-step, the corresponding note is elided before continuing.)
Breakpoint skipping is the same as for r.

ss As for c except that the subprocess is single stepped for count machine instruc
tions. If a note is pending, it is received before the first instruction is executed. If
there is no current subprocess then textfile is run as a subprocess as for r. In this
case no note can be sent; the remainder of the line is treated as arguments to the
subprocess.

Ss Identical to s except the subprocess is single stepped for count lines of C source.
In optimized code, the correspondence between C source and the machine instruc
tions is approximate at best.

64

DB(1) DB(1)

x The current subprocess, if any, is released by db and allowed to continue executing
normally.

k The current subprocess, if any, is terminated.
nc Display the pending notes for the process. If c is specified, first delete c’th pending

note.

Addresses
The location in a file or memory image associated with an address is calculated from a map associ
ated with the file. Each map contains one or more quadruples (t, b, e, f), defining a segment
named t (usually, text, data, or ublock) mapping addresses in the range b through e to the part of
the file beginning at offset f. The memory model of a Plan 9 process assumes that segments are
disjoint. There can be more than one segment of a given type (e.g., a process may have more than
one text segment) but segments may not overlap. An address a is translated to a file address by
finding a segment for which bda<e; the location in the file is then address+f�b.

Usually, the text and initialized data of a program are mapped by segments called text and data.
Since a program file does not contain bss, stack or ublock data, these data are not mapped by the
data segment. The text segment is mapped similarly in a normal (i.e., non-kernel) memfile. How
ever, the segment called data maps memory from the beginning of the program�s data space to
the base of the ublock. This region contains the program�s static data, the bss, the heap and the
stack. A segment called ublock maps the page containing its registers and process state.

Sometimes it is useful to define a map with a single segment mapping the region from 0 to
0xFFFFFFFF; a map of this type allows the entire file to be examined without address translation.

Registers are saved at a machine-dependent offset in the ublock. It is usually not necessary to
know this offset; the $r, $R, $f, and $F commands calculate it and display the register contents.

The $m command dumps the currently active maps. The ?m and /m commands modify the seg
ment parameters in the textfile and memfile maps, respectively.

EXAMPLES
To set a breakpoint at the beginning of write() in extant process 27:

% db 27
:h
write:b
:c

To examine the Plan 9 kernel stack for process 27:

% db −k 27
$C

Similar, but using a kernel named test:

% db −k test 27
$C

To set a breakpoint at the entry of function parse when the local variable argc in main is equal
to 1:

parse:b *main.argc−1=X

This prints the value of argc−1 which as a side effect sets dot; when argc is one the breakpoint
will fire. Beware that local variables may be stored in registers; see the BUGS section.

Debug process 127 on remote machine kremvax:

% import kremvax /proc
% db 127
$C

FILES
/proc/*/text
/proc/*/mem
/proc/*/ctl
/proc/*/note

65

DB(1) DB(1)

SEE ALSO
acid(1), nm(1), proc(3)

SOURCE
/sys/src/cmd/db

DIAGNOSTICS
Exit status is null, unless the last command failed or returned non-null status.

BUGS
Examining a local variable with routine.name returns the contents of the memory allocated for the
variable, but with optimization (suppressed by the −N compiler flag) variables often reside in regis
ters. Also, on some architectures, the first argument is always passed in a register.

Variables and parameters that have been optimized away do not appear in the symbol table,
returning the error bad local variable when accessed by db.

Because of alignment incompatibilities, Motorola 68000 series machines can not be debugged
remotely from a processor of a different type.

Breakpoints should not be set on instructions scheduled in delay slots. When a program stops on
such a breakpoint, it is usually impossible to continue its execution.

66

DC(1) DC(1)

NAME
dc � desk calculator

SYNOPSIS
dc [file]

DESCRIPTION
Dc is an arbitrary precision desk calculator. Ordinarily it operates on decimal integers, but one
may specify an input base, output base, and a number of fractional digits to be maintained. The
overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The following constructions are
recognized:

number
The value of the number is pushed on the stack. A number is an unbroken string of the
digits 0−9A−F or 0−9a−f. A hexadecimal number beginning with a lower case letter
must be preceded by a zero to distinguish it from the command associated with the letter.
It may be preceded by an underscore _ to input a negative number. Numbers may contain
decimal points.

+ − / * % ^
Add +, subtract −, multiply *, divide /, remainder %, or exponentiate ^ the top two values
on the stack. The two entries are popped off the stack; the result is pushed on the stack in
their place. Any fractional part of an exponent is ignored.

sx
Sx Pop the top of the stack and store into a register named x, where x may be any character.

Under operation S register x is treated as a stack and the value is pushed on it.

lx
Lx Push the value in register x onto the stack. The register x is not altered. All registers start

with zero value. Under operation L register x is treated as a stack and its top value is
popped onto the main stack.

d Duplicate the top value on the stack.

p Print the top value on the stack. The top value remains unchanged. P interprets the top of
the stack as a text string, removes it, and prints it.

f Print the values on the stack.

q
Q Exit the program. If executing a string, the recursion level is popped by two. Under opera

tion Q the top value on the stack is popped and the string execution level is popped by that
value.

x Treat the top element of the stack as a character string and execute it as a string of dc
commands.

X Replace the number on the top of the stack with its scale factor.

[...]
Put the bracketed text string on the top of the stack.

<x
>x
=x Pop and compare the top two elements of the stack. Register x is executed if they obey the

stated relation.

v Replace the top element on the stack by its square root. Any existing fractional part of the
argument is taken into account, but otherwise the scale factor is ignored.

! Interpret the rest of the line as a shell command.

c Clear the stack.

i The top value on the stack is popped and used as the number base for further input.

67

DC(1) DC(1)

I Push the input base on the top of the stack.

o The top value on the stack is popped and used as the number base for further output. In
bases larger than 10, each �digit� prints as a group of decimal digits.

O Push the output base on the top of the stack.

k Pop the top of the stack, and use that value as a non-negative scale factor: the appropriate
number of places are printed on output, and maintained during multiplication, division,
and exponentiation. The interaction of scale factor, input base, and output base will be
reasonable if all are changed together.

z Push the stack level onto the stack.

Z Replace the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the terminal) and executed.

; : Used by bc for array operations.

The scale factor set by k determines how many digits are kept to the right of the decimal point. If
s is the current scale factor, sa is the scale of the first operand, sb is the scale of the second, and b
is the (integer) second operand, results are truncated to the following scales.

+,− max(sa,sb)
* min(sa+sb , max(s,sa,sb))
/ s
% so that dividend = divisor*quotient + remainder; remainder has sign of dividend
^ min(sa×|b|, max(s,sa))
v max(s,sa)

EXAMPLES
Print the first ten values of n!

[la1+dsa*pla10>y]sy
0sa1
lyx

Print À.

1sq180sr60st2si[3li*1+d1+*3*suli27*12−lq*5lr*+lt
5*/d48+Psy10lqlid2*1−***10lulqli5*2−*lr+lylt*−**
srsqlult*stli1+silmx]smlmx

SOURCE
/sys/src/cmd/dc.c

SEE ALSO
bc(1), hoc(1)

DIAGNOSTICS
x is unimplemented, where x is an octal number: an internal error.
�Out of headers� for too many numbers being kept around.
�Nesting depth� for too many levels of nested execution.

BUGS
When the input base exceeds 16, there is no notation for digits greater than F.

Past its time.

68

DD(1) DD(1)

NAME
dd � convert and copy a file

SYNOPSIS
dd [option value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The standard
input and output are used by default. The input and output block size may be specified to take
advantage of raw physical I/O. The options are

−if f Open file f for input.

−of f Open file f for output.

−ibs n Set input block size to n bytes (default 512).

−obs n Set output block size (default 512).

−bs n Set both input and output block size, superseding ibs and obs. If no conversion is
specified, preserve the input block size instead of packing short blocks into the output
buffer. This is particularly efficient since no in-core copy need be done.

−cbs n Set conversion buffer size.

−skip n Skip n input records before copying.

−iseek n
Seek n records forward on input file before copying.

−files n
Catenate n input files (useful only for magnetic tape or similar input device).

−oseek n
Seek n records from beginning of output file before copying.

−count n
Copy only n input records.

−trunc n
By default, dd truncates the output file when it opens it; −trunc 0 opens it without
truncation.

−quiet n
By default, dd prints the number of blocks read and written once it is finished.
−quiet 1 silences this summary.

−conv ascii Convert EBCDIC to ASCII.

ebcdic Convert ASCII to EBCDIC.

ibm Like ebcdic but with a slightly different character map.
block Convert variable length ASCII records to fixed length.
unblock Convert fixed length ASCII records to variable length.
lcase Map alphabetics to lower case.
ucase Map alphabetics to upper case.
swab Swap every pair of bytes.
noerror Do not stop processing on an error.
sync Pad every input record to ibs bytes.

Where sizes are specified, a number of bytes is expected. A number may end with a sequence of
m, k or b to specify multiplications by 1048576, 1024, or 512 respectively; a pair of numbers may
be separated by x to indicate a product. Multiple conversions may be specified in the style:
−conv ebcdic,ucase.

Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is specified. In the
first two cases, n characters are copied into the conversion buffer, any specified character mapping
is done, trailing blanks are trimmed and new-line is added before sending the line to the output.
In the latter three cases, characters are read into the conversion buffer and blanks are added to
make up an output record of size n. If cbs is unspecified or zero, the ascii, ebcdic, and ibm
options convert the character set without changing the block structure of the input file; the

69

DD(1) DD(1)

unblock and block options become a simple file copy.

SOURCE
/sys/src/cmd/dd.c

SEE ALSO
cp(1)

DIAGNOSTICS
Dd reports the number of full + partial input and output blocks handled.

70

DELKEY(1) DELKEY(1)

NAME
delkey � delete keys from factotum

SYNOPSIS
delkey

DESCRIPTION
Delkey prints commands for deleting each key stored in factotum(4).

When run on a CPU server, delkey uses the terminal�s factotum, if present, instead of the server�s
factotum.

FILES
/mnt/term/mnt/factotum

First choice for factotum to use

/mnt/factotum
Second choice

SOURCE
/rc/bin/delkey

71

DEROFF(1) DEROFF(1)

NAME
deroff � remove formatting requests

SYNOPSIS
deroff [option ...] file ...

DESCRIPTION
Deroff reads each file in sequence and removes all nroff and troff(1) requests and non-text argu
ments, backslash constructions, and constructs of preprocessors such as eqn(1), pic(1), and tbl(1).
Remaining text is written on the standard output. Deroff follows files included by .so and .nx
commands; if a file has already been included, a .so for that file is ignored and a .nx terminates
execution. If no input file is given, deroff reads from standard input.

The options are

−w Output a word list, one �word� (string of letters, digits, and properly embedded ampersands
and apostrophes, beginning with a letter) per line. Other characters are skipped. Other
wise, the output follows the original, with the deletions mentioned above.

−_ Like −w, but consider underscores to be alphanumeric rather than punctuation.

−i Ignore .so and .nx requests.

−ms
−mm Remove titles, attachments, etc., as well as ordinary troff constructs, from ms(6) or mm

documents.

−ml Same as −mm, but remove lists as well.

SOURCE
/sys/src/cmd/deroff.c
/sys/src/cmd/tex/local/delatex.c

SEE ALSO
troff(1), spell(1)

BUGS
This filter is not a complete interpreter of troff . For example, macro definitions containing \$
cause chaos in deroff when the popular $$ delimiters for eqn are in effect.

Text inside macros is emitted at place of definition, not place of call.

72

DERP(1) DERP(1)

NAME
derp � directory-examining recursive compare

SYNOPSIS
derp [−qcutDL] [−p perms] myfile oldfile yourfile

DESCRIPTION
Derp recursively compares the two directories myfile and yourfile using a third common backup
directory oldfile as reference. The changes found are printed to standard output, one per line, with
the file status describing either sides actions followed by tabulator and the relative file path which
might be empty in case when the changed files refers to the ones given at program arguments.

The possible status codes:

an File added in myfile

na File added in yourfile

aa! Both sides added different files with the same name

mn File was modified in myfile

nm File was modified in yourfile

mm! File was changed differently in myfile and yourfile

dn File was deleted in myfile

nd File was deleted in yourfile

md! File was modified in myfile but deleted in yourfile

dm! File was modified in yourfile but deleted in myfile

Errors are printed to standard error unless −q option is specified. The program is terminated when
errors are encountered unless the −c option is given. This can be useful if files are not accessible
due to file permission or media corruption.

The −u option will consider changes of file owner and group. When omitted, file ownership is
ignored.

The −p option sets the octal mask perms of bits to check in the file permissions. The default
ignores file permissions.

When modification times are comparable then the −t option can be used to quickly find changes.
If specified, files are considered unchanged if the name, file size and the modification time
matches. This is useful when comparing /n/dump archives on the same fileserver.

Files are considered the same if they are from the same mount and their qid (see stat(5))
matches. For directories, the access time is also compared. If the access time was disabled on the
fileserver, then all directories need to be compared using the −D option.

Some filesystems like hgfs(4) do not always return exact file size in stat, so the length check can
be disabled with the −L option.

SOURCE
/sys/src/cmd/derp.c

SEE ALSO
cmp(1), diff(1), history(1), fs(4), hgfs(4)

DIAGNOSTICS
The exit status is set to �errors� when errors were encountered.

HISTORY
Derp first appeared in 9front (November, 2012).

73

DIFF(1) DIFF(1)

NAME
diff � differential file comparator

SYNOPSIS
diff [−abcefmnruw] file1 ... file2

DESCRIPTION
Diff tells what lines must be changed in two files to bring them into agreement. If one file is a
directory, then a file in that directory with basename the same as that of the other file is used. If
both files are directories, similarly named files in the two directories are compared by the method
of diff for text files and cmp(1) otherwise. If more than two file names are given, then each argu
ment is compared to the last argument as above. The −r option causes diff to process similarly
named subdirectories recursively. When processing more than one file, diff prefixes file differ
ences with a single line listing the two differing files, in the form of a diff command line. The −m
flag causes this behavior even when processing single files.

The normal output contains lines of these forms:

n1 a n3,n4
n1,n2 d n3
n1,n2 c n3,n4

These lines resemble ed commands to convert file1 into file2. The numbers after the letters pertain
to file2. In fact, by exchanging �a� for �d� and reading backward one may ascertain equally how to
convert file2 into file1. As in ed, identical pairs where n1 = n2 or n3 = n4 are abbreviated as a sin
gle number.

Following each of these lines come all the lines that are affected in the first file flagged by �<�, then
all the lines that are affected in the second file flagged by �>�.

The −b option causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks to
compare equal. The −w option causes all white-space to be removed from input lines before
applying the difference algorithm.

The −n option prefixes each range with file: and inserts a space around the a, c, and d verbs.
The −e option produces a script of a, c and d commands for the editor ed, which will recreate file2
from file1. The −f option produces a similar script, not useful with ed, in the opposite order. It
may, however, be useful as input to a stream-oriented post-processor.

The −c option includes three lines of context around each change, merging changes whose con
texts overlap. In this mode, diff prints − and + instead of < and > because the former are easier
to distinguish when mixed. The −a flag displays the entire file as context.

The −u option provides a unix-compatible unified diff. This format is similar to that provided by
−c. However, the + and − prefixes are not separated from the rest of the line by spaces, and the
file header is in the following format:

−−− filename.old
+++ filename.new
@@ −line,len +line,len @@

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

FILES
/tmp/diff[12]

SOURCE
/sys/src/cmd/diff

SEE ALSO
cmp(1), comm(1), ed(1), idiff(1)

DIAGNOSTICS
Exit status is the empty string for no differences, some for some, and error for trouble.

BUGS
Editing scripts produced under the −e or −f option are naive about creating lines consisting of a
single �.�.

74

DIFF(1) DIFF(1)

When running diff on directories, the notion of what is a text file is open to debate.

75

DMID(1) DMID(1)

NAME
dmid � MIDI to OPL3 converter using GENMIDI-type instrument banks

SYNOPSIS
dmid [−2s] [−i bank] [file]

DESCRIPTION
Dmid decodes MIDI instructions either from file or from standard input, and produces OPL3 instruc
tions suitable for playback by opl3(1). To program instruments, an OPL2 instrument bank format
ted as GENMIDI lumps from doom must be provided. Since it is assumed that the bank is contained
in a doom WAD file, its default location is /mnt/wad/genmidi. This may be overridden with
the −i command line option.

The −s flag enables streaming mode, in which the input file is a stream of MIDI events. The file
needn�t provide any timing information such as MIDI tics. This is suitable for MIDI instruments.

In GENMIDI lumps, two voices are defined per instrument. For compatibility, the −2 flag disables
the second voice, reducing the number of OPL channels needed. It also disables OPL3 specific fea
tures and produces an IMF-format stream, which can be used in other game engines.

EXAMPLES
Play a MUS file from a doom WAD file:

% games/wadfs /sys/games/lib/doom/doom2.wad
createfile SW18_7: file already exists
% games/mus /mnt/wad/d_doom | games/dmid | games/opl3 >/dev/audio

Play a MIDI stream from a USB device (see usb(3)):

% games/wadfs /sys/games/lib/doom/doom2.wad >[2]/dev/null
% games/dmid −s /dev/usb/ep10.1/data | games/opl3 >/dev/audio

SOURCE
/sys/src/games/dmid.c

SEE ALSO
games(1), mus(1), opl3(1), audio(3), usb(3), wadfs(4)

HISTORY
Dmid first appeared in 9front (July, 2018).

76

DOC2TXT(1) DOC2TXT(1)

NAME
doc2txt, doc2ps, wdoc2txt, xls2txt, olefs, mswordstrings, msexceltables � extract printable text
from Microsoft documents

SYNOPSIS
doc2txt [file.doc]
doc2ps [file.doc]
wdoc2txt [file.doc]
xls2txt [file.xls]
aux/olefs [−m mtpt] file.doc
aux/mswordstrings mtpt/WordDocument
aux/msexceltables [−qaDnt] [−d delim] [−c column−range] [−w worksheet−range]
mtpt/Workbook

DESCRIPTION
Doc2txt is an rc(1) script that uses olefs and mswordstrings to extract the printable text from the
body of a Microsoft Word document and write it on the standard output. Doc2ps is similar, but
emits PostScript corresponding to the document. Wdoc2txt is similar to doc2txt, but uses
plumb(1) to send the output to a new acme(1) window instead. Xls2txt performs a similar function
for Microsoft Excel documents.

Microsoft Office documents are stored in OLE (Object Linking and Embedding) format, which is a
scaled down version of Microsoft�s FAT file system. Olefs presents the contents of an MS Office
document as a file system on mtpt, which defaults to /mnt/doc. Mswordstrings or
msexceltables may then be used to parse the files inside, extracting a text stream. Msexceltables
may be given options to control the formatting of its output.

−a Attempt conversion of non-tabular sheets in the workbook (charts).
−d delim Sets the inter-field delimiter to the string delim, by default a single space.
−D Enables debugging output.
−c range Range is a comma-separated list of column numbers and ranges. Ranges are sepa

rated by dashes. Limit processing to just those columns named; by default all columns
are output.

−n Disables field padding to column width.
−q Disable quoting of textural fields (see quote(2).)
−t Truncate fields to the column width.
−w range Range is a comma-separated list of worksheet numbers and ranges, this limits the

sheets output using the same syntax as the −c option above. Suppressed chart pages
are always included in the sheet count.

EXAMPLE
Extract pieces of an MS Excel spreadsheet.

aux/olefs report.xls

msexceltables -q -w 1,7,9-14 -c 3-5 -n -d �@� /mnt/doc/Workbook > rpt.txt
unmount /mnt/doc

SOURCE
/rc/bin doc2txt, doc2ps, wdoc2txt, and xls2txt
/sys/src/cmd/aux the others

SEE ALSO
strings(1)
��Microsoft Word 97 Binary File Format��, at Microsoft�s developer (MSDN) home page.
��LAOLA Binary Structures��, http://user.cs.tu−berlin.de/~schwartz/pmh
��OpenOffice.Org�s Excel Documentation��,
http://sc.openoffice.org/excelfileformat.pdf

77

DOCTYPE(1) DOCTYPE(1)

NAME
doctype � intuit command line for formatting a document

SYNOPSIS
doctype [−n] [−T dev] [file] ...

DESCRIPTION
Doctype examines a troff(1) input file to deduce the appropriate text formatting command and
prints it on standard output. Doctype recognizes input for troff(1), related preprocessors like
eqn(1), and the ms(6) and mm macro packages.

Option −n invokes nroff instead of troff. The −T option is passed to troff.

EXAMPLES
eval ‘{doctype chapter.?} | lp

Typeset files named chapter.0, chapter.1, ...

SOURCE
/rc/bin/doctype

SEE ALSO
troff(1), eqn(1), tbl(1), pic(1), grap(1), ms(6), man(6)

BUGS
In true A.I. style, its best guesses are inspired rather than accurate.

78

DPIC(1) DPIC(1)

NAME
dpic, todpic � Doom picture decoder and encoder

SYNOPSIS
dpic [−f] [−p palette] [pic]

todpic [−fw] [−b bgcol] [−p palette] [image]

DESCRIPTION
Dpic reads a doom picture formatted image (default standard input), converts it to a Plan 9
image(6) and writes it to standard out. Todpic does the opposite transformation.

A color palette is needed for the process; its location is set to /mnt/wad/playpal by default.
This may be overridden with the −p command line option. Both programs also accept an −f flag
to indicate processing a doom 64x64 flat picture.

When encoding a doom picture, x and y offsets are set to the input�s top left corner coordinates.
The −w flag sets the offsets so as to center the picture when drawn by the doom engine, which is
useful for wall patches. The −b option sets the RGB24 color to signal transparent pixels,
0x00FFFF by default.

EXAMPLES
Create a patch WAD (see wadfs(4)) replacing a sky texture. First, create a 256x128 image, mirror
it, and convert it for use with tweak(1).

% png −9t tuttleglenda.png \
| resample −x 128 −y 128 \
| crop −r 0 0 256 128 \
| rotate −l \
| iconv −c m8 > tuttlesky

Next, use tweak(1) to tile the 128x128 picture. Then, mount an IWAD containing the base color
palette, convert to a doom picture, create a patch WAD, then launch doom using it.

% games/wadfs /sys/games/lib/doom/doom2.wad
createfile SW18_7: file already exists
% games/wadfs −m /mnt/new
% games/todpic tuttlesky > /mnt/new/rsky1
% cp /mnt/new/WAD tuttle.wad
% games/doom −file tuttle.wad

Create a crude catclock weapon sprite.

% games/wadfs /sys/games/lib/doom/doom2.wad
createfile SW18_7: file already exists
% mkdir /mnt/new/s
adding end marker S_END
% cp /mnt/wad/s/* /mnt/new/s/
% crop −r 0 0 114 120 −t −120 −60 catclock.bit \

| games/todpic −b 0xffffff > /mnt/new/s/punga0
% games/doom −file /mnt/new/WAD

SOURCE
/sys/src/games/dpic.c
/sys/src/games/todpic.c

SEE ALSO
games(1), tweak(1), wadfs(4)

HISTORY
Dpic and todpic first appeared in 9front (July, 2018).

79

DTRACY(1) DTRACY(1)

NAME
dtracy � dynamic tracing language

SYNOPSIS
dtracy [−d] prog

DESCRIPTION
Dtracy is a language for dynamic tracing of the kernel. Essentially, it allows the user to define
small programs in kernel space that are triggered by certain events (known as probes) upon which
they are executed.

Dtracy uses an awk(1) inspired syntax. A dtracy program is a series of statements of one of the
following forms

probes { actions }
probes if predicate { actions }

Probes is a comma-separated list of probes, such as sys:pwrite:entry. Each probe name
consists of any number of parts separated by :. If a part is omitted (e.g. qsys::entry), it
matches all probes that match the remaining parts. If the probe name is enclosed in quotation
marks, the wildcards * and ? are available, e.g. "sys:*stat:entry".

Predicate, if specified, is an expression that must evaluate to a non-zero value for the actions to
be executed.

Actions is a semicolon-separated list of statements of one of the following forms:

expr
print a, b, ...
printf "fmt", a, b, ...
@name[index] = aggregation−expr

Expressions follow C syntax and semantics and all C operators (including casts) are supported.
Available integer types are u8, u16, u32, u64, s8, s16, s32 and s64; they correspond to the C
types u8int, etc. Additionally, a string type string is available.

Expressions can use the following variables

probe name of the probe that was triggered
pid PID of the process triggering the probe
arg0, arg1, ... for a syscall probe, the syscall arguments (cast to s64)
time timestamp when the probe was triggered
machno CPU number on which the probe was triggered

Print prints all its arguments, separated by spaces and followed by a newline. Printf prints its
arguments using a format string with print(2) syntax. However, there is no need to specify the
argument size, e.g. %d works for all integer types.

Statements of the form @name[index] = aggregation−expr collect statistics using a data struc
ture referred to as an aggregation. Each time the statement is evaluated adds another datapoint to
the aggregation, which will be printed in tabular form when dtracy finishes. Index is effectively a
label for the datapoint; statistics are evaluated over all datapoints of the same index.

Aggregation−expr specifies the type of statistic to be collected. Available options are

count() number of datapoints
avg(expr) average
sum(expr) sum
min(expr) minimum
max(expr) maximum
std(expr) average and standard deviation

EXAMPLES
sys:: { print probe, pid, arg0, arg1 }

The world�s worst syscall tracer.

sys:pread:entry if pid == 42 { printf "time %d, fd %d\n", time, arg0 }

80

DTRACY(1) DTRACY(1)

Every time the process with PID 42 executes pread(2), write down the timestamp and the file
descriptor used.

sys:open:entry { print (string)arg0 }

Print the names of files as they are being opened.

sys:pread:entry { @size[pid] = avg(arg2) }

Determine the average pread buffer size for each process.

SOURCE
/sys/src/cmd/dtracy

BUGS
Yes.

HISTORY
Dtracy appeared in 9front in November, 2018.

81

DU(1) DU(1)

NAME
du � disk usage

SYNOPSIS
du [−aefhnqstu] [−b size] [−p SI−prefix] [file ...]

DESCRIPTION
Du gives the number of Kbytes allocated to data blocks of named files and, recursively, of files in
named directories. It assumes storage is quantized in units of 1024 bytes (Kbytes) by default.
Other values can be set by the −b option; size is the number of bytes, optionally suffixed k to
specify multiplication by 1024. If file is missing, the current directory is used. The count for a
directory includes the counts of the contained files and directories.

The −a option prints the number of blocks for every file in a directory. Normally counts are
printed only for contained directories.

The −f option suppresses the printing of warning messages.

The −n option prints the size in bytes and the name of each file; it sets −a.

The −t option prints, in the format of du −n, the modified time of each file rather than the size.
If the options −tu are specified then the accessed time is printed.

The −q option prints, in the format of du −n, the QID path of each file rather than the size.

The −s option causes du to descend the hierarchy as always, but to print only a summary line for
each file.

The −e option causes du to print values (sizes, times or QID paths) in �scientific notation� via
print(2)�s %g.

The −h option causes du to print values (sizes, times or QID paths) in scientific notation, scaled to
less than 1024, and with a suitable SI prefix (e.g., G for binary gigabytes).

The −p option causes du to print values (sizes, times or QID paths) in units of SI−prefix. Case is
ignored when looking up SI−prefix. An empty SI−prefix corresponds to a scale factor of 1 (e.g.,
print sizes in bytes).

EXAMPLES
Print the size of /tmp in fractional binary gigabytes:

% du −sepg /tmp
.6960154 /tmp

Print the size of /tmp in bytes and in scientific notation:

% du −sep ’’ /tmp
7.473408e+08 /tmp

SOURCE
/sys/src/cmd/du.c

82

ECHO(1) ECHO(1)

NAME
echo � print arguments

SYNOPSIS
echo [−n] [arg ...]

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a newline on the standard out
put. Option −n suppresses the newline.

SOURCE
/sys/src/cmd/echo.c

DIAGNOSTICS
If echo draws an error while writing to standard output, the exit status is write error. Other
wise the exit status is empty.

83

ECP(1) ECP(1)

NAME
ecp � fast copy, handling errors

SYNOPSIS
ecp [�bcprvZ] [�B block−size] [�e max−errors] [�i issect] [�o ossect] [�s sector−size]

sectors input output

DESCRIPTION
Ecp copies sectors disk sectors of the specified input file to the specified output file. Ecp copies
multiple sectors (a �block�) at a time for speed. When ecp encounters an I/O error, it transfers the
current block again, assuming the file is seekable, one sector at a time, prints the sector number(s)
of the error(s), and continues copying.

Options are:

�b reblock input on short reads; this was used mainly when reading a pipe on standard input on
4.2+BSD systems.

�B sets the block size (16,384 bytes by default) to block−size.

�c ask for confirmation on /dev/cons before starting the copy.

�e sets a maximum number of consecutive I/O errors to permit at the beginning of the copy
before quitting to max−errors. Lots of consecutive errors may indicate a deeper problem, such
as missing media. By default there is no limit.

�i seeks to sector issect (assuming zero-origin) before beginning input.

�o seeks to sector ossect (assuming zero-origin) before beginning output.

�p print reassuring progress reports; helpful mainly when dealing with cranky hardware.

�r copy sector groups in reverse order, assuming the files are seekable; this is most useful when
input and output overlap.

�s sets the sector size (512 bytes by default) to sector−size.

�v verify the copy by rereading the input and output files after copying all sectors. This is
intended to force the disk to deliver the actual data written on it rather than some cached
copy. The locations of any differences are printed.

�Z �Swizzle� the input: stir the bits around in some fashion. Intended for diagnosing bad disks by
copying a disk to itself a few times with swizzling on (to defeat caching in operating systems
or disk controllers).

SEE ALSO
fcp in cp(1), dd(1), dup(3)

BUGS
�i, �o, �r, �v and error retries only work on devices capable of seeking.

The set of options reflects decades of experience dealing with troublesome hardware.

If the input file is a tape and the last record on the tape before a file mark is less than blocksize
bytes long, then ecp will read through past the file mark and into the next file.

84

ED(1) ED(1)

NAME
ed � text editor

SYNOPSIS
ed [−] [−o] [file]

DESCRIPTION
Ed is the standard text editor.

If a file argument is given, ed simulates an e command (see below) on that file: it is read into ed’s
buffer so that it can be edited. The options are

− Suppress the printing of character counts by e, r, and w commands and of the confirming
! by ! commands.

−o (for output piping) Write all output to the standard error file except writing by w com
mands. If no file is given, make /fd/1 the remembered file; see the e command below.

Ed operates on a �buffer�, a copy of the file it is editing; changes made in the buffer have no effect
on the file until a w (write) command is given. The copy of the text being edited resides in a tem
porary file called the buffer.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a
single character command, possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the addition of text
to the buffer. While ed is accepting text, it is said to be in input mode. In this mode, no commands
are recognized; all input is merely collected. Input mode is left by typing a period . alone at the
beginning of a line.

Ed supports the regular expression notation described in regexp(6). Regular expressions are used
in addresses to specify lines and in one command (see s below) to specify a portion of a line which
is to be replaced. If it is desired to use one of the regular expression metacharacters as an ordi
nary character, that character may be preceded by �\�. This also applies to the character bounding
the regular expression (often /) and to \ itself.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally, the current line is the last line affected by a command; however, the exact effect on the
current line is discussed under the description of each command. Addresses are constructed as
follows.

1. The character ., customarily called �dot�, addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. ’x addresses the line marked with the name x, which must be a lower-case letter. Lines
are marked with the k command.

5. A regular expression enclosed in slashes (/) addresses the line found by searching forward
from the current line and stopping at the first line containing a string that matches the reg
ular expression. If necessary the search wraps around to the beginning of the buffer.

6. A regular expression enclosed in queries ? addresses the line found by searching backward
from the current line and stopping at the first line containing a string that matches the reg
ular expression. If necessary the search wraps around to the end of the buffer.

7. An address followed by a plus sign + or a minus sign − followed by a decimal number
specifies that address plus (resp. minus) the indicated number of lines. The plus sign may
be omitted.

8. An address followed by + (or −) followed by a regular expression enclosed in slashes speci
fies the first matching line following (or preceding) that address. The search wraps around
if necessary. The + may be omitted, so 0/x/ addresses the first line in the buffer with an
x. Enclosing the regular expression in ? reverses the search direction.

85

ED(1) ED(1)

9. If an address begins with + or − the addition or subtraction is taken with respect to the cur
rent line; e.g. −5 is understood to mean .−5.

10. If an address ends with + or −, then 1 is added (resp. subtracted). As a consequence of
this rule and rule 9, the address − refers to the line before the current line. Moreover, trail
ing + and − characters have cumulative effect, so −− refers to the current line less 2.

11. To maintain compatibility with earlier versions of the editor, the character ^ in addresses is
equivalent to −.

Commands may require zero, one, or two addresses. Commands which require no addresses
regard the presence of an address as an error. Commands which accept one or two addresses
assume default addresses when insufficient are given. If more addresses are given than a com
mand requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ,. They may also be separated by
a semicolon ;. In this case the current line is set to the previous address before the next address
is interpreted. If no address precedes a comma or semicolon, line 1 is assumed; if no address fol
lows, the last line of the buffer is assumed. The second address of any two-address sequence
must correspond to a line following the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The paren
theses are not part of the address, but are used to show that the given addresses are the default.
�Dot� means the current line.

(.)a
<text>
. Read the given text and append it after the addressed line. Dot is left on the last line input,

if there were any, otherwise at the addressed line. Address 0 is legal for this command;
text is placed at the beginning of the buffer.

(.,.)b[+−][pagesize][pln]
Browse. Print a �page�, normally 20 lines. The optional + (default) or − specifies whether
the next or previous page is to be printed. The optional pagesize is the number of lines in
a page. The optional p, n, or l causes printing in the specified format, initially p. Page
size and format are remembered between b commands. Dot is left at the last line dis
played.

(.,.)c
<text>
. Change. Delete the addressed lines, then accept input text to replace these lines. Dot is

left at the last line input; if there were none, it is left at the line preceding the deleted lines.

(.,.)d
Delete the addressed lines from the buffer. Dot is set to the line following the last line
deleted, or to the last line of the buffer if the deleted lines had no successor.

e filename
Edit. Delete the entire contents of the buffer; then read the named file into the buffer. Dot
is set to the last line of the buffer. The number of characters read is typed. The file name
is remembered for possible use in later e, r, or w commands. If filename is missing, the
remembered name is used.

E filename
Unconditional e; see �q� below.

f filename
Print the currently remembered file name. If filename is given, the currently remembered
file name is first changed to filename.

(1,$)g/regular expression/command list
(1,$)g/regular expression/
(1,$)g/regular expression

Global. First mark every line which matches the given regularexpression. Then for every
such line, execute the command list with dot initially set to that line. A single command or
the first of multiple commands appears on the same line with the global command. All
lines of a multi-line list except the last line must end with \. The �.� terminating input

86

ED(1) ED(1)

mode for an a, i, c command may be omitted if it would be on the last line of the com
mand list. The commands g and v are not permitted in the command list. Any character
other than space or newline may be used instead of / to delimit the regular expression.
The second and third forms mean g/regular expression/p.

(.)i
<text>
. Insert the given text before the addressed line. Dot is left at the last line input, or, if there

were none, at the line before the addressed line. This command differs from the a com
mand only in the placement of the text.

(.,.+1)j
Join the addressed lines into a single line; intermediate newlines are deleted. Dot is left at
the resulting line.

(.)kx Mark the addressed line with name x, which must be a lower-case letter. The address form
’x then addresses this line.

(.,.)l
List. Print the addressed lines in an unambiguous way: a tab is printed as \t, a backspace
as \b, backslashes as \\, and non-printing characters as a backslash, an x, and four hex
adecimal digits. Long lines are folded, with the second and subsequent sub-lines indented
one tab stop. If the last character in the line is a blank, it is followed by \n. An l may be
appended, like p, to any non-I/O command.

(.,.)ma
Move. Reposition the addressed lines after the line addressed by a. Dot is left at the last
moved line.

(.,.)n
Number. Perform p, prefixing each line with its line number and a tab. An n may be
appended, like p, to any non-I/O command.

(.,.)p
Print the addressed lines. Dot is left at the last line printed. A p appended to any non-I/O
command causes the then current line to be printed after the command is executed.

(.,.)P
This command is a synonym for p.

q Quit the editor. No automatic write of a file is done. A q or e command is considered to
be in error if the buffer has been modified since the last w, q, or e command.

Q Quit unconditionally.

($) r filename
Read in the given file after the addressed line. If no filename is given, the remembered file
name is used. The file name is remembered if there were no remembered file name
already. If the read is successful, the number of characters read is printed. Dot is left at
the last line read from the file.

(.,.)sn/regular expression/replacement/
(.,.)sn/regular expression/replacement/g
(.,.)sn/regular expression/replacement

Substitute. Search each addressed line for an occurrence of the specified regular expres
sion. On each line in which n matches are found (n defaults to 1 if missing), the nth
matched string is replaced by the replacement specified. If the global replacement indica
tor g appears after the command, all subsequent matches on the line are also replaced. It
is an error for the substitution to fail on all addressed lines. Any character other than
space or newline may be used instead of / to delimit the regular expression and the
replacement. Dot is left at the last line substituted. The third form means
sn/regular expression/replacement/p. The second / may be omitted if the replacement
is empty.

An ampersand & appearing in the replacement is replaced by the string matching the regu
lar expression. The characters \n, where n is a digit, are replaced by the text matched by
the n-th regular subexpression enclosed between (and). When nested parenthesized

87

ED(1) ED(1)

subexpressions are present, n is determined by counting occurrences of (starting from
the left.

A literal &, /, \ or newline may be included in a replacement by prefixing it with \.

(.,.)ta
Transfer. Copy the addressed lines after the line addressed by a. Dot is left at the last line
of the copy.

(.,.)u
Undo. Restore the preceding contents of the first addressed line (sic), which must be the
last line in which a substitution was made (double sic).

(1,$)v/regular expression/command list
This command is the same as the global command g except that the command list is exe
cuted with dot initially set to every line except those matching the regular expression.

(1,$)w filename
Write the addressed lines to the given file. If the file does not exist, it is created with mode
666 (readable and writable by everyone). If no filename is given, the remembered file
name, if any, is used. The file name is remembered if there were no remembered file name
already. Dot is unchanged. If the write is successful, the number of characters written is
printed.

(1,$)W filename
Perform w, but append to, instead of overwriting, any existing file contents.

($)= Print the line number of the addressed line. Dot is unchanged.

!shell command
Send the remainder of the line after the ! to rc(1) to be interpreted as a command. Dot is
unchanged.

(.+1) <newline>
An address without a command is taken as a p command. A terminal / may be omitted
from the address. A blank line alone is equivalent to .+1p; it is useful for stepping
through text.

If an interrupt signal (DEL) is sent, ed prints a ? and returns to its command level.

When reading a file, ed discards NUL characters and all characters after the last newline.

FILES
/tmp/e*
ed.hup work is saved here if terminal hangs up

SOURCE
/sys/src/cmd/ed.c

SEE ALSO
sam(1), sed(1), regexp(6)

DIAGNOSTICS
?name for inaccessible file; ?TMP for temporary file overflow; ? for errors in commands or other
overflows.

88

EMACS(1) EMACS(1)

NAME
emacs � editor macros

SYNOPSIS
emacs [options]

DESCRIPTION
This page intentionally left blank.

SOURCE
MIT

SEE ALSO
sam(1), vi(1)

BUGS
Yes.

89

EQN(1) EQN(1)

NAME
eqn � typeset mathematics

SYNOPSIS
eqn [option ...] [file ...]

DESCRIPTION
Eqn is a troff(1) preprocessor for typesetting mathematics on a typesetter. Usage is almost always

eqn file ... | troff

If no files are specified, eqn reads from the standard input. Eqn prepares output for the typesetter
named in the −Tdest option (default −Tutf; see troff(1)). When run with other preprocessor fil
ters, eqn usually comes last.

A line beginning with .EQ marks the start of an equation; the end of an equation is marked by a
line beginning with .EN. Neither of these lines is altered, so they may be defined in macro pack
ages to get centering, numbering, etc. It is also possible to set two characters as �delimiters�; text
between delimiters is also eqn input. Delimiters may be set to characters x and y with the option
−dxy or (more commonly) with delim xy between .EQ and .EN. Left and right delimiters may
be identical. (They are customarily taken to be $$). Delimiters are turned off by delim off.
All text that is neither between delimiters nor between .EQ and .EN is passed through
untouched.

Tokens within eqn are separated by spaces, tabs, newlines, braces, double quotes, tildes or cir
cumflexes. Braces {} are used for grouping; generally speaking, anywhere a single character like x
could appear, a complicated construction enclosed in braces may be used instead. Tilde ~ repre
sents a full space in the output, circumflex ^ half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i
makes x i, a sub i sup 2 produces a i

2, and e sup {x sup 2 + y sup 2} gives e x
2 + y

2

.

Over makes fractions: a over b yields
b

a__ .

Sqrt produces square roots: 1 over sqrt {ax sup 2 +bx+c} results in
�ax2 + bx + c

1______________ .

The keywords from and to introduce lower and upper limits on arbitrary things:
n��
lim

0
Σ
n

x i is made

with lim from {n −> inf} sum from 0 to n x sub i.

Left and right brackets, braces, etc., of the right height are made with left and right: left [

x sup 2 + y sup 2 over alpha right] ~=~1 produces

x2 +

±

y2

= 1. The

right clause is optional. Legal characters after left and right are braces, brackets, bars, c
and f for ceiling and floor, and "" for nothing at all (useful for a right-side-only bracket).

Vertical piles of things are made with pile, lpile, cpile, and rpile: pile {a above b

above c} produces
c
b
a
. There can be an arbitrary number of elements in a pile. lpile left-

justifies, pile and cpile center, with different vertical spacing, and rpile right justifies.

Matrices are made with matrix: matrix { lcol { x sub i above y sub 2 } ccol

{ 1 above 2 } } produces
y2

x i

2

1
. In addition, there is rcol for a right-justified column.

Diacritical marks are made with prime, dot, dotdot, hat, tilde, bar, under, vec, dyad,

and under: x sub 0 sup prime = f(t) bar + g(t) under is x0′ = f (t)

+ g(t)____, and x

vec = y dyad is x
� = y

��
.

Sizes and fonts can be changed with prefix operators size n, size ±n, fat, roman, italic,
bold, or font n. Size and fonts can be changed globally in a document by gsize n and gfont
n, or by the command-line arguments −sn and −fn.

Normally subscripts and superscripts are reduced by 3 point sizes from the previous size; this may
be changed by the command-line argument −pn.

90

EQN(1) EQN(1)

Successive display arguments can be lined up. Place mark before the desired lineup point in the
first equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define: define thing %
replacement % defines a new token called thing which will be replaced by replacement whenever it
appears thereafter. The % may be any character that does not occur in replacement.

Keywords like sum (Σ) , int (+) , inf (�) , and shorthands like >= (≥) , −> (→) , and != (`)

are recognized. Greek letters are spelled out in the desired case, as in alpha or GAMMA. Mathe
matical words like sin, cos, log are made Roman automatically. Troff(1) four-character
escapes like \(lh () can be used anywhere. Strings enclosed in double quotes " " are passed
through untouched; this permits keywords to be entered as text, and can be used to communicate
with troff when all else fails.

FILES
/sys/lib/troff/font/devutf font descriptions for PostScript

SOURCE
/sys/src/cmd/eqn

SEE ALSO
troff(1), tbl(1)
J. F. Ossanna and B. W. Kernighan, ��Troff User�s Manual��.
B. W. Kernighan and L. L. Cherry, ��Typesetting Mathematics�User�s Guide��, Unix Research System
Programmer’s Manual, Tenth Edition, Volume 2.

BUGS
To embolden digits, parens, etc., it is necessary to quote them, as in bold "12.3".

91

EXPECT(1) EXPECT(1)

NAME
at, drain, expect, pass � dialer scripting tools

SYNOPSIS
dial/at [−q] [−t seconds] atcommand
dial/expect [−iq] [−t seconds] goodstring [badstring...]
dial/drain
dial/pass [−q]

DESCRIPTION
These commands are used to write telephone dialing scripts, mostly for PPP sessions. They all
expect standard input and output to be connected to a communications device, e.g, a serial line to
a modem. They communicate with the user using /dev/cons.

At sends atcommand to the modem prefixed with the string at. It then reads from the modem
expecting an AT response. At will return success if it gets and OK of CONNECT response. Other
wise it will return the response as an error status. The options are:

−t set the timeout to seconds. The default is 300.

−q don�t write to /dev/cons what is read from standard in. The default is to copy every
thing through.

Expect reads standard input looking for one of the strings given as arguments. Reading the first
string causes a successul exit status. Reading any of the others causes an exit status equal to the
string. The command also terminates on a timeout. The options are:

−t set the timeout to seconds. The default is 300.

−i ignore case when doing the matches.

−q don�t write to /dev/cons what is read from standard in. The default is to copy every
thing through.

Pass copies input from /dev/cons to standard output. It terminates on a newline. The only flag
is −q and means the same as it does for expect.

Drain discards any input waiting on standard input. It is used to sync up the stream at the start of
dialing or after an error.

EXAMPLE
The following rc script dials out through a Hayes compatible modem on /dev/eia1 and lets the
user type in a user name and password before starting ppp.
#!/bin/rc
dev=/dev/eia1
telno=18005551212

fn initfn {
dial/drain
echo +++
dial/at zh0

}

fn dialfn {
dial/drain
dial/at dt^$telno

}
{

set up uart
if(test −e $dev^ctl){

echo −n b^$baud
echo −n m1 # cts/rts flow control
echo −n q64000 # big buffer
echo −n n1 # nonblocking writes
echo −n r1 # rts on

92

EXPECT(1) EXPECT(1)

echo −n d1 # dtr on
echo −n c1 # handup when we lose dcd

} > $dev^ctl

get the modem’s attention
while(! initfn)

sleep 1

dial
while(! dialfn)

sleep 30

if(! dial/expect −it 60 ’username:’){
echo can’’t connect >[1=2]
exit connect

}
dial/pass
if(! dial/expect −it 60 ’password:’){

echo can’’t connect >[1=2]
exit connect

}
dial/pass
if(! dial/expect −t 60 ’ppp or telnet:’){

echo can’’t connect >[1=2]
exit connect

}
echo ppp
dial/expect −t 5 something
echo connected >[1=2]

start ppp
ip/ppp $primary −f

} < $dev > $dev

FILES
/rc/bin/ipconf/* example dialer scripts for ppp

SOURCE
/sys/src/cmd/dial/*.c

SEE ALSO
ppp(8), telco(4)

93

FACES(1) FACES(1)

NAME
faces, seemail, vwhois � mailbox interface

SYNOPSIS
faces [−ihc] [−m maildir]
seemail
vwhois person ...

DESCRIPTION
The faces command monitors incoming mail and displays in its window a representation of the
user�s mail box using a small image for each message. The image is typically a portrait of the
sender. Which image to display is determined by two directories /usr/$user/lib/face and /lib/face.
Entries in /usr/$user/lib/face take priority over those in /lib/face. See face(6), for how these direc
tories are organised.

If the user is running plumber(4), faces reacts to plumb messages to the seemail port, typically
from upas/fs, and is thus notified of message additions and deletions.

Right-clicking on a message icon causes that message to be �plumbed� to showmail. A typical
plumb action will be to display the message, such as by the rule

plumb start window mail −s $0
The acme(1) mail reader listens to the showmail port automatically.

If the user is not running plumber, faces reads the log file and right-clicking has no effect.

If arrows are visible, clicking on them will scroll the display. Middle-clicking on the arrows scrolls
to the end.

Starting faces with the −i flag causes faces to read the messages in /mail/fs/mbox � or
the mailboxes specified with the −m flag � upon startup.

The −m option directs faces to watch for messages arriving in maildir instead of
/mail/fs/mbox. Multiple −m flags may be used to watch multiple mailboxes.

Starting faces with the −c flag allows the user to remove faces with a click with button 1.

The −h flag causes a different, venerable behavior in which the window displays the history of
messages received rather than the current state of the mail box. In particular, faces are not
removed from the screen when messages are deleted. Also, in this mode clicking button 1 in the
display will clear the window.

Seemail is an rc(1) script that invokes faces −h.

Vwhois tells faces to display the icons of the named persons, without sending a message.

FILES
/mail/fs/mbox mail directory.

SOURCE
/sys/src/cmd/faces
/rc/bin/seemail
/rc/bin/vwhois

SEE ALSO
mail(1), marshal(1), nedmail(1), plumber(4), face(6), plumb(6)

94

FACTOR(1) FACTOR(1)

NAME
factor, primes � factor a number, generate large primes

SYNOPSIS
factor [number]

primes start [finish]

DESCRIPTION
Factor prints number and its prime factors, each repeated the proper number of times. The num
ber must be positive and less than 2

54
(about 1.8×10

16
).

If no number is given, factor reads a stream of numbers from the standard input and factors them.
It exits on any input not a positive integer. Maximum running time is proportional to √n .

Primes prints the prime numbers ranging from start to finish, where start and finish are positive
numbers less than 2

56
. If finish is missing, primes prints without end; if start is missing, it reads

the starting number from the standard input.

SOURCE
/sys/src/cmd/factor.c
/sys/src/cmd/primes.c

95

FEDEX(1) FEDEX(1)

NAME
fedex, ups, usps � track shipments

SYNOPSIS
fedex tracking−number
ups tracking−number
usps tracking−number

DESCRIPTION
Fedex writes available shipment details for the given Federal Express 12-digit tracking−number on
the standard output. Ups is similar, but takes a United Parcel Service 18-digit tracking−number.
Usps takes a US Post Office tracking−number.

SOURCE
/rc/bin

BUGS
Redesigns of the source website can break these programs.

96

FILE(1) FILE(1)

NAME
file � determine file type

SYNOPSIS
file [−m] [file ...]

DESCRIPTION
File performs a series of tests on its argument files in an attempt to classify their contents by lan
guage or purpose. If no arguments are given, the classification is performed on standard input.

If the −m flag is given, file outputs an appropriate MIME Content−Type specification describing
the type and subtype of each file.

The file types it looks for include directory, device file, zero-filled file, empty file, Plan 9 exe
cutable, PAC audio file, cpio archive, tex dvi file, archive symbol table, archive, rc script, sh
script, PostScript, troff output file for various devices, mail box, GIF, FAX, object code, C and
Alef source, assembler source, compressed files, encrypted file, English text, compressed image,
image, subfont, and font.

If a file has no apparent format, file looks at the character set it uses to classify it according to
ASCII, extended ASCII, Latin ASCII, or UTF holding one or more of the following blocks of the Unicode
Standard: Extended Latin, Greek, Cyrillic, Armenian, Hebrew, Arabic, Devanagari, Bengali, Gur
mukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Thai, Lao, Tibetan, Georgian, Japanese,
Chinese, or Korean.

If all else fails, file decides its input is binary.

SOURCE
/sys/src/cmd/file.c

BUGS
It can make mistakes.

97

FILTER(1) FILTER(1)

NAME
filter, list, deliver, token, vf � filtering mail

SYNOPSIS
upas/filter [−bh] rcvr mailbox [regexp file] ...

upas/list [−d] add|check patternfile addressfile ...

upas/deliver recipient fromfile mbox

upas/token key [tokenfile]

upas/vf [−r] [−s savefile]

DESCRIPTION
A user may filter all incoming mail by creating a world readable/executable file
/mail/box/username/pipeto. If the file is a shell script, it can use the commands
described here to implement a filter.

Filter provides simple mail filtering. The first two arguments are the recipient�s address and mail
box, that is, the same arguments provided to pipeto. The remaining arguments are all pairs of
a regular expression and a file name. With no flags, the sender�s address is matched against each
regular expression starting with the first. If the expression matches, then the message is delivered
to the file whose name follows the expression. The file must be world writable and should be
append only. A message that matches none of the expressions is delivered into the user�s stan
dard mail box.

By default, filter matches each regular expression against the message�s sender. The −h flag
causes filter to match against the entire header, and the −b flag causes filter to match against the
entire message (header and body).

For example, to delete any messages of precedence bulk, place in your pipeto file:

/bin/upas/filter −h $1 $2 ’Precedence: bulk’ /dev/null

Three other commands exist which, combined by an rc(1) script, allow you to build your own filter.

List takes two verbs; check and add. Check directs list to check each address contained in the
addressfiles against a list of patterns in patternfile. Patterns come in four forms:

~regular−expression If any address matches the regular expression, list returns successfully.

=string. If any address exactly matches string, list returns successfully.

!~regular−expression If any address matches the regular expression and no other address
matches a non �!� rule, list returns error status "!match".

!=string If any address exactly matches string and no other address matches a non
�!� rule, list returns error status "!match".

If no addresses match a pattern, list returns "no match".

The pattern file may also contain lines of the form

#include filename

to allow pattern files to include other pattern files. All pattern matches are case insensitive. List
searches the pattern file (and its includes) in order. The first matching pattern determines the
action.

List add directs list to add a pattern to patternfile for each address in the addressfiles that doesn�t
already match a pattern.

Token, with only one argument, prints to standard output a unique token created from the current
date and key. With two arguments, it checks token against tokens created over the last 10 days
with key. If a match is found, it returns successfully.

Deliver delivers into mail box mbox the message read from standard input. It obeys standard mail
file locking and logging conventions.

/sys/src/cmd/upas/filterkit/pipeto.sample is a sample pipeto using the filter
kit.

98

FILTER(1) FILTER(1)

A sample pipefrom, /sys/src/cmd/upas/filterkit/pipefrom.sample, is provided
which adds all addresses of your outgoing mail to your pattern file. You should copy it into a
directory that normally gets bound by your profile onto /bin.

Vf (virus filter) takes a mail message as standard input and searches for executable MIME attach
ments, either rewriting them to be non-executable or rejecting the message. The behavior
depends on the attachment�s file name extension and MIME content type.
/sys/lib/mimetype contains the list of known extensions and MIME content types. The fifth
field of each line specifies the safety of a particular file type: y (yes), m (maybe; treated same as
yes), n (no), p (previous), or r (reject). Vf allows attachments with safety y or m to pass through
unaltered. Attachments with safety n both are wrapped in extra MIME headers and have
.suspect appended to their file names, to avoid automatic execution by mail readers. Attach
ments with safety r (currently, .bat, .com, .exe, and .scr, all Microsoft executable exten
sions) are taken as cause for the entire message to be rejected. A safety of p (used for the
x−gunzip mime type) causes the previous extension to be tested, so that x.tar.gz is treated
the same as x.tar.

If /mail/lib/validateattachment exists and is executable, vf runs it on all attachments
with safety n (attachments it would normally sanitize). If validateattachment�s exit status contains
the string discard, vf rejects the entire message. If the status contains the string accept, vf
does not sanitize the attachment. Otherwise, vf sanitizes the attachment as before. The standard
validateattachment uses file(1) to determine the file type. It accepts text and image files and dis
cards messages containing executables or zip (see gzip(1)) archives of executables.

The −r option causes vf not to sanitize MIME attachments, but instead to reject messages it deter
mines to be viruses. The −s option causes vf to log all attachments of safety r in the mail box
savefile.

FILES
/mail/box/*/pipeto mail filter
/sys/lib/mimetype MIME content types
/mail/lib/validateattachment attachment checker

SOURCE
/sys/src/cmd/upas/send
/sys/src/cmd/upas/filterkit
/sys/src/cmd/upas/vf

SEE ALSO
aliasmail(8), faces(1), mail(1), marshal(1), mlmgr(1), nedmail(1), qer(8), rewrite(6), send(8),
smtp(8), upasfs(4)

99

FMT(1) FMT(1)

NAME
fmt, htmlfmt � simple text formatters

SYNOPSIS
fmt [option ...] [file ...]

htmlfmt [−a] [−c charset] [−u url] [file ...]

DESCRIPTION
Fmt copies the given files (standard input by default) to its standard output, filling and indenting
lines. The options are

−l n Output line length is n, including indent (default 70).

−w n A synonym for −l.

−i n Indent n spaces (default 0).

−j Do not join short lines: only fold long lines.

Empty lines and initial white space in input lines are preserved. Empty lines are inserted between
input files.

Fmt is idempotent: it leaves already formatted text unchanged.

Htmlfmt performs a similar service, but accepts as input text formatted with HTML tags. It accepts
fmt�s −l and −w flags and also:

−a Normally htmlfmt suppresses the contents of form fields and anchors (URLs and image
files); this flag causes it to print them, in square brackets.

−c charset
change the default character set from iso-8859-1 to charset. This is the character set
assumed if there isn�t one specified by the html itself in a <meta> directive.

−u url Use url as the base URL for the document when displaying anchors; sets −a.

SOURCE
/sys/src/cmd/fmt.c

/sys/src/cmd/htmlfmt

BUGS
Htmlfmt makes no attempt to render the two-dimensional geometry of tables; it just treats the
table entries as plain, to-be-formatted text.

100

FORP(1) FORP(1)

NAME
forp � formula prover

SYNOPSIS
forp [−m] [file]

DESCRIPTION
Forp is a tool for proving formulae involving finite-precision arithmetic. Given a formula it will
attempt to find a counterexample; if it can�t find one the formula has been proven correct.

Forp is invoked on an input file with the syntax as defined below. If no input file is provided, stan
dard input is used instead. The −m flag instructs forp to produce a table of all counterexamples
rather than report just one. Note that counterexamples may report bits as ?, meaning that either
value will lead to a counterexample.

The input file consists of statements terminated by semicolons and comments using C syntax
(using // or /* */ syntax). Valid statements are

Variable definitions, roughly: type var ;
Expressions (including assignments): expr ;
Assertions: obviously expr ;
Assumptions: assume expr ;

Assertions are formulae to be proved. If multiple assertions are given, they are effectively "and"-
ed together. Each input file must have at least one assertion to be valid. Assumptions are formu
lae that are assumed, i.e. counterexamples that would violate assumptions are never considered.
Exercise care with them, as contradictory assumptions will lead to any formula being true (the
logician�s principle of explosion).

Variables can be defined with C notation, but the only types supported are bit and 1D arrays of
bit (corresponding to machine integers of the specified size). Signed integers are indicated with
the keyword signed. Like int in C, the bit keyword can be omitted in the presence of
signed. For example,

bit a, b[4], c[8];
signed bit d[3];
signed e[16];

is a set of valid declarations.

Unlike a programming language, it is perfectly legitimate to use a variable before it is assigned
value; this means the variable is an "input" variable. Forp tries to find assignments for all input
variables that render the assertions invalid.

Expressions can be formed just as in C, however when used in an expression, all variables are
automatically promoted to an infinite size signed type. The valid operators are listed below, in
decreasing precedence. Note that logical operations treat all non-zero values as 1, whereas bitwise
operators operate on all bits independently.

[] Array indexing. The syntax is var[a:b], with a denoting the MSB and b denoting the
LSB. Omiting :b addresses a single bit. The result is always treated as unsigned.

!, ~, +, − (Unary operators) Logical and bitwise "not", unary plus (no-op), arithmetic negation.
Because of promotion, ~ and − operate beyond the width of variables.

*, /, % Multiplication, division, modulo. Division and modulo add an assumption that the
divisor is non-zero.

+, − Addition, subtraction.

<<, >> Left shift, arithmetic right shift. Because of promotion, this is effectively a logical
right shift on unsigned variables.

<, <=, >, >= Less than, less than or equal to, greater than, greather than or equal to.

==, != Equal to, not equal to.

& Bitwise "and".

101

FORP(1) FORP(1)

^ Bitwise "xor".

| Bitwise "or".

&& Logical "and"

|| Logical "or".

<=>, => Logical equivalence and logical implication (equivalent to (a != 0) == (b !=
0) and !a || b, respectively).

?: Ternary operator (a?b:c equals b if a is true and c otherwise).

= Assignment.

One subtle point concerning assignments is that they forcibly override any previous values, i.e.
expressions use the value of the latest assignments preceding them. Note that the values reported
as the counterexample are always the values given by the last assignment.

EXAMPLES
We know that, mathematically, a + b e a if b e 0 (which is always true for an unsigned number).
We can ask forp to prove this using

bit a[32], b[32];
obviously a + b >= a;

Forp will report "Proved", since it cannot find a counterexample for which this is not true. In C, on
the other hand, we know that this is not necessarily true. The reason is that, depending on the
types involved, results are truncated. We can emulate this by writing

bit a[32], b[32], c[32];
c = a + b;
obviously c >= a;

Given this, forp will now report it as incorrect by providing a counterexample, for example

a = 10000000000000000000000000000000
b = 10000000000000000000000000000000
c = 00000000000000000000000000000000

Can we use c < a to check for overflow? We can ask forp to confirm this using

bit a[32], b[32], c[32];
c = a + b;
obviously c < a <=> c != a+b;

Here the statement to be proved is "c is less than a if and only if c does not equal the mathematical
sum a + b (i.e. overflow has occured)".

SOURCE
/sys/src/cmd/forp

SEE ALSO
spin(1)

BUGS
Any proof is only as good as the assumptions made, in particular care has to be taken with respect
to truncation of intermediate results.

Array indices must be constants.

Left shifting can produce a huge number of intermediate bits. Forp will try to identify the mini
mum needed number but it may be a good idea to help it by assigning the result of a left shift to a
variable.

HISTORY
Forp first appeared in 9front in March, 2018.

102

FORTUNE(1) FORTUNE(1)

NAME
fortune, theo, troll � sample lines from a file

SYNOPSIS
fortune [file]
theo
troll

DESCRIPTION
Fortune prints a one-line aphorism chosen at random. If a file is specified, the saying is taken
from that file; otherwise it is selected from /sys/games/lib/fortunes.

Troll is more specific than fortune; it specializes in inflammatory rhetoric.

Theo is more specific than troll; it presents insults from OpenBSD founder Theo de Raadt.

FILES
/sys/games/lib/fortunes
/sys/games/lib/fortunes.index fast lookup table, maintained automatically
/lib/theo
/lib/troll

SOURCE
/sys/src/cmd/fortune.c
/rc/bin/theo
/rc/bin/troll

HISTORY
Theo and troll first appeared in 9front (July, 2011).

AUTHORS
Some initial trolls were provided by ChrisPBS.

103

FPLOT(1) FPLOT(1)

NAME
fplot � plot elementary function

SYNOPSIS
fplot [−c [−s size]] [−r range] functions ...

DESCRIPTION
Fplot plots elementary functions separated by spaces. The default output is the screen, but if the
−c option is specified, the plot is written to the standard output as an r8g8b8 image(6). The latter
image size is either 640x480 or the one specified by the −s option�s argument (in the WIDTHx
HEIGHT format). The −r option accepts as argument the x and y ranges, in the format
xmin:xmax ymin:ymax. By default fplot draws coordinate axes and tick marks; the −a option
inhibits this.

Each function to be plotted may be a combination of the independent variable x, the elementary
operations (+, -, *, / and %), and the functions described in sin(2) and exp(2). The exception being
that x^n raises x to the nth power, log is the base 10 logarithm, and ln is the natural logarithm.

EXAMPLES
Plot the absolute value and x^3 functions to a 400x400 image(6) on standard output and view with
page(1).

fplot −c −s 400x400 ’abs(x)’ ’x^3’ | page

SOURCE
/sys/src/cmd/fplot.c

SEE ALSO
exp(2), sin(2), image(6), plot(1).

DIAGNOSTICS
Fplot either exits with syntax error or an empty status.

BUGS
There is no unary plus or minus.

Axes are not drawn in −c output.

HISTORY
Fplot first appeared in 9front (July, 2011).

104

FREQ(1) FREQ(1)

NAME
freq � print histogram of character frequencies

SYNOPSIS
freq [−cdorx] [file ...]

DESCRIPTION
Freq reads the given files (default standard input) and prints histograms of the character frequen
cies. By default, freq counts each byte as a character; under the −r option it instead counts UTF

sequences, that is, runes.

Each non-zero entry of the table is printed preceded by the byte value, in decimal, octal, hex, and
Unicode character (if printable). If any options are given, the −d, −x, −o, −c flags specify a sub
set of value formats: decimal, hex, octal, and character, respectively.

SOURCE
/sys/src/cmd/freq.c

SEE ALSO
utf(6), wc(1)

105

FSTYPE(1) FSTYPE(1)

NAME
fstype � determine file system type

SYNOPSIS
fstype file

DESCRIPTION
The file being a partition or file system image, fstype determines the type of a disk file system and
prints it. If the type cannot be determined, then the error status is set.

Known file systems are:

9660 ISO9660 CD-ROM (see dossrv(4))

dos FAT12/FAT16/FAT32 DOS (see dossrv(4))

paqfs compressed paqfs(4)

kfs old Plan 9 disk file system

fs 32-bit and

fs64 64-bit dump file system (see fs(4))

cwfs 32-bit,

cwfs64 64-bit and

cwfs64x long file name cache worm file system (see cwfs(4))

hjfs hj file system (see hjfs(4))

SOURCE
/rc/bin/fstype

106

GALAXY(1) GALAXY(1)

NAME
galaxy, mkgalaxy � galactic n-body simulator

SYNOPSIS
games/galaxy [options] [−i] [file]
games/mkgalaxy [options] [−i] [−f file] size

DESCRIPTION
Galaxy is an n-body simulator that uses a Barnes-Hut quad-tree to calculate gravitational interac
tions. Typical usage is to read a galaxy file (see galaxy(6)) from standard input using the −i
command-line option or from a file using the −f option. If no file is read then the simulator starts
with an empty universe.

Mouse commands
Holding mouse button 1 while dragging repositions the visible region of the galaxy. Holding
mouse button 2 while dragging up or down zooms the visible region of the galaxy in or out,
respectively. Mouse button 3 opens a menu with the following options:

new body
Creates a new galactic body. Holding button 1 positions the body. Holding a button 1-2
chord changes the mass/size of the body. Holding a button 1-3 chord changes the initial
velocity of the body. Releasing button 1 restarts the simulator with the new body in motion.
When new bodies are created, the simulator maintains the Galilean (inertial) reference
frame where the center of mass of the galaxy is at rest.

speed
Prompts for a floating point value to change the speed of the simulation. E.g. a value of 2
will double the speed of the simulation and a value of 0.5 will halve the speed. Accuracy is
sacrificed for greater speed.

gravity
Prompts for a floating point value to change the gravitational constant. E.g. a value of 2 will
double the force exerted by gravity and a value of 0.5 will halve it.

save Prompts for a file name to save the current galaxy as a galaxy(6) file.

load Prompts for a file name to load the galaxy from the galaxy(6) file.

exit Exits the simulator.

Keyboard commands
The following keys are recognized as commands:

a Show accelerations as vectors.

v Show velocities as vectors.

s Show statistics such as the number of bodies being simulated, the maximum depth of the
quad-tree, and the average number of calculations made per body.

q Exit the simulator.

space
Pause and unpause the simulator.

del Exit the simulator.

Command−line options
Certain aspects of the galaxy simulator are controlled by the following options:

−G gravity
Sets the gravitational constant to gravity. The default value is 1.

−f file
Reads the galaxy file file (see galaxy(6)).

−i Reads a galaxy file from standard input.

−p procs
Specifies the number of extra processes to use in order to calculate the gravitational force
on each body in parallel. The default value is $NPROC−1.

107

GALAXY(1) GALAXY(1)

−t throttle
Causes the process that calculates forces to relinquish the processor for throttle millisec
onds after each calculation.

−ε softening
Sets the softening factor to prevent gravitational singularities during collisions or near-
collisions. The default value is 500.

Mkgalaxy
Mkgalaxy is a utility to create galaxies for simulation. Galaxies can be assembled incrementally by
reading an existing galaxy file from standard input with the −i command-line option or from a file
with the −f option. Mkgalaxy then writes to standard output a galaxy(6) file with a galaxy of the
given size together with the previously read galaxy. Galaxies generated by mkgalaxy have charac
teristics determined by the following options:

−d distance
Distance determines the spacing between bodies. The default value is 100.

−s size
Bodies have the given size. The default value is 25.

−v velocity
Bodies have the given velocity in a random direction. The default value is 0.

−av angular velocity
Bodies have the given angular velocity relative to the center of mass of the new galaxy
being generated. The default value is 0.

−gv x,y
The entire galaxy being generated is given the directional velocity determined by the vector
(x,y). The default value is (0, 0).

−o x,y
The entire galaxy being generated is offset by the vector (x,y). The default value is (0, 0).

−sq The galaxy being generated is a square. Without this option, the galaxy will be circular.

The arguments to the −d, −s, −v, and −av arguments have the form s or s±r where s and r are
double-precision floating point numbers. S is the base value and r if given determines a range in
which the value will vary randomly from the base.

EXAMPLES
Two rotating circles destroy each other:

games/mkgalaxy −av 100 −d 60±50 −v 10 2000 |
games/mkgalaxy −i −av −70 −d 80±50 −v 10 −o 6000,2000 −gv −80,40 3000 |
games/galaxy −i

Cool patterns made by a square galaxy:

games/mkgalaxy −sq −av 20 5000 | games/galaxy −i

SOURCE
/sys/src/games/galaxy

SEE ALSO
J. Barnes & P. Hut (December 1986). "A hierarchical O(N log N) force-calculation algorithm".
Nature. 324 (4): 446�449.

galaxy(6)

HISTORY
Galaxy and mkgalaxy first appeared in 9front (Feb, 2017).

108

GAMES(1) GAMES(1)

NAME
4s, 5s, blabs, catclock, doom, festoon, geigerstats, glendy, juggle, life, mandel, mahjongg, memo,
midi, mole, packet, sokoban, sudoku � time wasters

SYNOPSIS
games/4s
games/5s
games/blabs [−i] [−k k−floor] [−n track−length] [−w track−width] [−x gravity−x] [−y
gravity−y]
games/catclock
games/doom
games/festoon [−pet] [sentences [percent−invented−nouns]]
games/geigerstats [−d dev] [−v vol]
games/glendy
games/juggle [−d delay] [−h hands] [start] pattern
games/life [−3] [−o] [−d delay] [−r rules] [−b] startfile
games/mandel
games/mahjongg [−c] [−f] [−b background] [−t tileset] [−l layout]
games/memo [−h]
games/midi [−c] [midifile]
games/mole
games/packet [−n nnode] [−o speed−offset] [−d decay] [−b speed−bonus] [−r regen−
rate] [−t thick−factor] [−T display−threshold]
games/sokoban [level]
games/sudoku

DESCRIPTION
There are a few games in /bin/games:

4s, 5s Try to fill complete rows using 4-square or 5-square tiles. Move tiles left or right
by moving the mouse. Rotate tiles with buttons 1 and 3. Drop tiles for more points
with button 2 or the space bar. Keys a and j move left, s and k rotate left, d and
l rotate right, f and ; move right. z, p and Esc toggle suspend/resume. q, Del
and control−D quit.

doom This is a port of id Software�s DOOM I and II engine. In DOOM, players assume the
role of a space marine, who became popularly known as "Doomguy", fighting their
way through hordes of invading demons from Hell. Game data (WAD-files) for doom
are not part of the distribution, but free WAD-files, like the shareware version, can
be obtained on the net.

festoon Generate an official-looking but utterly nonsensical bureaucratic report as pic |
eqn | tbl | troff −mm input. Options −p, −e and −t add gibberish dia
grams, equations and tables.

glendy Don�t let the rabbit escape.

juggle Display the juggling pattern using the optional initial start pattern. The number of
hands involved (default 2) can be specified with −h, and delay can be used to speed
up or slow down the action (default is 20). Try the pattern 333333441333333 or
333353505151512333333 or YWUSQOMKIGECA (see
http://seehuhn.de/jong/theory.html).

life Play the game of Life, given an initial position. There is a library of interesting ini
tial positions; the library is consulted if startfile cannot be found. The −3 and −o
options select between rules known as 34−life and lineosc, while −o allows specify
ing the rules explicitly as an argument. The −d option allows specifying the delay
in milliseconds between steps, and −b reverses the color scheme.

mahjongg Remove all tiles from the board. Click on tiles with the same face that are not
blocked by others. A blocked tile is one that is partially or fully covered on top or
has neighbouring tiles to the left and right. The game finishes when either all tiles
are gone or there are no more moves left. The arguments are for changing

109

GAMES(1) GAMES(1)

background (−b), tile (−t) and layout (−l) images; -c selects a true-color buffer
image, for use with drawterm or in case selecting a tile obscures it completely; -f
causes mahjongg to indicate non-blocked tiles on mouse-over. The N key will gen
erate a new level, R restarts the current one. Q and Del quit, H gives a hint, either
trying to match the currently selected tile, or if no tile is selected finding out the
first available tile. U and Bksp undo the last move, C tries to solve the level.

memo Remove all tiles from the board. At first, pictures of various Bell Labs employees,
Lucent Technologies� logo, and Glenda will appear. Memorize the sequence, then
click to hide them and begin. Use the mouse to select two tiles. If they are the
same, the tiles will disappear, otherwise the tiles will flip back and you will get a
chance to try again. Button 3 generates a menu allowing you to restart, switch
between easy and hard modes, and exit. The −h option sets the game to hard
mode. Once the game has been completed, a message pops up with how long it
took to win. Use the button 3 menu to choose a mode, or click to play again.

mole A molecular dynamics simulation based on the Lennard-Jones potential. r restarts
the simulation. f redraws the screen. R reverses the simulation. q and Del quit
the simulation.

sokoban Guide Glenda through a room full of walls, pebbles and holes to put the pebbles in.
Your goal is to arrange all pebbles into holes by pushing them around, but you can
only push a pebble if there is no wall or another pebble blocking the way. Arrow
keys move Glenda up-down-left-right. N and P keys switch between the next and
previous levels, R restarts the current level. Del and Q quit. Button 3 invokes a
menu to restart the current level, load different level sets, and en- and disable ani
mation of multi-step moves. Button 2 lets you change between levels. Button 1 lets
you do multi-step moves and pushes, by clicking it on the destination where you
want Glenda to go. Glenda will only move if it can reach the destination. For a
multi-step push the pebble must be next to Glenda, the destination must be on the
same row or column, and there must be a free place next to the destination where
the pebble can be pushed to. Otherwise, if possible, Glenda will walk to the desti
nation without pushing the pebble. Sokoban accepts a level file as its argument.

sudoku Sudoku is a puzzle game from Japan. The goal of the game is to fill the numbers 1
to 9 in all squares of the 9x9 board following a few simple rules: no digit should
repeat on the same row and column, and no digit should repeat in the same 3x3
boxes outlined with thicker lines. The board is initially filled with a partial solution
which can be used for inferring digits for the empty squares. The top row of the
board contains the digits 1 through 9, clicking on one of those digits selects that
number for placement on the board, clicking it again will deselect that digit. Click
ing on an empty square will then affix the square with the selected digit or, if no
digit is selected empty the square.

Button 3 presents a menu with the following options:

New autogenerate a new, random board

Check mark in red any digits not placed according to the rules

Solve present the board�s solution

Clear clear the board to its starting (or last loaded) state

Save save the current board to /tmp/sudoku−save

Load load the last saved board from /tmp/sudoku−save

Print print the current board and solution in a format suitable for addition in
the sudoku library to /tmp/sudoku−board

Offline pretty-print the board for off-line solving to /tmp/sudoku−print

Exit quit the game

Button 2 presents a list of sudoku boards of varying degrees of difficulty from
/sys/games/lib/sudoku/boards.

110

GAMES(1) GAMES(1)

Pressing the Q key quits sudoku.

FILES
/sys/games/lib/[45]scores score files of 4s and 5s
/sys/games/lib/life/* interesting starting positions
/sys/games/lib/mahjongg/* image sprites, levels and backgrounds used by mahjongg
/lib/face/* tiles for memo
/sys/games/lib/sokoban/* image sprites and levels used by sokoban
/sys/games/lib/sudoku/* images and boards used by sudoku
$home/lib/doom/*
/sys/lib/doom/*
/sys/games/lib/doom/* doom WAD-files.

SOURCE
/sys/src/games

BUGS
In 4s and 5s, mouse warping (when the game is resumed, and when a new tile appears) does not
happen when the mouse cursor is outside the game window. Those who prefer to use the key
board without the mouse cursor blocking the view (or being warped all the time) may consider this
a feature.

HISTORY
Doom first appeared in 9front (May, 2011).
Packet first appeared in 9front (August, 2011).

111

GRAP(1) GRAP(1)

NAME
grap � pic preprocessor for drawing graphs

SYNOPSIS
grap [file ...]

DESCRIPTION
Grap is a pic(1) preprocessor for drawing graphs on a typesetter. Graphs are surrounded by the
troff �commands� .G1 and .G2. Data are scaled and plotted, with tick marks supplied automati
cally. Commands exist to modify the frame, add labels, override the default ticks, change the plot
ting style, define coordinate ranges and transformations, and include data from files. In addition,
grap provides the same loops, conditionals, and macro processing that pic does.

frame ht e wid e top dotted ... : Set the frame around the graph to specified ht and wid;
default is 2 by 3 (inches). The line styles (dotted, dashed, invis, solid (default)) of the
sides (top, bot, left, right) of the frame can be set independently.

label side "a label" "as a set of strings" adjust: Place label on specified side;
default side is bottom. adjust is up (or down left right) expr to shift default position;
width expr sets the width explicitly.

ticks side in at optname expr, expr, ... : Put ticks on side at expr, ..., and label with "expr". If
any expr is followed by "...", label tick with "...", and turn off all automatic labels. If "..." contains
%f�s, they will be interpreted as printf formatting instructions for the tick value. Ticks point in
or out (default out). Tick iterator: instead of at ... , use from expr to expr by op expr where op
is optionally +−*/ for additive or multiplicative steps. by can be omitted, to give steps of size 1.
If no ticks are requested, they are supplied automatically; suppress this with ticks off. Auto
matic ticks normally leave a margin of 7% on each side; set this to anything by margin = expr.

grid side linedesc at optname expr, expr, ... : Draw grids perpendicular to side in style linedesc at
expr, Iterators and labels work as with ticks.

coord optname x min, max y min, max log x log y: Set range of coords and optional log
scaling on either or both. This overrides computation of data range. Default value of optname is
current coordinate system (each coord defines a new coordinate system).

plot "str" at point; "str" at point: Put str at point. Text position can be qualified with rjust,
ljust, above, below after "...".

line from point to point linedesc: Draw line from here to there. arrow works in place of
line.

next optname at point linedesc: Continue plot of data in optname to point; default is current.

draw optname linedesc ... : Set mode for next: use this style from now on, and plot "..." at each
point (if given).

new optname linedesc ... : Set mode for next, but disconnect from previous.

A list of numbers x y1 y2 y3 ... is treated as plot bullet at x,y1; plot bullet at x,y2;
etc., or as next at x,y1 etc., if draw is specified. Abscissae of 1,2,3,... are provided if there is
only one input number per line.

A point optname expr, expr maps the point to the named coordinate system. A linedesc is one of
dot dash invis solid optionally followed by an expression.

define name {whatever}: Define a macro. There are macros already defined for standard plot
ting symbols like bullet, circle, star, plus, etc., in /sys/lib/grap.defines, which
is included if it exists.

var = expr: Evaluate an expression. Operators are + − * and /. Functions are log and exp
(both base 10), sin, cos, sqrt; rand returns random number on [0,1); max(e,e),
min(e,e), int(e).

print expr; print "...": As a debugging aid, print expr or string on the standard error.

copy "file name": Include this file right here.

112

GRAP(1) GRAP(1)

copy thru macro: Pass rest of input (until .G2) through macro, treating each field (non-blank,
or "...") as an argument. macro can be the name of a macro previously defined, or the body of one
in place, like /plot $1 at $2,$3/.

copy thru macro until "string": Stop copy when input is string (left-justified).

pic remainder of line: Copy to output with leading blanks removed.

graph Name pic−position: Start a new frame, place it at specified position, e.g., graph Thing2
with .sw at Thing1.se + (0.1,0). Name must be capitalized to keep pic happy.

.anything at beginning of line: Copied verbatim.

sh %anything %: Pass everything between the %�s to the shell; as with macros, % may be any char
acter and anything may include newlines.

anything: A comment, which is discarded.

Order is mostly irrelevant; no category is mandatory. Any arguments on the .G1 line are placed
on the generated .PS line for pic.

EXAMPLES
.G1

frame ht 1 top invis right invis

coord x 0, 10 y 1, 3 log y

ticks left in at 1 "bottommost tick", 2,3 "top tick"

ticks bot in from 0 to 10 by 2

label bot "silly graph"

label left "left side label" "here"

grid left dashed at 2.5

copy thru / circle at $1,$2 /

1 1

2 1.5

3 2

4 1.5

10 3

.G2

bottommost tick

top tick

0 2 4 6 8 10

silly graph

left side label

here

æ

æ

æ

æ

æ

FILES
/sys/lib/grap.defines definitions of standard plotting characters, e.g., bullet

SOURCE
/sys/src/cmd/grap

SEE ALSO
pic(1), troff(1)
J. L. Bentley and B. W. Kernighan, ��GRAP�A Language for Typesetting Graphs��, Unix Research Sys
tem Programmer’s Manual, Tenth Edition, Volume 2.

113

GRAPH(1) GRAPH(1)

NAME
graph � draw a graph

SYNOPSIS
graph [option ...]

DESCRIPTION
Graph with no options takes pairs of numbers from the standard input as abscissas (x-values) and
ordinates (y-values) of a graph. Successive points are connected by straight lines. The graph is
encoded on the standard output for display by plot(1) filters.

If an ordinate is followed by a nonnumeric string, that string is printed as a label beginning on the
point. Labels may be surrounded with quotes " " in which case they may be empty or contain
blanks and numbers; labels never contain newlines.

The following options are recognized, each as a separate argument.

−a Supply abscissas automatically; no x-values appear in the input. Spacing is given by the
next argument (default 1). A second optional argument is the starting point for automatic
abscissas (default 0, or 1 with a log scale in x, or the lower limit given by −x).

−b Break (disconnect) the graph after each label in the input.

−c Character string given by next argument is default label for each point.

−g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default).

−l Next argument is a legend to title the graph. Grid ranges are automatically printed as part
of the title unless a −s option is present.

−m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected. Some
devices give distinguishable line styles for other small integers. Mode �1 (default) begins
with style 1 and rotates styles for successive curves under option −o.

−o (Overlay.) The ordinates for n superposed curves appear in the input with each abscissa
value. The next argument is n.

−p Next argument is one or more of the characters bcgkmrwy, choosing pen colors by their
initial letter, as in plot(6). Successive curves will cycle through the colors in the given order.

−s Save screen; no new page for this graph.

−x l If l is present, x-axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x lim
its. Third argument, if present, is grid spacing on x axis. Normally these quantities are
determined automatically.

−y l Similarly for y.

−e Make automatically determined x and y scales equal.

−h Next argument is fraction of space for height.

−w Similarly for width.

−r Next argument is fraction of space to move right before plotting.

−u Similarly to move up before plotting.

−t Transpose horizontal and vertical axes. (Option −a now applies to the vertical axis.)

If a specified lower limit exceeds the upper limit, the axis is reversed.

SOURCE
/sys/src/cmd/graph

SEE ALSO
plot(1), grap(1)

BUGS
Segments that run out of bounds are dropped, not windowed. Logarithmic axes may not be
reversed. Option −e actually makes automatic limits, rather than automatic scaling, equal.

114

GREP(1) GREP(1)

NAME
grep, g � search a file for a pattern

SYNOPSIS
grep [−bchiLlnsv] [−e] pattern | −f patternfile [file ...]
g [flags] pattern [file ...]

DESCRIPTION
Grep searches the input files (standard input default) for lines that match the pattern, a regular
expression as defined in regexp(6) with the addition of a newline character as an alternative (sub
stitute for |) with lowest precedence. Normally, each line matching the pattern is �selected�, and
each selected line is copied to the standard output. The options are

−c Print only a count of matching lines.
−h Do not print file name tags (headers) with output lines.
−e The following argument is taken as a pattern. This option makes it easy to specify patterns

that might confuse argument parsing, such as −n.
−i Ignore alphabetic case distinctions. The implementation folds into lower case all letters in

the pattern and input before interpretation. Matched lines are printed in their original
form.

−l (ell) Print the names of files with selected lines; don�t print the lines.
−L Print the names of files with no selected lines; the converse of −l.
−n Mark each printed line with its line number counted in its file.
−s Produce no output, but return status.
−v Reverse: print lines that do not match the pattern.
−f The pattern argument is the name of a file containing regular expressions one per line.
−b Don�t buffer the output: write each output line as soon as it is discovered.

Output lines are tagged by file name when there is more than one input file. (To force this tag
ging, include /dev/null as a file name argument.)

Care should be taken when using the shell metacharacters $*[^|()=\ and newline in pattern; it
is safest to enclose the entire expression in single quotes ’ . . .’. An expression starting with �*�

will treat the rest of the expression as literal characters.

G invokes grep with −n (plus aditional flags, if provided) and forces tagging of output lines by file
name. If no files are listed, it recursively searches the current directory for all files matching *.b
*.c *.C *.h *.l *.m *.asm *.cc *.cs *.lx *.cgi *.pl *.py *.tex *.ms
*.java *.xy *.go *.goc *.cpp

The recursive search can be suppressed by passing g the −n flag.

SOURCE
/sys/src/cmd/grep
/rc/bin/g

SEE ALSO
ed(1), awk(1), sed(1), sam(1), regexp(6)

DIAGNOSTICS
Exit status is null if any lines are selected, or non-null when no lines are selected or an error
occurs.

115

GS(1) GS(1)

NAME
gs � Aladdin Ghostscript (PostScript and PDF language interpreter)

SYNOPSIS
gs [options] [files] ...

DESCRIPTION
Ghostscript is a programming language similar to Adobe Systems� PostScript and PDF languages,
which are in turn similar to Forth. Gs reads files in sequence and executes them as Ghostscript
programs. After doing this, it reads further input from the standard input. If the file − is named,
however, it represents the standard input, which is read in order and not after the files on the com
mand line. Each line is interpreted separately. The �quit� command, or end-of-file, exits the inter
preter.

The interpreter recognizes several switches described below, which may appear anywhere in the
command line and apply to all files thereafter.

The −h or −? options give help and list the available devices; the default is plan9, which pro
duces compressed image files suitable for viewing with page(1) (but note that page(1) will invoke
gs automatically; see its manual).

Ghostscript may be built with multiple output devices. Ghostscript normally opens the first one
and directs output to it. To use device xyz as the initial output device, include the switch

−sDEVICE=xyz
in the command line. This switch must precede the first PostScript file and only its first invocation
has any effect. Output devices can also be selected by the word selectdevice in the input lan
guage, or by setting the environment variable GS_DEVICE. The order of precedence for these
alternatives, highest to lowest, is:

selectdevice
(command line)
GS_DEVICE
plan9

Normally, output goes directly to a scratch file. To send the output to a series of files foo1.xyz,
foo2.xyz, etc., use the switch

−sOutputFile=foo%d.xyz
The %d may be any printf (see fprintf(2)) format specification. Each file will receive one page of
output. If the file name begins with a pipe character, the output will be sent as standard input to
the following pipeline. For example,

−sOutputFile=|lp
Specifying the file − will send the files to standard output; this also requires enabling the −q
option.

Initialization files
When looking for the initialization files (gs_*.ps), the files related to fonts, or the file for the
run operator, Ghostscript first looks for the file (if it doesn�t start with a slash) in the current
directory, then in these directories in the following order:

1. Any directories specified by −I switches in the command line (see below);

2. Any directories specified by the GS_LIB environment variable;

3. The directories /sys/lib/ghostscript, /sys/lib/ghostscript/font, and
/sys/lib/postscript/font.

The GS_LIB or −I parameters may be a single directory or a colon-separated list.

Options
−− filename arg1 ...

Take the next argument as a file name as usual, but take all remaining arguments (even if
they have the syntactic form of switches) and define the name ARGUMENTS in userdict (not
systemdict) as an array of those strings, before running the file. When Ghostscript finishes
executing the file, it exits back to the shell.

−Dname=token

116

GS(1) GS(1)

−dname=token
Define a name in systemdict with the given definition. The token must be exactly one
token (as defined by the �token� operator) and must not contain any white space.

−Dname
−dname

Define a name in systemdict with value=null.

−Sname=string
−sname=string

Define a name in systemdict with a given string as value. This is different from −d. For
example, −dname=35 is equivalent to the program fragment

/name 35 def
whereas −sname=35 is equivalent to

/name (35) def

−q Quiet startup: suppress normal startup messages, and also do the equivalent of −dQUIET.

−gnumber1xnumber2
Equivalent to −dDEVICEWIDTH=number1 and −dDEVICEHEIGHT=number2. This is
for the benefit of devices, such as windows, that allow width and height to be specified.

−rnumber
−rnumber1xnumber2

Equivalent to −dDEVICEXRESOLUTION=number1 and −dDEVICEYRESOLUTION=
number2. This is for the benefit of devices, such as printers, that support multiple X and Y
resolutions. If only one number is given, it is used for both X and Y resolutions.

−Idirectories
Adds the designated list of directories at the head of the search path for library files.

Note that gs_init.ps makes systemdict read-only, so the values of names defined with -D/d/S/s
cannot be changed (although, of course, they can be superseded by definitions in userdict or other
dictionaries.)

Special names
−dBATCH

Exit after the last file has been processed. This is equivalent to listing quit.ps at the end of
the list of files.

−dDISKFONTS
Causes individual character outlines to be loaded from the disk the first time they are
encountered. (Normally Ghostscript loads all the character outlines when it loads a font.)
This may allow loading more fonts into RAM, at the expense of slower rendering.

−dNOCACHE
Disables character caching. Only useful for debugging.

−dNOBIND
Disables the �bind� operator. Only useful for debugging.

−dNODISPLAY
Suppresses the normal initialization of the output device. This may be useful when debug
ging.

−dNOPAUSE
Disables the prompt and pause at the end of each page. This may be desirable for applica
tions where another program (e.g. page(1)) is �driving� Ghostscript.

−dSAFER
Disables the deletefile and renamefile operators, and the ability to open files in
any mode other than read-only. This may be desirable for spoolers or other sensitive envi
ronments. Files in the /fd directory may still be opened for writing.

−dWRITESYSTEMDICT
Leaves systemdict writable. This is necessary when running special utility programs such
as font2c and pcharstr, which must bypass normal PostScript access protection.

117

GS(1) GS(1)

−sDEVICE=device
Selects an alternate initial output device, as described above.

−sOutputFile=filename
Selects an alternate output file (or pipe) for the initial output device, as described above.

FILES
/sys/lib/ghostscript/*

Startup-files, utilities, examples, and basic font definitions.

/sys/lib/ghostscript/fonts/*
Additional font definitions.

SOURCE
/sys/src/cmd/gs

SEE ALSO
page(1), ps2pdf(1)
The Ghostscript document files in doc and man subdirectories of the source directory.

BUGS
The treatment of standard input is non-standard.

118

GVIEW(1) GVIEW(1)

NAME
gview � interactive graph viewer

SYNOPSIS
gview [−mp] [−l logfile] [files]

DESCRIPTION
Gview reads polygonal lines or a polygonal line drawing from an ASCII input file (which defaults
to standard input), and views it interactively, with commands to zoom in and out, perform simple
editing operations, and display information about points and polylines. (Multiple input files are
allowed if you want to overlay several line drawings.) The editing commands can change the color
and thickness of the polylines, delete (or undelete) some of them, and optionally rotate and move
them. It is also possible to generate an output file that reflects these changes and is in the same
format as the input.

Since the move and rotate commands are undesirable when just viewing a graph, they are only
enabled if gview is invoked with the −m option.

The −p option plots only the vertices of the polygons.

Clicking on a polyline with button 1 displays the coordinates and a t value that tells how far along
the polyline. (t=0 at the first vertex, t=1 at the first vertex, t=1.5 halfway between the second
and third vertices, etc.) The −l option generates a log file that lists all points selected in this man
ner.

The most important interactive operations are to zoom in by sweeping out a rectangle, or to zoom
out so that everything currently being displayed shrinks to fit in the swept-out rectangle. Other
options on the button 3 menu are unzoom which restores the coordinate system to the default
state where everything fits on the screen, recenter which takes a point and makes it the center of
the window, and square up which makes the horizontal and vertical scale factors equal.

To take a graph of a function where some part is almost linear and see how it deviates from a
straight line, select two points on this part of the graph (i.e., select one with button 1 and then
select the other) and then use the slant command on the button 3 menu. This slants the coordi
nate system so that the line between the two selected points appears horizontal (but vertical still
means positive y). Then the zoom in command can be used to accentuate deviations from horizon
tal. There is also an unslant command that undoes all of this and goes back to an unslanted coor
dinate system.

There is a recolor command on button 3 that lets you select a color and change everything to have
that color, and a similar command on button 2 that only affects the selected polyline. If the input
file uses the Multi(...) feature explained below, either flavor of recolor allows you to type a
digit in lieu of selecting a color.

The thick or thin command on button 2 changes the thickness of the selected polyline and there is
also an undo command for such edits. Finally, button 3 has commands to read a new input file
and display it on top of everything else, restack the drawing order (in case lines of different color
are drawn on top of each other), write everything into an output file, or exit the program.

Each polyline in an input or output file is a space-delimited x y coordinate pair on a line by itself,
and the polyline is a sequence of such vertices followed by a label. The label could be just a blank
line or it could be a string in double quotes, or virtually any text that does not contain spaces and
is on a line by itself. The label at the end of the last polyline is optional. It is not legal to have
two consecutive labels, since that would denote a zero-vertex polyline and each polyline must
have at least one vertex. (One-vertex polylines are useful for scatter plots.) Under the −l option,
a newline causes the selected polyline�s label to appear in the log file (where it could be seen by
invoking tail −f in another window).

If the label after a polyline contains the word Thick or a color name (Red, Pink, Dkred,
Orange, Yellow, Dkyellow, Green, Dkgreen, Cyan, Blue, Ltblue, Magenta,
Violet, Gray, Black, White), whichever color name comes first will be used to color the
polyline. Alternatively, labels can contain Multi followed by single-letter versions of these
names: (R, P, r, O, Y, y, G, g, C, B, b, M, V, A, K, W, each optionally preceded by T). Then
recolor followed by a nonzero digit n selects the nth alternative for each polyline.

119

GVIEW(1) GVIEW(1)

EXAMPLE
To see a graph of the function y=sin(x)/x generate input with an awk script and pipe it into gview:

awk ’BEGIN{for(x=.1;x<500;x+=.1)print x,sin(x)/x}’ | gview

SOURCE
/sys/src/cmd/gview.c

SEE ALSO
awk(1), tail(1)

BUGS
The user interface for the slant command is counter-intuitive. Perhaps it would be better to have a
scheme for sweeping out a parallelogram.

The −p option makes the interactive point selection feature behave strangely, and is unnecessary
since extra blank lines in the input achieve essentially the same effect.

120

GZIP(1) GZIP(1)

NAME
gzip, gunzip, bzip2, bunzip2, compress, uncompress, zip, unzip � compress and expand data

SYNOPSIS
gzip [−cvD[1−9]] [file ...]

gunzip [−ctTvD] [file ...]

bzip2 [−cvD[1−9]] [file ...]

bunzip2 [−cvD] [file ...]

compress [−cv] [file ...]

uncompress [−cv] [file ...]

zip [−avD[1−9]] [−f zipfile] file [...]

unzip [−cistTvD] [−f zipfile] [file ...]

DESCRIPTION
Gzip encodes files with a hybrid Lempel-Ziv 1977 and Huffman compression algorithm known as
deflate. Most of the time, the resulting file is smaller, and will never be much bigger. Output
files are named by taking the last path element of each file argument and appending .gz; if the
resulting name ends with .tar.gz, it is converted to .tgz instead. Gunzip reverses the pro
cess. Its output files are named by taking the last path element of each file argument, converting
.tgz to .tar.gz, and stripping any .gz; the resulting name must be different from the original
name.

Bzip2 and bunzip2 are similar in interface to gzip and gunzip, but use a modified Burrows-Wheeler
block sorting compression algorithm. The default suffix for output files is .bz2, with .tar.bz2
becoming .tbz. Bunzip2 recognizes the extension .tbz2 as a synonym for .tbz.

Compress and uncompress are similar in interface to gzip and gunzip, but use the Lempel-Ziv-
Welch compression algorithm. The default suffix for output files is .Z. Compress is one of the
oldest widespread Unix compression programs.

Zip encodes the named files and places the results into the archive zipfile, or the standard output
if no file is given. Unzip extracts files from an archive created by zip. If no files are named as
arguments, all of files in the archive are extracted. A directory�s name implies all recursively con
tained files and subdirectories. Zip is the de facto standard for compression on Microsoft operat
ing systems.

None of these programs removes the original files. If the process fails, the faulty output files are
removed.

The options are:

−a Automaticialy creates directories as needed, needed for zip files created by broken
implementations which omit directories.

−c Write to standard output rather than creating an output file.

−i Convert all archive file names to lower case.

−s Streaming mode. Looks at the file data adjacent to each compressed file rather than
seeking in the central file directory. This is the mode used by unzip if no zipfile is speci
fied. If −s is given, −T is ignored.

−t List matching files in the archive rather than extracting them.

−T Set the output time to that specified in the archive.

−1 .. −9 Sets the compression level. −1 is tuned for speed, −9 for minimal output size. The best
compromise is −6, the default.

−v Produce more descriptive output. With −t, adds the uncompressed size in bytes and the
modification time to the output. Without −t, prints the names of files on standard error
as they are compressed or decompressed.

−D Produce debugging output.

121

GZIP(1) GZIP(1)

SOURCE
/sys/src/cmd/gzip
/sys/src/cmd/bzip2
/sys/src/cmd/compress

SEE ALSO
tar(1)
"A Technique for High Performance Data Compression", Terry A. Welch, IEEE Computer, vol. 17,
no. 6 (June 1984), pp. 8-19.

BUGS
Unzip can only extract files which are uncompressed or compressed with the deflate compres
sion scheme. Recent zip files fall into this category. Very recent zip files may have tables of con
tents that unzip cannot read. Such files are still readable by invoking unzip with the −s option.

122

HG(1) HG(1)

NAME
hg � Mercurial source code management system

SYNOPSIS
hg [globaloptions] command [commandoptions] [arguments]

DESCRIPTION
The hg command provides a command line interface to the Mercurial system.

COMMAND ELEMENTS
files ...

indicates one or more filename or relative path filenames; see FILE PATTERNS for information
on pattern matching

path
indicates a path on the local machine

revision
indicates a changeset which can be specified as a changeset revision number, a tag, or a
unique substring of the changeset hash value

repository path
either the pathname of a local repository or the URI of a remote repository. There are two avail
able URI protocols, http:// which is fast and the static�http:// protocol which is much slower
but does not require a special server on the web host.

OPTIONS
�R, ��repository

repository root directory or symbolic path name

��cwd
change working directory

�y, ��noninteractive
do not prompt, assume yes for any required answers

�q, ��quiet
suppress output

�v, ��verbose
enable additional output

��config
set/override config option

��debug
enable debugging output

��debugger
start debugger

��encoding
set the charset encoding (default: UTF�8)

��encodingmode
set the charset encoding mode (default: strict)

��lsprof
print improved command execution profile

��traceback
print traceback on exception

��time
time how long the command takes

��profile
print command execution profile

123

HG(1) HG(1)

��version
output version information and exit

�h, ��help
display help and exit

COMMANDS
add [OPTION]... [FILE]...

Schedule files to be version controlled and added to the repository.

The files will be added to the repository at the next commit. To
undo an add before that, see hg revert.

If no names are given, add all files in the repository.

options:
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns
�n, ��dry�run do not perform actions, just print output

addremove [OPTION]... [FILE]...
Add all new files and remove all missing files from the repository.

New files are ignored if they match any of the patterns in .hgignore. As
with add, these changes take effect at the next commit.

Use the �s option to detect renamed files. With a parameter > 0,
this compares every removed file with every added file and records
those similar enough as renames. This option takes a percentage
between 0 (disabled) and 100 (files must be identical) as its
parameter. Detecting renamed files this way can be expensive.

options:
�s, ��similarity guess renamed files by similarity (0<=s<=100)
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns
�n, ��dry�run do not perform actions, just print output

annotate [�r REV] [�f] [�a] [�u] [�d] [�n] [�c] [�l] FILE...
List changes in files, showing the revision id responsible for each line

This command is useful to discover who did a change or when a change took
place.

Without the �a option, annotate will avoid processing files it
detects as binary. With �a, annotate will generate an annotation
anyway, probably with undesirable results.

options:
�r, ��rev annotate the specified revision
�f, ��follow follow file copies and renames
�a, ��text treat all files as text
�u, ��user list the author (long with �v)
�d, ��date list the date (short with �q)
�n, ��number list the revision number (default)
�c, ��changeset list the changeset
�l, ��line�number show line number at the first appearance
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns

aliases: blame

124

HG(1) HG(1)

archive [OPTION]... DEST
By default, the revision used is the parent of the working directory; use "�r" to specify a differ
ent revision.

To specify the type of archive to create, use "�t". Valid
types are:

"files" (default): a directory full of files
"tar": tar archive, uncompressed
"tbz2": tar archive, compressed using bzip2
"tgz": tar archive, compressed using gzip
"uzip": zip archive, uncompressed
"zip": zip archive, compressed using deflate

The exact name of the destination archive or directory is given
using a format string; see "hg help export" for details.

Each member added to an archive file has a directory prefix
prepended. Use "�p" to specify a format string for the prefix.
The default is the basename of the archive, with suffixes removed.

options:
��no�decode do not pass files through decoders
�p, ��prefix directory prefix for files in archive
�r, ��rev revision to distribute
�t, ��type type of distribution to create
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns

backout [OPTION]... [�r] REV
Commit the backed out changes as a new changeset. The new changeset is a child of the
backed out changeset.

If you back out a changeset other than the tip, a new head is
created. This head will be the new tip and you should merge this
backout changeset with another head (current one by default).

The ��merge option remembers the parent of the working directory
before starting the backout, then merges the new head with that
changeset afterwards. This saves you from doing the merge by
hand. The result of this merge is not committed, as for a normal
merge.

See �hg help dates� for a list of formats valid for �d/��date.

options:
��merge merge with old dirstate parent after backout
��parent parent to choose when backing out merge
�r, ��rev revision to backout
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns
�m, ��message use <text> as commit message
�l, ��logfile read commit message from <file>
�d, ��date record datecode as commit date
�u, ��user record user as committer

bisect [�gbsr] [REV]
This command helps to find changesets which introduce problems. To use, mark the earliest
changeset you know exhibits the problem as bad, then mark the latest changeset which is free
from the problem as good. Bisect will update your working directory to a revision for testing.
Once you have performed tests, mark the working directory as bad or good and bisect will

125

HG(1) HG(1)

either update to another candidate changeset or announce that it has found the bad revision.

options:
�r, ��reset reset bisect state
�g, ��good mark changeset good
�b, ��bad mark changeset bad
�s, ��skip skip testing changeset
�U, ��noupdate do not update to target

branch [�f] [NAME]
With no argument, show the current branch name. With one argument, set the working direc
tory branch name (the branch does not exist in the repository until the next commit).

Unless ��force is specified, branch will not let you set a
branch name that shadows an existing branch.

Use the command �hg update� to switch to an existing branch.

options:
�f, ��force set branch name even if it shadows an existing branch

branches [�a]
List the repository�s named branches, indicating which ones are inactive. If active is specified,
only show active branches.

A branch is considered active if it contains repository heads.

Use the command �hg update� to switch to an existing branch.

options:
�a, ��active show only branches that have unmerged heads

bundle [�f] [�a] [�r REV]... [��base REV]... FILE [DEST]
Generate a compressed changegroup file collecting changesets not found in the other reposi
tory.

If no destination repository is specified the destination is
assumed to have all the nodes specified by one or more ��base
parameters. To create a bundle containing all changesets, use
��all (or ��base null).

The bundle file can then be transferred using conventional means and
applied to another repository with the unbundle or pull command.
This is useful when direct push and pull are not available or when
exporting an entire repository is undesirable.

Applying bundles preserves all changeset contents including
permissions, copy/rename information, and revision history.

options:
�f, ��force run even when remote repository is unrelated
�r, ��rev a changeset up to which you would like to bundle
��base a base changeset to specify instead of a destination
�a, ��all bundle all changesets in the repository
�e, ��ssh specify ssh command to use
��remotecmd specify hg command to run on the remote side

cat [OPTION]... FILE...
Print the specified files as they were at the given revision. If no revision is given, the parent of
the working directory is used, or tip if no revision is checked out.

Output may be to a file, in which case the name of the file is

126

HG(1) HG(1)

given using a format string. The formatting rules are the same as
for the export command, with the following additions:

%s basename of file being printed
%d dirname of file being printed, or �.� if in repo root
%p root�relative path name of file being printed

options:
�o, ��output print output to file with formatted name
�r, ��rev print the given revision
��decode apply any matching decode filter
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns

clone [OPTION]... SOURCE [DEST]
Create a copy of an existing repository in a new directory.

If no destination directory name is specified, it defaults to the
basename of the source.

The location of the source is added to the new repository�s

For efficiency, hardlinks are used for cloning whenever the source
and destination are on the same filesystem (note this applies only
to the repository data, not to the checked out files). Some
filesystems, such as AFS, implement hardlinking incorrectly, but
do not report errors. In these cases, use the ��pull option to
avoid hardlinking.

You can safely clone repositories and checked out files using full
hardlinks with

$ cp �al REPO REPOCLONE

which is the fastest way to clone. However, the operation is not
atomic (making sure REPO is not modified during the operation is
up to you) and you have to make sure your editor breaks hardlinks
(Emacs and most Linux Kernel tools do so).

If you use the �r option to clone up to a specific revision, no
subsequent revisions will be present in the cloned repository.
This option implies ��pull, even on local repositories.

If the �U option is used, the new clone will contain only a repository
(.hg) and no working copy (the working copy parent is the null revision).

See pull for valid source format details.

It is possible to specify an ssh:// URL as the destination, but no
Look at the help text for the pull command for important details
about ssh:// URLs.

options:
�U, ��noupdate the clone will only contain a repository (no

working copy)
�r, ��rev a changeset you would like to have after cloning
��pull use pull protocol to copy metadata
��uncompressed use uncompressed transfer (fast over LAN)
�e, ��ssh specify ssh command to use
��remotecmd specify hg command to run on the remote side

127

HG(1) HG(1)

commit [OPTION]... [FILE]...
Commit changes to the given files into the repository.

If a list of files is omitted, all changes reported by "hg status"
will be committed.

If you are committing the result of a merge, do not provide any
file names or �I/�X filters.

If no commit message is specified, the configured editor is started to
enter a message.

See �hg help dates� for a list of formats valid for �d/��date.

options:
�A, ��addremove mark new/missing files as added/removed before

committing
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns
�m, ��message use <text> as commit message
�l, ��logfile read commit message from <file>
�d, ��date record datecode as commit date
�u, ��user record user as committer

aliases: ci

copy [OPTION]... [SOURCE]... DEST
Mark dest as having copies of source files. If dest is a directory, copies are put in that direc
tory. If dest is a file, there can only be one source.

By default, this command copies the contents of files as they
stand in the working directory. If invoked with ��after, the
operation is recorded, but no copying is performed.

This command takes effect in the next commit. To undo a copy
before that, see hg revert.

options:
�A, ��after record a copy that has already occurred
�f, ��force forcibly copy over an existing managed file
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns
�n, ��dry�run do not perform actions, just print output

aliases: cp

diff [OPTION]... [�r REV1 [�r REV2]] [FILE]...
Show differences between revisions for the specified files.

Differences between files are shown using the unified diff format.

NOTE: diff may generate unexpected results for merges, as it will
default to comparing against the working directory�s first parent
changeset if no revisions are specified.

When two revision arguments are given, then changes are shown
between those revisions. If only one revision is specified then
that revision is compared to the working directory, and, when no
revisions are specified, the working directory files are compared
to its parent.

128

HG(1) HG(1)

Without the �a option, diff will avoid generating diffs of files
it detects as binary. With �a, diff will generate a diff anyway,
probably with undesirable results.

options:
�r, ��rev revision
�a, ��text treat all files as text
�p, ��show�function show which function each change is in
�g, ��git use git extended diff format
��nodates don�t include dates in diff headers
�w, ��ignore�all�space ignore white space when comparing lines
�b, ��ignore�space�change ignore changes in the amount of white

space
�B, ��ignore�blank�lines ignore changes whose lines are all

blank
�U, ��unified number of lines of context to show
�I, ��include include names matching the given

patterns
�X, ��exclude exclude names matching the given

patterns

export [OPTION]... [�o OUTFILESPEC] REV...
Print the changeset header and diffs for one or more revisions.

The information shown in the changeset header is: author,
changeset hash, parent(s) and commit comment.

NOTE: export may generate unexpected diff output for merge changesets,
as it will compare the merge changeset against its first parent only.

Output may be to a file, in which case the name of the file is
given using a format string. The formatting rules are as follows:

%% literal "%" character
%H changeset hash (40 bytes of hexadecimal)
%N number of patches being generated
%R changeset revision number
%b basename of the exporting repository
%h short�form changeset hash (12 bytes of hexadecimal)
%n zero�padded sequence number, starting at 1
%r zero�padded changeset revision number

Without the �a option, export will avoid generating diffs of files
it detects as binary. With �a, export will generate a diff anyway,
probably with undesirable results.

With the ��switch�parent option, the diff will be against the second
parent. It can be useful to review a merge.

options:
�o, ��output print output to file with formatted name
�a, ��text treat all files as text
�g, ��git use git extended diff format
��nodates don�t include dates in diff headers
��switch�parent diff against the second parent

grep [OPTION]... PATTERN [FILE]...
Search revisions of files for a regular expression.

This command behaves differently than Unix grep. It only accepts
Python/Perl regexps. It searches repository history, not the

129

HG(1) HG(1)

working directory. It always prints the revision number in which
a match appears.

By default, grep only prints output for the first revision of a
file in which it finds a match. To get it to print every revision
that contains a change in match status ("�" for a match that
becomes a non�match, or "+" for a non�match that becomes a match),
use the ��all flag.

options:
�0, ��print0 end fields with NUL
��all print all revisions that match
�f, ��follow follow changeset history, or file

history across copies and renames
�i, ��ignore�case ignore case when matching
�l, ��files�with�matches print only filenames and revs that match
�n, ��line�number print matching line numbers
�r, ��rev search in given revision range
�u, ��user list the author (long with �v)
�d, ��date list the date (short with �q)
�I, ��include include names matching the given

patterns
�X, ��exclude exclude names matching the given

patterns

heads [�r REV] [REV]...
With no arguments, show all repository head changesets.

If branch or revisions names are given this will show the heads of
the specified branches or the branches those revisions are tagged
with.

Repository "heads" are changesets that don�t have child
changesets. They are where development generally takes place and
are the usual targets for update and merge operations.

Branch heads are changesets that have a given branch tag, but have
no child changesets with that tag. They are usually where
development on the given branch takes place.

options:
�r, ��rev show only heads which are descendants of rev
��style display using template map file
��template display with template

help [COMMAND]
With no arguments, print a list of commands and short help.

Given a command name, print help for that command.

Given an extension name, print help for that extension, and the
commands it provides.

identify [�nibt] [�r REV] [SOURCE]
With no revision, print a summary of the current state of the repo.

With a path, do a lookup in another repository.

This summary identifies the repository state using one or two parent
hash identifiers, followed by a "+" if there are uncommitted changes
in the working directory, a list of tags for this revision and a branch

130

HG(1) HG(1)

name for non�default branches.

options:
�r, ��rev identify the specified rev
�n, ��num show local revision number
�i, ��id show global revision id
�b, ��branch show branch
�t, ��tags show tags

aliases: id

import [OPTION]... PATCH...
Import a list of patches and commit them individually.

If there are outstanding changes in the working directory, import
will abort unless given the �f flag.

You can import a patch straight from a mail message. Even patches
as attachments work (body part must be type text/plain or
text/x�patch to be used). From and Subject headers of email
message are used as default committer and commit message. All
text/plain body parts before first diff are added to commit
message.

If the imported patch was generated by hg export, user and description
from patch override values from message headers and body. Values
given on command line with �m and �u override these.

If ��exact is specified, import will set the working directory
to the parent of each patch before applying it, and will abort
if the resulting changeset has a different ID than the one
recorded in the patch. This may happen due to character set
problems or other deficiencies in the text patch format.

To read a patch from standard input, use patch name "�".
See �hg help dates� for a list of formats valid for �d/��date.

options:
�p, ��strip directory strip option for patch. This has the

same meaning as the corresponding patch option
(default: 1)

�b, ��base base path
�f, ��force skip check for outstanding uncommitted changes
��no�commit don�t commit, just update the working directory
��exact apply patch to the nodes from which it was

generated
��import�branch Use any branch information in patch (implied by

��exact)
�m, ��message use <text> as commit message
�l, ��logfile read commit message from <file>
�d, ��date record datecode as commit date
�u, ��user record user as committer

aliases: patch

incoming [�p] [�n] [�M] [�f] [�r REV]... [��bundle FILENAME] [SOURCE]
Show new changesets found in the specified path/URL or the default pull location. These are
the changesets that would be pulled if a pull was requested.

For remote repository, using ��bundle avoids downloading the changesets
twice if the incoming is followed by a pull.

131

HG(1) HG(1)

See pull for valid source format details.

options:
�f, ��force run even when remote repository is unrelated
�n, ��newest�first show newest record first
��bundle file to store the bundles into
�r, ��rev a specific revision up to which you would like

to pull
�p, ��patch show patch
�l, ��limit limit number of changes displayed
�M, ��no�merges do not show merges
��style display using template map file
��template display with template
�e, ��ssh specify ssh command to use
��remotecmd specify hg command to run on the remote side

aliases: in

init [�e CMD] [��remotecmd CMD] [DEST]
Initialize a new repository in the given directory. If the given directory does not exist, it is cre
ated.

If no directory is given, the current directory is used.

It is possible to specify an ssh:// URL as the destination.
Look at the help text for the pull command for important details
about ssh:// URLs.

options:
�e, ��ssh specify ssh command to use
��remotecmd specify hg command to run on the remote side

locate [OPTION]... [PATTERN]...
Print all files under Mercurial control whose names match the given patterns.

This command searches the entire repository by default. To search
just the current directory and its subdirectories, use
"��include .".

If no patterns are given to match, this command prints all file
names.

If you want to feed the output of this command into the "xargs"
command, use the "�0" option to both this command and "xargs".
This will avoid the problem of "xargs" treating single filenames
that contain white space as multiple filenames.

options:
�r, ��rev search the repository as it stood at rev
�0, ��print0 end filenames with NUL, for use with xargs
�f, ��fullpath print complete paths from the filesystem root
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns

log [OPTION]... [FILE]
Print the revision history of the specified files or the entire project.

File history is shown without following rename or copy history of
files. Use �f/��follow with a file name to follow history across
renames and copies. ��follow without a file name will only show
ancestors or descendants of the starting revision. ��follow�first

132

HG(1) HG(1)

only follows the first parent of merge revisions.

If no revision range is specified, the default is tip:0 unless
��follow is set, in which case the working directory parent is
used as the starting revision.

See �hg help dates� for a list of formats valid for �d/��date.

By default this command outputs: changeset id and hash, tags,
non�trivial parents, user, date and time, and a summary for each
commit. When the �v/��verbose switch is used, the list of changed
files and full commit message is shown.

NOTE: log �p may generate unexpected diff output for merge
changesets, as it will compare the merge changeset against its
first parent only. Also, the files: list will only reflect files
that are different from BOTH parents.

options:
�f, ��follow follow changeset history, or file history

across copies and renames
��follow�first only follow the first parent of merge

changesets
�d, ��date show revs matching date spec
�C, ��copies show copied files
�k, ��keyword do case�insensitive search for a keyword
�r, ��rev show the specified revision or range
��removed include revs where files were removed
�m, ��only�merges show only merges
�b, ��only�branch show only changesets within the given named

branch
�P, ��prune do not display revision or any of its ancestors
�p, ��patch show patch
�l, ��limit limit number of changes displayed
�M, ��no�merges do not show merges
��style display using template map file
��template display with template
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns

aliases: history

manifest [�r REV]
Print a list of version controlled files for the given revision. If no revision is given, the parent of
the working directory is used, or tip if no revision is checked out.

The manifest is the list of files being version controlled. If no revision
is given then the first parent of the working directory is used.

With �v flag, print file permissions, symlink and executable bits. With
��debug flag, print file revision hashes.

options:
�r, ��rev revision to display

merge [�f] [[�r] REV]
Merge the contents of the current working directory and the requested revision. Files that
changed between either parent are marked as changed for the next commit and a commit
must be performed before any further updates are allowed.

If no revision is specified, the working directory�s parent is a

133

HG(1) HG(1)

head revision, and the repository contains exactly one other head,
the other head is merged with by default. Otherwise, an explicit
revision to merge with must be provided.

options:
�f, ��force force a merge with outstanding changes
�r, ��rev revision to merge

outgoing [�M] [�p] [�n] [�f] [�r REV]... [DEST]
Show changesets not found in the specified destination repository or the default push location.
These are the changesets that would be pushed if a push was requested.

See pull for valid destination format details.

options:
�f, ��force run even when remote repository is unrelated
�r, ��rev a specific revision up to which you would like

to push
�n, ��newest�first show newest record first
�p, ��patch show patch
�l, ��limit limit number of changes displayed
�M, ��no�merges do not show merges
��style display using template map file
��template display with template
�e, ��ssh specify ssh command to use
��remotecmd specify hg command to run on the remote side

aliases: out

parents [�r REV] [FILE]
Print the working directory�s parent revisions. If a revision is given via ��rev, the parent of that
revision will be printed. If a file argument is given, revision in which the file was last changed
(before the working directory revision or the argument to ��rev if given) is printed.

options:
�r, ��rev show parents from the specified rev
��style display using template map file
��template display with template

paths [NAME]
Show definition of symbolic path name NAME. If no name is given, show definition of available
names.

Path names are defined in the [paths] section of /etc/mercurial/hgrc
and $HOME/.hgrc. If run inside a repository, .hg/hgrc is used, too.

pull [�u] [�f] [�r REV]... [�e CMD] [��remotecmd CMD] [SOURCE]
Pull changes from a remote repository to a local one.

This finds all changes from the repository at the specified path
or URL and adds them to the local repository. By default, this
does not update the copy of the project in the working directory.

Valid URLs are of the form:

local/filesystem/path (or file://local/filesystem/path)
http://[user@]host[:port]/[path]
https://[user@]host[:port]/[path]
ssh://[user@]host[:port]/[path]
static�http://host[:port]/[path]

Paths in the local filesystem can either point to Mercurial

134

HG(1) HG(1)

repositories or to bundle files (as created by �hg bundle� or
�hg incoming ��bundle�). The static�http:// protocol, albeit slow,
allows access to a Mercurial repository where you simply use a web
server to publish the .hg directory as static content.

An optional identifier after # indicates a particular branch, tag,
or changeset to pull.

Some notes about using SSH with Mercurial:
� SSH requires an accessible shell account on the destination machine

and a copy of hg in the remote path or specified with as remotecmd.
� path is relative to the remote user�s home directory by default.

Use an extra slash at the start of a path to specify an absolute path:
ssh://example.com//tmp/repository

� Mercurial doesn�t use its own compression via SSH; the right thing
to do is to configure it in your ~/.ssh/config, e.g.:

Host *.mylocalnetwork.example.com
Compression no

Host *
Compression yes

Alternatively specify "ssh �C" as your ssh command in your hgrc or
with the ��ssh command line option.

options:
�u, ��update update to new tip if changesets were pulled
�f, ��force run even when remote repository is unrelated
�r, ��rev a specific revision up to which you would like to

pull
�e, ��ssh specify ssh command to use
��remotecmd specify hg command to run on the remote side

push [�f] [�r REV]... [�e CMD] [��remotecmd CMD] [DEST]
Push changes from the local repository to the given destination.

This is the symmetrical operation for pull. It helps to move
changes from the current repository to a different one. If the
destination is local this is identical to a pull in that directory
from the current one.

By default, push will refuse to run if it detects the result would
increase the number of remote heads. This generally indicates
the client has forgotten to pull and merge before pushing.

Valid URLs are of the form:

local/filesystem/path (or file://local/filesystem/path)
ssh://[user@]host[:port]/[path]
http://[user@]host[:port]/[path]
https://[user@]host[:port]/[path]

An optional identifier after # indicates a particular branch, tag,
or changeset to push. If �r is used, the named changeset and all its
ancestors will be pushed to the remote repository.

Look at the help text for the pull command for important details
about ssh:// URLs.

Pushing to http:// and https:// URLs is only possible, if this
feature is explicitly enabled on the remote Mercurial server.

135

HG(1) HG(1)

options:
�f, ��force force push
�r, ��rev a specific revision up to which you would like to

push
�e, ��ssh specify ssh command to use
��remotecmd specify hg command to run on the remote side

recover
Recover from an interrupted commit or pull.

This command tries to fix the repository status after an interrupted
operation. It should only be necessary when Mercurial suggests it.

remove [OPTION]... FILE...
Schedule the indicated files for removal from the repository.

This only removes files from the current branch, not from the entire
project history. �A can be used to remove only files that have already
been deleted, �f can be used to force deletion, and �Af can be used
to remove files from the next revision without deleting them.

The following table details the behavior of remove for different file
states (columns) and option combinations (rows). The file states are
Added, Clean, Modified and Missing (as reported by hg status). The
actions are Warn, Remove (from branch) and Delete (from disk).

A C M !
none W RD W R
�f R RD RD R
�A W W W R
�Af R R R R

This command schedules the files to be removed at the next commit.
To undo a remove before that, see hg revert.

options:
�A, ��after record delete for missing files
�f, ��force remove (and delete) file even if added or modified
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns

aliases: rm

rename [OPTION]... SOURCE... DEST
Mark dest as copies of sources; mark sources for deletion. If dest is a directory, copies are put
in that directory. If dest is a file, there can only be one source.

By default, this command copies the contents of files as they
stand in the working directory. If invoked with ��after, the
operation is recorded, but no copying is performed.

This command takes effect in the next commit. To undo a rename
before that, see hg revert.

options:
�A, ��after record a rename that has already occurred
�f, ��force forcibly copy over an existing managed file
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns
�n, ��dry�run do not perform actions, just print output

136

HG(1) HG(1)

aliases: mv

revert [OPTION]... [�r REV] [NAME]...
(use update �r to check out earlier revisions, revert does not change the working dir parents)

With no revision specified, revert the named files or directories
to the contents they had in the parent of the working directory.
This restores the contents of the affected files to an unmodified
state and unschedules adds, removes, copies, and renames. If the
working directory has two parents, you must explicitly specify the
revision to revert to.

Using the �r option, revert the given files or directories to their
contents as of a specific revision. This can be helpful to "roll
back" some or all of an earlier change.
See �hg help dates� for a list of formats valid for �d/��date.

Revert modifies the working directory. It does not commit any
changes, or change the parent of the working directory. If you
revert to a revision other than the parent of the working
directory, the reverted files will thus appear modified
afterwards.

If a file has been deleted, it is restored. If the executable
mode of a file was changed, it is reset.

If names are given, all files matching the names are reverted.
If no arguments are given, no files are reverted.

Modified files are saved with a .orig suffix before reverting.
To disable these backups, use ��no�backup.

options:
�a, ��all revert all changes when no arguments given
�d, ��date tipmost revision matching date
�r, ��rev revision to revert to
��no�backup do not save backup copies of files
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns
�n, ��dry�run do not perform actions, just print output

rollback
This command should be used with care. There is only one level of rollback, and there is no
way to undo a rollback. It will also restore the dirstate at the time of the last transaction, losing
any dirstate changes since that time.

Transactions are used to encapsulate the effects of all commands
that create new changesets or propagate existing changesets into a
repository. For example, the following commands are transactional,
and their effects can be rolled back:

commit
import
pull
push (with this repository as destination)
unbundle

This command is not intended for use on public repositories. Once
changes are visible for pull by other users, rolling a transaction
back locally is ineffective (someone else may already have pulled
the changes). Furthermore, a race is possible with readers of the

137

HG(1) HG(1)

repository; for example an in�progress pull from the repository
may fail if a rollback is performed.

root
Print the root directory of the current repository.

serve [OPTION]...
Start a local HTTP repository browser and pull server.

By default, the server logs accesses to stdout and errors to
stderr. Use the "�A" and "�E" options to log to files.

options:
�A, ��accesslog name of access log file to write to
�d, ��daemon run server in background
��daemon�pipefds used internally by daemon mode
�E, ��errorlog name of error log file to write to
�p, ��port port to listen on (default: 8000)
�a, ��address address to listen on (default: all interfaces)
��prefix prefix path to serve from (default: server root)
�n, ��name name to show in web pages (default: working dir)
��webdir�conf name of the webdir config file (serve more than

one repo)
��pid�file name of file to write process ID to
��stdio for remote clients
�t, ��templates web templates to use
��style template style to use
�6, ��ipv6 use IPv6 in addition to IPv4
��certificate SSL certificate file

showconfig [�u] [NAME]...
With no args, print names and values of all config items.

With one arg of the form section.name, print just the value of
that config item.

With multiple args, print names and values of all config items
with matching section names.

options:
�u, ��untrusted show untrusted configuration options

aliases: debugconfig

status [OPTION]... [FILE]...
Show status of files in the repository. If names are given, only files that match are shown. Files
that are clean or ignored or source of a copy/move operation, are not listed unless �c (clean),
�i (ignored), �C (copies) or �A is given. Unless options described with "show only ..." are given,
the options �mardu are used.

Option �q/��quiet hides untracked (unknown and ignored) files
unless explicitly requested with �u/��unknown or �i/�ignored.

NOTE: status may appear to disagree with diff if permissions have
changed or a merge has occurred. The standard diff format does not
report permission changes and diff only reports changes relative
to one merge parent.

If one revision is given, it is used as the base revision.
If two revisions are given, the difference between them is shown.

The codes used to show the status of files are:

138

HG(1) HG(1)

M = modified
A = added
R = removed
C = clean
! = deleted, but still tracked
? = not tracked
I = ignored

= the previous added file was copied from here

options:
�A, ��all show status of all files
�m, ��modified show only modified files
�a, ��added show only added files
�r, ��removed show only removed files
�d, ��deleted show only deleted (but tracked) files
�c, ��clean show only files without changes
�u, ��unknown show only unknown (not tracked) files
�i, ��ignored show only ignored files
�n, ��no�status hide status prefix
�C, ��copies show source of copied files
�0, ��print0 end filenames with NUL, for use with xargs
��rev show difference from revision
�I, ��include include names matching the given patterns
�X, ��exclude exclude names matching the given patterns

aliases: st

tag [�l] [�m TEXT] [�d DATE] [�u USER] [�r REV] NAME...
Name a particular revision using <name>.

Tags are used to name particular revisions of the repository and are
very useful to compare different revisions, to go back to significant
earlier versions or to mark branch points as releases, etc.

If no revision is given, the parent of the working directory is used,
or tip if no revision is checked out.

To facilitate version control, distribution, and merging of tags,
they are stored as a file named ".hgtags" which is managed
similarly to other project files and can be hand�edited if
necessary. The file �.hg/localtags� is used for local tags (not
shared among repositories).

See �hg help dates� for a list of formats valid for �d/��date.

options:
�f, ��force replace existing tag
�l, ��local make the tag local
�r, ��rev revision to tag
��remove remove a tag
�m, ��message use <text> as commit message
�d, ��date record datecode as commit date
�u, ��user record user as committer

tags
List the repository tags.

This lists both regular and local tags. When the �v/��verbose switch
is used, a third column "local" is printed for local tags.

139

HG(1) HG(1)

tip [�p]
The tip revision (usually just called the tip) is the most recently added changeset in the reposi
tory, the most recently changed head.

If you have just made a commit, that commit will be the tip. If
you have just pulled changes from another repository, the tip of
that repository becomes the current tip. The "tip" tag is special
and cannot be renamed or assigned to a different changeset.

options:
�p, ��patch show patch
��style display using template map file
��template display with template

unbundle [�u] FILE...
Apply one or more compressed changegroup files generated by the bundle command.

options:
�u, ��update update to new tip if changesets were unbundled

update [�C] [�d DATE] [[�r] REV]
Update the working directory to the specified revision, or the tip of the current branch if none
is specified.

If the requested revision is a descendant of the working
directory, any outstanding changes in the working directory will
be merged into the result. If it is not directly descended but is
on the same named branch, update aborts with a suggestion to use
merge or update �C instead.

If the requested revision is on a different named branch and the
working directory is clean, update quietly switches branches.

If you want to update just one file to an older revision, use revert.

See �hg help dates� for a list of formats valid for ��date.

options:
�C, ��clean overwrite locally modified files
�d, ��date tipmost revision matching date
�r, ��rev revision

aliases: up checkout co

verify
Verify the integrity of the current repository.

This will perform an extensive check of the repository�s
integrity, validating the hashes and checksums of each entry in
the changelog, manifest, and tracked files, as well as the
integrity of their crosslinks and indices.

version
output version and copyright information

DATE FORMATS
Some commands allow the user to specify a date:
backout, commit, import, tag: Specify the commit date.
log, revert, update: Select revision(s) by date.

Many date formats are valid. Here are some examples:

140

HG(1) HG(1)

"Wed Dec 6 13:18:29 2006" (local timezone assumed)
"Dec 6 13:18 �0600" (year assumed, time offset provided)
"Dec 6 13:18 UTC" (UTC and GMT are aliases for +0000)
"Dec 6" (midnight)
"13:18" (today assumed)
"3:39" (3:39AM assumed)
"3:39pm" (15:39)
"2006�12�6 13:18:29" (ISO 8601 format)
"2006�12�6 13:18"
"2006�12�6"
"12�6"
"12/6"
"12/6/6" (Dec 6 2006)

Lastly, there is Mercurial�s internal format:

"1165432709 0" (Wed Dec 6 13:18:29 2006 UTC)

This is the internal representation format for dates. unixtime is
the number of seconds since the epoch (1970�01�01 00:00 UTC). offset
is the offset of the local timezone, in seconds west of UTC (negative
if the timezone is east of UTC).

The log command also accepts date ranges:

"<{date}" � on or before a given date
">{date}" � on or after a given date
"{date} to {date}" � a date range, inclusive
"�{days}" � within a given number of days of today

FILE PATTERNS
Mercurial accepts several notations for identifying one or more
files at a time.

By default, Mercurial treats filenames as shell�style extended
glob patterns.

Alternate pattern notations must be specified explicitly.

To use a plain path name without any pattern matching, start a
name with "path:". These path names must match completely, from
the root of the current repository.

To use an extended glob, start a name with "glob:". Globs are
rooted at the current directory; a glob such as "*.c" will match
files ending in ".c" in the current directory only.

The supported glob syntax extensions are "**" to match any string
across path separators, and "{a,b}" to mean "a or b".

To use a Perl/Python regular expression, start a name with "re:".
Regexp pattern matching is anchored at the root of the repository.

Plain examples:

path:foo/bar a name bar in a directory named foo in the root of
the repository

path:path:name a file or directory named "path:name"

Glob examples:

141

HG(1) HG(1)

glob:*.c any name ending in ".c" in the current directory
*.c any name ending in ".c" in the current directory
**.c any name ending in ".c" in the current directory, or

any subdirectory
foo/*.c any name ending in ".c" in the directory foo
foo/**.c any name ending in ".c" in the directory foo, or any

subdirectory

Regexp examples:

re:.*\.c$ any name ending in ".c", anywhere in the repository

ENVIRONMENT VARIABLES
HG

Path to the hg executable, automatically passed when running hooks, extensions or external
tools. If unset or empty, an executable named hg (with com/exe/bat/cmd extension on Win
dows) is searched.

HGEDITOR
This is the name of the editor to use when committing. See EDITOR.

(deprecated, use .hgrc)

HGENCODING
This overrides the default locale setting detected by Mercurial. This setting is used to convert
data including usernames, changeset descriptions, tag names, and branches. This setting can
be overridden with the ��encoding command�line option.

HGENCODINGMODE
This sets Mercurial�s behavior for handling unknown characters while transcoding user inputs.
The default is "strict", which causes Mercurial to abort if it can�t translate a character. Other
settings include "replace", which replaces unknown characters, and "ignore", which drops
them. This setting can be overridden with the ��encodingmode command�line option.

HGMERGE
An executable to use for resolving merge conflicts. The program will be executed with three
arguments: local file, remote file, ancestor file.

(deprecated, use .hgrc)

HGRCPATH
A list of files or directories to search for hgrc files. Item separator is ":" on Unix, ";" on Win
dows. If HGRCPATH is not set, platform default search path is used. If empty, only .hg/hgrc of
current repository is read.

For each element in path, if a directory, all entries in directory
ending with ".rc" are added to path. Else, element itself is
added to path.

HGUSER
This is the string used for the author of a commit.

(deprecated, use .hgrc)

EMAIL
If HGUSER is not set, this will be used as the author for a commit.

LOGNAME
If neither HGUSER nor EMAIL is set, LOGNAME will be used (with @hostname appended) as the
author value for a commit.

VISUAL
This is the name of the editor to use when committing. See EDITOR.

EDITOR
Sometimes Mercurial needs to open a text file in an editor for a user to modify, for example

142

HG(1) HG(1)

when writing commit messages. The editor it uses is determined by looking at the environ
ment variables HGEDITOR, VISUAL and EDITOR, in that order. The first non�empty one is cho
sen. If all of them are empty, the editor defaults to vi.

PYTHONPATH
This is used by Python to find imported modules and may need to be set appropriately if Mer
curial is not installed system�wide.

SPECIFYING SINGLE REVISIONS
Mercurial accepts several notations for identifying individual
revisions.

A plain integer is treated as a revision number. Negative
integers are treated as offsets from the tip, with �1 denoting the
tip.

A 40�digit hexadecimal string is treated as a unique revision
identifier.

A hexadecimal string less than 40 characters long is treated as a
unique revision identifier, and referred to as a short�form
identifier. A short�form identifier is only valid if it is the
prefix of one full�length identifier.

Any other string is treated as a tag name, which is a symbolic
name associated with a revision identifier. Tag names may not
contain the ":" character.

The reserved name "tip" is a special tag that always identifies
the most recent revision.

The reserved name "null" indicates the null revision. This is the
revision of an empty repository, and the parent of revision 0.

The reserved name "." indicates the working directory parent. If
no working directory is checked out, it is equivalent to null.
If an uncommitted merge is in progress, "." is the revision of
the first parent.

SPECIFYING MULTIPLE REVISIONS
When Mercurial accepts more than one revision, they may be
specified individually, or provided as a continuous range,
separated by the ":" character.

The syntax of range notation is [BEGIN]:[END], where BEGIN and END
are revision identifiers. Both BEGIN and END are optional. If
BEGIN is not specified, it defaults to revision number 0. If END
is not specified, it defaults to the tip. The range ":" thus
means "all revisions".

If BEGIN is greater than END, revisions are treated in reverse
order.

A range acts as a closed interval. This means that a range of 3:5
gives 3, 4 and 5. Similarly, a range of 4:2 gives 4, 3, and 2.

FILES
This file contains regular expressions (one per line) that describe file names that should be
ignored by hg. For details, see hgignore(5).

This file contains changeset hash values and text tag names (one of each separated by spaces)
that correspond to tagged versions of the repository contents.

143

HG(1) HG(1)

/etc/mercurial/hgrc, $HOME/.hgrc, .hg/hgrc
This file contains defaults and configuration. Values in .hg/hgrc override those in
$HOME/.hgrc, and these override settings made in the global /etc/mercurial/hgrc configura
tion. See hgrc(5) for details of the contents and format of these files.

Some commands (e.g. revert) produce backup files ending in .orig, if the .orig file already exists
and is not tracked by Mercurial, it will be overwritten.

BUGS
Probably lots, please post them to the mailing list (See Resources below) when you find them.

SEE ALSO
hgignore(8), hgrc(8).

AUTHOR
Written by Matt Mackall <mpm@selenic.com>

RESOURCES
Main Web Site[1]

Source code repository[2]

Mailing list[3]

COPYING
Copyright (C) 2005�2007 Matt Mackall. Free use of this software is granted under the terms of the
GNU General Public License (GPL).

NOTES
1. Main Web Site

http://selenic.com/mercurial

2. Source code repository
http://selenic.com/hg

3. Mailing list
http://selenic.com/mailman/listinfo/mercurial

144

HGET(1) HGET(1)

NAME
hget, hpost, webpaste, urlencode � retrieve, post to a web page corresponding to a url

SYNOPSIS
hget [−l | −o file] [−p body | −P] [−r header] [−m method] [−b baseurl] url

hpost [−l] [−g action | −p action | −m action] [−r header] [−u] url [name:value |
name@file] ...

webpaste [file]

urlencode [−d] [file]

DESCRIPTION
Hget retrieves the web page specified by the URL url and writes it, absent the −l and −o options,
to standard output.

The url can be a relative path like ../index.html if a absolute baseurl was specified with the
−b option.

If url is of type HTTP and the −p or −P options are specified, then a HTTP POST is performed.
With −p the data to be posted is provided by the body argument as a string or alternatively with
−P read from standard input.

The −l option causes hget and hpost to print the location URL from the transaction response
instead of retrieving the body data. This is useful for HTTP POST transactions that redirect to a URL
containing the posted data so we wont refetch the data we just uploaded to the site.

The −o option is used to keep a local file in sync with a web page. If the web page has been modi
fied later than the file, it is copied into the file. If the file is up to date but incomplete, hget will
fetch the missing bytes.

Option −r sends an arbitrary HTTP header. The −r flag can be repeated to send multiple headers.

Option −m overrides the HTTP method used for the request.

Hpost retrieves the web page specified by the URL url, parses its HTML for form data, then prints
rc(1) commands to submit the forms with default field values. If an action URL is provided with
the −g, −p or −m flags, then hget is invoked to execute the transaction submitting the form data.

The −g and −p flags set the form method to GET and POST, respectively. The −m flag sets the
form method to POST and its enctype to multipart/form−data. In all cases, the target rela
tive form action URL is set to action.

The −u flag sets the target URL to url. As the url parameter is always required, the −u flag can be
omitted when url follows directly after the last option if any.

The remaining arguments of the form name:value are interpreted as text form field names and
values to be submitted. An argument of the form name@file is interpreted as a file upload, with
the information following the @ symbol treated as the file name. For multipart/form−data
uploads (see −m flag), the file has to be seekable as file(1) is invoked to determine its mime type.

Webpaste uploads the contents either of its standard input or file to the pastebin website
http://okturing.com and then prints a URL where the contents may be retrieved.

Urlencode is a helper program to URL encode and decode files. The −d flag, instead of encode,
decodes URL encoded file. If no file is given, standard input is read. The resulting data is written to
standard output.

EXAMPLES
Download a file from the web.

% hget http://9front.org/img/nix−on.jpg >/tmp/nix−on.jpg

Retrieve the commands needed to submit a form, which may then be edited and sent.

% hpost http://p.intma.in
hpost −u http://p.intma.in −p paste.cgi text:

Manually specify fields to be sent to a given url.

145

HGET(1) HGET(1)

% hpost −u http://p.intma.in −p paste.cgi text:’test post’

Upload a file, print the resulting URL

% hpost −l http://i.intma.in file@/tmp/screen.png | rc

Upload the output of ns(1) to http://okturing.com

% ns | webpaste

SOURCE
/rc/bin/hget
/rc/bin/hpost
/rc/bin/webpaste
/sys/src/cmd/urlencode.c

SEE ALSO
webfs(4), ftpfs(4), file(1)

DIAGNOSTICS
Hget, hpost and webpaste require webfs(4) service mounted on /mnt/web to work.

HISTORY
Hget first appeared in Plan 9 from Bell Labs. It was rewritten as an rc script for 9front (January,
2012). Hpost and urlencode first appeared in 9front (October, 2012). Webpaste first appeared in
9front (September, 2013).

146

HISTORY(1) HISTORY(1)

NAME
history � print file names from the dump

SYNOPSIS
history [−Dabcemnw] [−fuv] [−d dumpfilesystem] [−s yyyymmdd] files ...

DESCRIPTION
History prints the names, dates, and sizes, and modifier of all versions of the named files, looking
backwards in time, stored in the dump file system. If the file exists in the main tree, the first line
of output will be its current state. For example,

history /adm/users

produces

May 14 15:29:18 EDT 2001 /adm/users 10083 [adm]
May 14 15:29:18 EDT 2001 /n/dump/2001/0515/adm/users 10083 [adm]
May 11 17:26:24 EDT 2001 /n/dump/2001/0514/adm/users 10481 [adm]
May 10 16:40:51 EDT 2001 /n/dump/2001/0511/adm/users 10476 [adm]

...

When presented with a path of the form /n/fs/path, history will use fsdump as the name of the
dump file system, and will print a history of path.

The −v option enables verbose debugging printout.

The −D option causes diff(1) to be run for each adjacent pair of dump files. The options
−abcemnw are passed through to diff; the little-used diff option −f is replaced by the functional
ity described below, and the −r option is disallowed.

The −u option causes times to be printed in GMT (UT) rather than local time.

The −d option selects some other dump file system such as /n/bootesdump.

The −f option forces the search to continue even when the file in question does not exist (useful
for files that only exist intermittently).

Finally, the −s option sets the starting (most recent) date for the output.

EXAMPLES
Check how often a user has been logged in.

history /usr/ches/tmp

FILES
/n/dump

SOURCE
/sys/src/cmd/history.c

SEE ALSO
fs(4)
yesterday (1)

147

HOC(1) HOC(1)

NAME
hoc � interactive floating point language

SYNOPSIS
hoc [−e expression] [file ...]

DESCRIPTION
Hoc interprets a simple language for floating point arithmetic, at about the level of BASIC, with C-
like syntax and functions.

The named files are read and interpreted in order. If no file is given or if file is − hoc interprets the
standard input. The −e option allows input to hoc to be specified on the command line, to be
treated as if it appeared in a file.

Hoc input consists of expressions and statements. Expressions are evaluated and their results
printed. Statements, typically assignments and function or procedure definitions, produce no out
put unless they explicitly call print.

Variable names have the usual syntax, including _; the name _ by itself contains the value of the
last expression evaluated. The variables E, PI, PHI, GAMMA and DEG are predefined; the last is
59.25..., degrees per radian.

Expressions are formed with these C-like operators, listed by decreasing precedence.

^ exponentiation

! − ++ −−

* / %

+ −

> >= < <= == !=

&&

||

= += −= *= /= %=

Built in functions are abs, acos, asin, atan (one argument), cos, cosh, exp, int, log,
log10, sin, sinh, sqrt, tan, and tanh. The function read(x) reads a value into the vari
able x and returns 0 at EOF; the statement print prints a list of expressions that may include
string constants such as "hello\n".

Control flow statements are if-else, while, and for, with braces for grouping. Newline ends
a statement. Backslash-newline is equivalent to a space.

Functions and procedures are introduced by the words func and proc; return is used to
return with a value from a function.

EXAMPLES
func gcd(a, b) {

temp = abs(a) % abs(b)
if(temp == 0) return abs(b)
return gcd(b, temp)

}
for(i=1; i<12; i++) print gcd(i,12)

SOURCE
/sys/src/cmd/hoc

SEE ALSO
bc(1), dc(1)
B. W. Kernighan and R. Pike, The Unix Programming Environment, Prentice-Hall, 1984

BUGS
Error recovery is imperfect within function and procedure definitions.

148

HOLD(1) HOLD(1)

NAME
hold � simple text editor

SYNOPSIS
hold file

DESCRIPTION
Hold sets hold mode on the rio(1) window where it was launched. The contents of the named file
is printed above the live editing area and the newly entered text is saved in the named file upon
exit.

SOURCE
/rc/bin/hold

SEE ALSO
emacs(1), rio(1)

HISTORY
Hold first appeared in 9front (May, 2011).

149

HTMLROFF(1) HTMLROFF(1)

NAME
htmlroff � HTML formatting and typesetting

SYNOPSIS
htmlroff [−iuv] [−m name] [−r aN] [file ...]

DESCRIPTION
Htmlroff accepts troff(1) input in the named files and formats it as HTML for viewing in a web
browser.

If no file argument is given, htmlroff reads the standard input. An argument consisting of a single
minus (−) is taken to be a file name corresponding to the standard input. The options are:

−i Read standard input after the input files are exhausted.

−mname
Process the macro file /sys/lib/tmac/tmac.name before the input files.

−raN Set register a (one character name) to N.

−u Generate UTF output. By default, htmlroff converts Unicode runes into the corresponding
HTML entity sequences (α, , and so on). Htmlroff invokes tcs(1) for the
conversion.

−v Generate debugging output and warnings about suspicious input.

Most troff input files, especially those using the ms(6) macros, can be used unaltered. In general,
the macro file tmac.html should be processed after processing other standard macro files, as in
htmlroff −ms −mhtml.

Htmlroff(6) describes the changes to the input language.

Mhtml(6) describes the new macros.

EXAMPLES
Format the Plan 9 web page:

cd /usr/web/plan9
htmlroff −mhtml index.tr >index.html

Format a paper:

cd /sys/doc
pic auth.ms | tbl | eqn | htmlroff −ms −mhtml >auth.html

FILES
/sys/lib/troff/font/devutf/utfmap

Mapping from troff two-character names like \(*a to Unicode characters like ±.

SOURCE
/sys/src/cmd/htmlroff

SEE ALSO
tcs(1), troff(1), htmlroff(6), mhtml(6)

150

IDIFF(1) IDIFF(1)

NAME
idiff � interactive diff

SYNOPSIS
idiff [−bw] file1 file2

DESCRIPTION
Idiff interactively merges file1 and file2 onto standard output. Wherever file1 and file2 differ, idiff
displays the differences in the style of ��diff −n�� on standard error and prompts the user to
select a chunk. Valid responses are:

< Use the chunk from file1.

> Use the chunk from file2.

= Use the diff output itself.

q<, q>, q=
Use the given response for all future questions.

!cmd Execute cmd and prompt again.

Idiff invokes diff(1) to compare the files. The −b and −w flags, if passed, are passed to diff.

FILES
/tmp/idiff.*

SOURCE
/sys/src/cmd/idiff.c

SEE ALSO
diff(1)
Kernighan and Pike, The Unix Programming Environment, Prentice-Hall, 1984.

151

IO(1) IO(1)

NAME
io � access PC I/O registers

SYNOPSIS
io [−WLMErw] address [value]

DESCRIPTION
io accesses PC I/O space. The operation to be performed is selected with −r or −w for reading or
writing, respectively. The default operation size is a byte. C style notation for integers (e.g.
0x42 or 023) is accepted for the address and value parameters.

−W Perform a word (16 bit) operation.

−L Perform a long / double word (32 bit) operation.

−M Access a 64 bit wide machine specific register (MSR).

−E Access embedded controller space.

SOURCE
/sys/src/cmd/io.c

SEE ALSO
seg(1), arch(3)

HISTORY
Io first appeared in 9front (April, 2011).

152

IRCRC(1) IRCRC(1)

NAME
ircrc � internet relay chat client

SYNOPSIS
ircrc [−p port] [−P server password] [−r realname] [−t target] [−n nick] [−T] [server]

DESCRIPTION
Ircrc is an IRC client. Messages are sent from standard input and received from standard output.
The default server is irc.freenode.net. The arguments bitlbee and oftc are expanded
to im.bitlbee.org and irc.oftc.net, respectively. The options are:

−p port
Change the default port (6667).

−P server password
Specify a password for the remote server.

−r realname
Change the default name (<nil>).

−t target
Set and join the target channel. If multiple channels are specified, only the last one will be
set as target. Messages are sent to target unless they are commands.

−n nick
Change the default nickname ($user).

−T
Use tls through tlssrv(8).

Commands
Ircrc commands begin with a slash. Unrecognized commands result in an error message and send
nothing to the server. The commands are:

/! cmd
Send the output of the shell command cmd to the current target.

/M MODE command.

/N NOTICE command.

/T TOPIC command.

/W WHOIS command.

/a AWAY command.

/j JOIN command.

/l LIST command.

/m PRIVMSG command.

/n NICK command.

/p PART command.

/q cmd
Send the raw IRC command cmd to the server.

/t target
Set target. If target is more than one channel, any messages are sent to all of them.

/u USERS command.

/w WHO command.

/x QUIT command. Control-D also sends this command.

See RFC 1459 and RFC 2812 for detailed information about IRC commands.

EXAMPLES
Default usage:

153

IRCRC(1) IRCRC(1)

% ircrc

Join irc.oftc.net as a different user:

% ircrc −r glenda −n glenda irc.oftc.net

Join two channels on login:

% ircrc −t ’#cat−v,#plan9’

SOURCE
/rc/bin/ircrc

SEE ALSO
http://tools.ietf.org/html/rfc1459
http://tools.ietf.org/html/rfc2812

BUGS
Some fonts do not support the nickname delimiters.

If the connection is lost, ircrc waits for input before exiting.

154

JOIN(1) JOIN(1)

NAME
join � relational database operator

SYNOPSIS
join [options] file1 file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines of file1 and
file2. If one of the file names is −, the standard input is used.

File1 and file2 must be sorted in increasing ASCII collating sequence on the fields on which they are
to be joined, normally the first in each line.

There is one line in the output for each pair of lines in file1 and file2 that have identical join fields.
The output line normally consists of the common field, then the rest of the line from file1, then the
rest of the line from file2.

Input fields are normally separated spaces or tabs; output fields by space. In this case, multiple
separators count as one, and leading separators are discarded.

The following options are recognized, with POSIX syntax.

−a n In addition to the normal output, produce a line for each unpairable line in file n, where n
is 1 or 2.

−v n Like −a, omitting output for paired lines.

−e s Replace empty output fields by string s.

−1 m
−2 m Join on the mth field of file1 or file2.

−jn m
Archaic equivalent for −n m.

−ofields
Each output line comprises the designated fields. The comma-separated field designators
are either 0, meaning the join field, or have the form n.m, where n is a file number and m
is a field number. Archaic usage allows separate arguments for field designators.

−tc Use character c as the only separator (tab character) on input and output. Every appear
ance of c in a line is significant.

EXAMPLES
sort −t: +1 /adm/users | join −t: −1 2 −a 1 −e "" − bdays

Add birthdays to the /adm/users file, leaving unknown birthdays empty. The layout of
/adm/users is given in users(6); bdays contains sorted lines like
ken:Feb 4, 1953.

tr : ’ ’ </adm/users | sort −k 3 3 >temp
join −1 3 −2 3 −o 1.1,2.1 temp temp | awk ’$1 < $2’

Print all pairs of users with identical userids.

SOURCE
/sys/src/cmd/join.c

SEE ALSO
sort(1), comm(1), awk(1)

BUGS
With default field separation, the collating sequence is that of sort −b −ky,y; with −t, the
sequence is that of sort −tx −ky,y.

One of the files must be randomly accessible.

155

JPG(1) JPG(1)

NAME
jpg, gif, png, tif, ppm, bmp, v210, yuv, ico, tga, tojpg, togeordi, togif, toppm, topng, totif, toico �

view and convert pictures

SYNOPSIS
jpg [−39cdefFkJrtvy] [file ...]
gif [−39cdektv] [file ...]
png [−39cdektv] [file ...]
tif [−39cdektv] [file ...]
ppm [−39cdektv] [file ...]
bmp [−39cdektv] [file ...]
v210 [−39cdektv] [file ...]
tga [−39cdektv] [file ...]
yuv [−39cdektv] [file ...]

tojpg [−c comment] [−ks] [file]
togeordi [−c comment] [−k] [file]
togif [−c comment] [−l loopcount] [−d msec] [−t transindex] [file ... [−d msec] file ... |
−E]
toppm [−c comment] [−r] [file]
topng [−c comment] [−g gamma] [file]
totif [−c comment] [−3bgGhklLptvyY] [file]

ico [−c] [file]
toico [file ...]

DESCRIPTION
These programs read, display, and write image files in public formats. Jpg, gif, png, tif, ppm,
bmp, tga, v210, and yuv read files in the corresponding formats and, by default, display them in
the current window; options cause them instead to convert the images to Plan 9 image format and
write them to standard output. Tojpg, togif, toppm, topng, and totif read Plan 9 images files, con
vert them to JPEG, GIF, PPM, PNG, or TIFF and write them to standard output.

The default behavior of jpg, gif, png, tif, ppm, bmp, tga, v210, and yuv is to display the file, or
standard input if no file is named. Once a file is displayed, typing a character causes the program
to display the next image. Typing a q, DEL, or control-D exits the program. For a more user-
friendly interface, use page(1), which invokes these programs to convert the images to standard
format, displays them, and offers scrolling, panning, and menu-driven navigation among the files.

These programs share many options:

−e Disable Floyd-Steinberg error diffusion, which is used to improve the appearance of images
on color-mapped displays, typically with 8 bits per pixel. Primarily useful for debugging; if
the display has true RGB color, the image will be displayed in full glory.

−k Convert and display the image as a black and white (really grey-scale) image.

−v Convert the image to an RGBV color-mapped image, even if the display has true RGB color.

−d Suppress display of the image; this is set automatically by any of the following options:

−c Convert the image to a Plan 9 representation, as defined by image(6), and write it to stan
dard output.

−9 Like −c, but produce an uncompressed image. This saves processing time, particularly
when the output is being piped to another program such as page(1), since it avoids com
pression and decompression.

−t Convert the image, if it is in color, to a true color RGB image.

−3 Like −t, but force the image to RGB even if it is originally grey-scale.

Jpg has two extra options used to process the output of the LML video card:

−f Merge two adjacent images, which represent the two fields of a video picture, into a single
image.

156

JPG(1) JPG(1)

−F The input is a motion JPEG file, with multiple images representing frames of the movie.
Sets −f.

The tojpg, togif, toppm and topng programs go the other way: they convert from Plan 9 images to
JPEG, GIF, PPM, PNG, and TIFF and have no display capability. They all accept an option −c to set
the comment field of the resulting file. The −r option makes toppm output raw PPM. The default
is to output plain PPM. The −k option makes tojpg output grey-scale images, and the −s option
makes it output scratched JPEG images. Togeordi is an rc(1) script that invokes tojpg −s. Totif
accepts many options. Choosing Huffman, T4, or T6 compression forces the image to GREY1.

−3 Convert the image to a true color RGB image.

−b Convert the image to a GREY1 black and white image.

−g Use T4 one-dimensional compression.

−G Use T4 two-dimensional compression.

−h Use Huffman compression.

−k Convert the image to a GREY8 grey-scale image.

−l Use LZW compression.

−L Use LZW compression with horizontal differencing. Some TIFF decoders may not support
horizontal differencing applied to images of depths less than eight.

−p Use Packbits compression.

−t Use T6 compression.

−v Convert the image to an RGBV color-mapped image.

−y Convert the image to a GREY2 grey-scale image. Totif will then convert it to GREY4 before
encoding because TIFF does not support depths of two.

−Y Convert the image to a GREY4 grey-scale image.

If there is only one input picture, togif converts the image to GIF format. If there are many files,
though, it will assemble them into an animated GIF file. The options control this process:

−lloopcount
By default, the animation will loop forever; loopcount specifies how many times to loop. A
value of zero means loop forever and a negative value means to stop after playing the
sequence once.

−dmsec
By default, the images are displayed as fast as they can be rendered. This option specifies
the time, in milliseconds, to pause while displaying the next named file.

−E Specifying this option instead of a list of files will read the frames from a pipe on fd 0.
Each frame is terminated with EOF. End of the animation is specified by an extra EOF.

Gif translates files that contain a �transparency� index by attaching an alpha channel to the con
verted image.

Ico displays or converts a Windows icon (.ico) file. If no file is specified, ico reads from standard
input. Icon files contain sets of icons represented by an image and a mask. The −c option causes
ico to convert the first icon in the set and write it to standard output in compressed Plan 9 image
format. Otherwise, the whole icon set is displayed. Clicking the right button pops up a menu that
lets you write any icon�s image as a Plan 9 image (widthxheight.image), write any icon�s mask as a
Plan 9 image (widthxheight.mask), or exit. Selecting one of the write menu items yields a sight
cursor. Move the sight over the icon and right click again to write.

Toico takes a list of Plan 9 image files (or standard input) and creates a single icon file. The masks
in the icon file will be the white space in the image. The icon file is written to standard output.

SOURCE
/sys/src/cmd/jpg
/rc/bin/togeordi

SEE ALSO
page(1), image(6).

157

JPG(1) JPG(1)

http://www.w3.org/Graphics/JPEG/jfif3.pdf
http://www.w3.org/Graphics/JPEG/itu−t81.pdf
http://en.wikibooks.org/wiki/JPEG_−_Idea_and_Practice
http://en.wikipedia.org/wiki/JPEG
http://www.w3.org/Graphics/GIF/spec−gif89a.txt
http://www.w3.org/TR/2003/REC−PNG−20031110
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
http://netpbm.sourceforge.net/doc/ppm.html
http://en.wikipedia.org/wiki/Windows_bitmap
http://en.wikipedia.org/wiki/Yuv

BUGS
Writing an animated GIF using togif is a clumsy undertaking.

HISTORY
Tojpg first appeared in 9front (May, 2013). Tif and totif first appeared in 9front (July, 2013).

158

KBMAP(1) KBMAP(1)

NAME
kbmap � show a list of available keyboard maps and switch between them.

SYNOPSIS
kbmap [file...]

DESCRIPTION
Kbmap shows a single column consisting of the names of keyboard maps for different alphabets
available on the system. With no arguments kbmap will look for files in /sys/lib/kbmap.

Clicking the right mouse button will highlight the entry and force the keyboard mapping defined in
the corresponding file to become current for the system; typing �q� quits.

Kbmap requires that the file /dev/kbmap served by kbdfs(8) exists and is writable.

SOURCE
/sys/src/cmd/kbmap.c

SEE ALSO
kbdfs(8)

BUGS
Not all keyboards map the entire set of characters, so one has to switch back to the default map
before changing to another.

159

KILL(1) KILL(1)

NAME
kill, slay, broke, dontkill � print commands to kill processes

SYNOPSIS
kill name ...

slay name ...

broke [user]

dontkill regexp

DESCRIPTION
Kill prints commands that will cause all processes called name and owned by the current user to be
terminated. Use the send command of rio(1), or pipe the output of kill into rc(1) to execute the
commands.

Kill suggests sending a kill note to the process; the same message delivered to the process�s
ctl file (see proc(3)) is a surer, if heavy handed, kill, but is necessary if the offending process is
ignoring notes. The slay command prints commands to do this.

Broke prints commands that will cause all processes in the Broken state and owned by user (by
default, the current user) to go away. When a process dies because of an error caught by the sys
tem, it may linger in the Broken state to allow examination with a debugger. Executing the com
mands printed by broke lets the system reclaim the resources used by the broken processes.

Dontkill flags processes matching the program name regexp as not to be killed in the event of
memory exhaustion. This is usually run from termrc and cpurc (see cpurc(8)) to protect impor
tant system processes from getting killed.

SOURCE
/rc/bin/kill
/rc/bin/broke
/rc/bin/dontkill

SEE ALSO
ps(1), stop(1), notify(2), proc(3)

160

KTRACE(1) KTRACE(1)

NAME
ktrace � interpret kernel stack dumps

SYNOPSIS
ktrace [−i] kernel pc sp [link]

DESCRIPTION
Ktrace translates a hexadecimal kernel stack dump into a sequence of acid(1) commands to show
the points in the call trace. The kernel argument should be the path of the kernel being debugged,
and pc and sp are the PC and SP values given in the stack dump. For MIPS kernels, the contents of
the link register must also be supplied.

A stack trace consists of a ktrace command followed by a series of lines containing fields of the
form location=contents:
ktrace /kernel/path 80105bc1 8048e174
8048e114=80105ac6 8048e120=80140bb4 8048e134=8010031c
8048e16c=80137e45 8048e170=80105bc1 8048e178=80137e62
...

The trace can be edited to provide the correct kernel path and then pasted into a shell window. If
the −i option is present, ktrace instead prompts for the contents of the memory locations in
which it is interested; this is useful when the stack trace is on a screen rather than in a machine
readable form.

SOURCE
/sys/src/cmd/ktrace.c

SEE ALSO
acid(1), rdbfs(4)

BUGS
When examining a kernel trace resulting from an interrupt on top of other interrupts, only the top
most call trace is printed.

161

LEAK(1) LEAK(1)

NAME
leak, kmem, umem � help find memory leaks

SYNOPSIS
leak [−abcds] [−f binary] [−r res] [−x width] pid ...

kmem [kernel]

umem pid [textfile]

DESCRIPTION
Leak examines the named processes, which should be sharing their data and bss segments, for
memory leaks. It uses a mark and sweep-style algorithm to determine which allocated blocks are
no longer reachable from the set of root pointers. The set of root pointers is created by looking
through the shared bss segment as well as each process�s registers.

Unless directed otherwise, leak prints, for each block, a line with seven space-separated fields: the
string block, the address of the block, the size of the block, the first two words of the block, and
the function names represented by the first two words of the block. Usually, the first two words of
the block contain the malloc and realloc tags (see malloc(2)), useful for finding who allocated the
leaked blocks.

If the −s or the −c option is given, leak will instead present a sequence of acid(1) commands that
show each leaky allocation site. With −s a comment appears next to each command to indicate
how many lost blocks were allocated at that point in the program. With −c the comments are
extended to indicate also the total number of bytes lost at that point in the program, and an addi
tional comment line gives the overall total number of bytes.

If the −a option is given, leak will print information as decribed above, but for all allocated blocks,
not only leaked ones. If the −d option is given, leak will print information as decribed above, but
for all free blocks, i.e. those freed, or those that are not yet in use (fragmentation?). The −a and
−d options can be combined.

If the −b option is given, leak will print a Plan 9 image file graphically summarizing the memory
arenas. In the image, each pixel represents res (default 8) bytes. The color code is:

dark blue Completely allocated.

bright blue Contains malloc headers.

bright red Contains malloc headers for leaked memory.

dark red Contains leaked memory.

yellow Completely free

white Padding to fill out the image. The bright pixels representing headers help in counting
the number of blocks. Magnifying the images with lens(1) is often useful.

If given a name rather than a list of process ids, leak echoes back a command-line with process
ids of every process with that name.

The −f option specifies a binary to go on the acid(1) command-line used to inspect the processes,
and is only necessary when inspecting processes started from stripped binaries.

Umem prints a summary of all allocated blocks in the process with id pid. Each line of the sum
mary gives the count and total size of blocks allocated at an allocation point. The list is sorted by
count in decreasing order. Umem prints summarizes all allocations, not just memory leaks, but it
is faster and requires less memory than leak .

Kmem is like umem but prints a summary for the running kernel.

EXAMPLES
List lost blocks in 8.out. This depends on the fact that there is only one instance of 8.out running;
if there were more, the output of leak −s 8.out would need editing before sending to the
shell.

% leak −s 8.out
leak −s 229 230
% leak −s 8.out | rc

162

LEAK(1) LEAK(1)

src(0x0000bf1b); // 64
src(0x000016f5); // 7
src(0x0000a988); // 7
%

View the memory usage graphic for the window system.

% leak −b rio | rc | page

List the top allocation points in the kernel, first by count and then by total size:

% kmem | sed 10q
% kmem | sort −nr +1 | sed 10q

SOURCE
/sys/lib/acid/leak
/sys/src/cmd/aux/acidleak.c
/rc/bin/leak
/rc/bin/kmem
/rc/bin/umem

SEE ALSO
getcallerpc(2), setmalloctag in malloc(2)

BUGS
Leak and kmem depend on the internal structure of the libc pool memory allocator (see pool(2)).
Since the ANSI/POSIX environment uses a different allocator, leak will not work on APE programs.

Leak is not speedy, and acidleak can consume more memory than the process(es) being examined.

These commands require /sys/src/libc/port/pool.acid to be present and generated
from pool.c.

163

LENS(1) LENS(1)

NAME
lens � interactive screen magnifier

SYNOPSIS
lens

DESCRIPTION
Lens presents a magnified view in its window of an arbitrary area on the screen. The default mag
nification is 4 (showing each pixel as a 4×4 pixel block in lens�s window). This may be changed by
typing a digit on the keyboard (with 0 standing for 10), or by using the + and − keys to increase or
decrease the magnification by one unit. The lower limit is ×1; the upper ×16.

The interface to indicate what area to magnify is dictated by the mouse multiplexing rules of
rio(1). Start by pressing mouse button 1 in the lens window and dragging, with the button pressed,
to the center of the area to magnify. Lens will update the display as the mouse moves. Releasing
the button freezes the lens display. The magnified view is static�a snapshot, not a movie�but
typing a space or . key in the lens window will refresh the display, as will changing the magnifica
tion.

To make counting pixels easier, typing a g toggles whether a checkerboard grid is imposed on the
magnified area.

Button 3 brings up a menu of actions.

SOURCE
/sys/src/cmd/lens.c

BUGS
There should be an easier way to indicate what to magnify.

164

LEX(1) LEX(1)

NAME
lex � generator of lexical analysis programs

SYNOPSIS
lex [−tvn9] [file ...]

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of text. The input files (standard
input default) contain regular expressions to be searched for and actions written in C to be exe
cuted when expressions are found.

A C source program, lex.yy.c is generated. This program, when run, copies unrecognized por
tions of the input to the output, and executes the associated C action for each regular expression
that is recognized.

The options have the following meanings.

−t Place the result on the standard output instead of in file lex.yy.c.

−v Print a one-line summary of statistics of the generated analyzer.

−n Opposite of −v; −n is default.

−9 Adds code to be able to compile through the native C compilers.

EXAMPLES
This program converts upper case to lower, removes blanks at the end of lines, and replaces multi
ple blanks by single blanks.

%%
[A−Z] putchar(yytext[0]+’a’−’A’);
[]+$
[]+ putchar(’ ’);

FILES
lex.yy.c output
/sys/lib/lex/ncform template

SEE ALSO
yacc(1), sed(1)
M. E. Lesk and E. Schmidt, �LEX�Lexical Analyzer Generator�, Unix Research System Programmer’s
Manual, Tenth Edition, Volume 2.

SOURCE
/sys/src/cmd/lex

BUGS
Cannot handle UTF.

The asteroid to kill this dinosaur is still in orbit.

165

LOCK(1) LOCK(1)

NAME
lock � run a command under lock

SYNOPSIS
lock [−w] lockfile [command [argument ...]]

DESCRIPTION
Lock runs command (default rc) with arguments while holding lockfile open and (over)writing at
least one byte each minute to keep the exclusive-access lock alive. If lockfile doesn�t already have
the exclusive-access bit set in its mode, the exclusive-access bits are set in its mode and
qid.type.

Under −w, lock waits for exclusive access to lockfile instead of just trying once.

Lock sets /env/prompt to contain the name of the lock file.

EXAMPLES
Build a replica(1) database while preventing collisions with other occurrences.

cd /sys/lib/dist
lock scan.lock replica/scan $dist/sources.replica

SOURCE
/sys/src/cmd/lock.c

SEE ALSO
intro(5), stat(5)

166

LOOK(1) LOOK(1)

NAME
look � find lines in a sorted list

SYNOPSIS
look [−dfnixtc] [string] [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string. It uses binary search.

The following options are recognized. Options dfnt affect comparisons as in sort(1).

−i Interactive. There is no string argument; instead look takes lines from the standard input
as strings to be looked up.

−x Exact. Print only lines of the file whose key matches string exactly.

−d �Directory� order: only letters, digits, tabs and blanks participate in comparisons.

−f Fold. Upper case letters compare equal to lower case.

−n Numeric comparison with initial string of digits, optional minus sign, and optional decimal
point.

−t[c] Character c terminates the sort key in the file. By default, tab terminates the key. If c is
missing the entire line comprises the key.

If no file is specified, /lib/words is assumed, with collating sequence df.

FILES
/lib/words

SOURCE
/sys/src/cmd/look.c

SEE ALSO
sort(1), grep(1)

DIAGNOSTICS
The exit status is ��not found�� if no match is found, and ��no dictionary�� if file or the
default dictionary cannot be opened.

167

LP(1) LP(1)

NAME
lp � printer output

SYNOPSIS
lp [option ...] [file ...]

DESCRIPTION
Lp is a generalized output printing service. It can be used to queue files for printing, check a
queue, or kill jobs in a queue. The options are:

−d dest Select the destination printer. If dest is ?, list the currently available printers. In the
absence of −d, the destination is taken from the environment variable LPDEST. Desti
nation stdout is the standard output. Destination safari is /dev/lpt1data line
printer port on a 386 machine, assumed to be connected to a PostScript printer. Desti
nations hpdeskjet and bjc240l are also /dev/lpt1data but assumed to be con
nected to an HP Deskjet 670 or Canon BJC-240. Lp can print to any printer supported by
Ghostscript using syntax gs!device where device is a Ghostscript output device. See
gs(1) and the canonbjc240l entry in /sys/lib/lp/devices.

−k Kill the job(s) given as subsequent arguments, instead of file names, for the given desti
nation.

−p proc The given processor is invoked. The default processor is generic, which tries to do
the right thing for regular text, HTML, or troff(1) output. If no processing is desired
noproc may be specified.

−q Print the queue for the given destination. For some devices, include printer status.
−R Stops and restarts the printer daemon. If the printer is wedged, it is often useful to cycle

the power on the printer before running this command.

The remaining options may be used to affect the output at a given device. These options may not
be applicable to all devices.

−c n Print n copies.
−f font Set the font (default CW.11).
−H Suppress printing of header page.
−i n Select paper input tray. n may be a number 0-9, the word man for the manual feed slot,

and/or simplex or duplex to get single or double sided output. Multiple input tray
options may be specified if they are separated by commas.

−l n Set the number of lines per page to n.
−L Print pages in landscape mode (i.e. turned 90 degrees).
−m v Set magnification to v.
−n n Print n logical pages per physical page.
−o list Print only pages whose page numbers appear in the comma-separated list of numbers

and ranges. A range n−m means pages n through m; a range −n means from the begin
ning to page n; a range n− means from page n to the end.

−r Reverse the order of page printing.
−x v Set the horizontal offset of the print image, measured in inches.
−y v Set the vertical offset of the print image, measured in inches.

EXAMPLES
eqn paper | troff −ms | lp −dsafari

Typeset and print a paper containing equations.

pr −l100 file | lp −l100 −fCW.8
Print a file in a small font at 100 lines per page.

lp −dstdout /dev/windows/3/window > doc.ps
Convert an image to a postscript file.

SOURCE
/rc/bin/lp
/sys/src/cmd/lp

SEE ALSO
lp(8)
P. Glick, ��A Guide to the Lp Printer Spooler��.

168

LP(1) LP(1)

BUGS
Not all options work with all output devices. Any user can kill any job.

169

LS(1) LS(1)

NAME
ls, lc � list contents of directory

SYNOPSIS
ls [−dlmnpqrstuFQT] name ...

lc [−dlmnqrstuQT] name ...

DESCRIPTION
For each directory argument, ls lists the contents of the directory; for each file argument, ls
repeats its name and any other information requested. When no argument is given, the current
directory is listed. By default, the output is sorted alphabetically by name.

Lc is the same as ls, but sets the −p and −F options and pipes the output through mc(1).

There are a number of options:

−d If argument is a directory, list it, not its contents.

−l List in long format, giving mode (see below), file system type (e.g., for devices, the # code
letter that names it; see intro(3)), the instance or subdevice number, owner, group, size in
bytes, and time of last modification for each file.

−m List the name of the user who most recently modified the file.

−n Don�t sort the listing.

−p Print only the final path element of each file name.

−q List the qid (see stat(2)) of each file; the printed fields are in the order path, version, and
type.

−r Reverse the order of sort.

−s Give size in Kbytes for each entry.

−t Sort by time modified (latest first) instead of by name.

−u Under −t sort by time of last access; under −l print time of last access.

−F Add the character / after all directory names and the character * after all executable files.

−T Print the character t before each file if it has the temporary flag set, and − otherwise.

−Q By default, printed file names are quoted if they contain characters special to rc(1). The −Q
flag disables this behavior.

The mode printed under the −l option contains 11 characters, interpreted as follows: the first
character is

d if the entry is a directory;

a if the entry is an append-only file;

− if the entry is a plain file.

The next letter is l if the file is exclusive access (one writer or reader at a time).

The last 9 characters are interpreted as three sets of three bits each. The first set refers to owner
permissions; the next to permissions to others in the same user-group; and the last to all others.
Within each set the three characters indicate permission respectively to read, to write, or to exe
cute the file as a program. For a directory, �execute� permission is interpreted to mean permission
to search the directory for a specified file. The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;
− if none of the above permissions is granted.

SOURCE
/sys/src/cmd/ls.c
/rc/bin/lc

170

LS(1) LS(1)

SEE ALSO
stat(2), mc(1)

171

MAIL(1) MAIL(1)

NAME
mail, go.fishing � mail and mailboxes

SYNOPSIS
mail [arg ...]

go.fishing

DESCRIPTION
Mail is a shell script that invokes nedmail(1), the mail reader, when no recipients appear on the
command line and marshal(1), the mail preparer, otherwise. All command line options are passed
through. See the man pages for those two commands for more details.

Incoming mail for a user username is put in the file /mail/box/username/mbox unless either
the file /mail/box/username/forward or /mail/box/username/pipeto exists. The
mailbox must have append-only and exclusive-access mode (see chmod(1)). A user must create
his or her own mailbox using the −c option of nedmail(1). Mailboxes are created writable
(append-only) but not readable by others.

If the file /mail/box/username/forward exists and is readable by everyone, incoming mail
will be forwarded to the addresses contained in the first line of the file. The file may contain multi
ple addresses. Forwarding loops are caught and resolved by local delivery.

If the file /mail/box/username/pipeto exists and is readable and executable by everyone, it
will be run for each incoming message for the user. The message will be piped to it rather than
appended to his/her mail box. The file is run as user none. Its two arguments are the destina
tion address (e.g., local!gremlin) and the user�s mail box path (e.g.,
/mail/box/gremlin/mbox)

Auto−answer
To use mail as an answering machine while you are away, run go.fishing, which will create
/mail/box/$user/gone.fishing as a flag for pipeto processing, and truncate
/mail/box/$user/gone.addrs. Any existing pipeto file that uses
/mail/lib/pipeto.lib will invoke the gone.fishing machinery when it calls spool or
spool−tagged−spam.

If /mail/box/$user/gone.msg exists, it will be sent (just once) to everyone who sends you
mail that lists your address in a To or Cc header; if not, /mail/lib/gone.msg will be sent.
Upon your return, remove /mail/box/$user/gone.fishing to stop automatic responses.

FILES
/sys/log/mail mail log file
/mail/box/* mail directories
/mail/box/*/mbox mailbox files
/mail/box/*/forward forwarding address(es)
/mail/box/*/pipeto mail filter
/mail/box/*/L.reading mutual exclusion lock for multiple mbox readers
/mail/box/*/L.mbox mutual exclusion lock for altering mbox
/lib/face/48x48x? directories of icons for seemail
/mail/lib/pipeto.lib helper functions for pipeto files
/mail/lib/gone.msg default vacation message
/mail/lib/gone.fishing auto-responder as pipeto script
/mail/box/$user/gone.fishing flag to active gone processing
/mail/box/$user/gone.addrs list of senders answered by gone.fishing

SOURCE
/rc/bin/mail
/rc/bin/go.fishing

SEE ALSO
aliasmail(8), faces(1), filter(1), marshal(1), mlmgr(1), nedmail(1), qer(8), rewrite(6), send(8),
smtp(8), upasfs(4)

172

MAN(1) MAN(1)

NAME
man, lookman, sig � print or find pages of this manual

SYNOPSIS
man [−bnpPStw] [section ...] title ...

lookman key ...

sig function ...

DESCRIPTION
Man locates and prints pages of this manual named title in the specified sections. Title is given in
lower case. Each section is a number; pages marked (2S), for example, belong to chapter 2. If no
section is specified, pages in all sections are printed. Any name from the NAME section at the top
of the page will serve as a title.

The options are:

−n (Default) Print the pages on the standard output using nroff.

−b Print the pages using nroff and send them to plumber(4) for display in the editor.

−p Run proof(1) on the specified man pages.

−P Run page(1) on the specified man pages.

−S Do not search the manual indices for the names. Only print pages whose file names match
the names.

−t Run troff(1) and send its output to standard output.

−w Print the names of the man page source files.

Lookman prints the names of all manual sections that contain all of the key words given on the
command line.

Sig prints the signature (i.e. C definition) of the functions given on the command line.

FILES
/sys/man/?/*

troff source for manual; this page is /sys/man/1/man

/sys/man/?/INDEX
indices searched to find pages corresponding to titles

/sys/lib/man/secindex
command to make an index for a given section

/sys/lib/man/lookman/index
index for lookman

SOURCE
/rc/bin/man
/rc/bin/lookman

SEE ALSO
page(1), proof(1)

BUGS
The manual was intended to be typeset; some detail is sacrificed on text terminals.

There is no automatic mechanism to keep the indices up to date.

Except for special cases, man doesn�t recognize things that should be run through tbl and/or eqn.

173

MARSHAL(1) MARSHAL(1)

NAME
marshal � formatting and sending mail

SYNOPSIS
upas/marshal [−[aA] attachment] [−C copyaddr] [−B copyaddr] [−Fr#xn] [−S saveto]
[−p[es]] [−R reply−msg] [−s subject] [−t mime−type] [−8 | mailaddr ...]

DESCRIPTION
Marshal builds a mail message from standard input and passes it, if the body is non-empty, for
transmission or delivery to /mail/box/username/pipefrom if it exists, otherwise to
/bin/upas/send. The message format is both RFC 822 and MIME conformant, so marshal
adds any required headers not already in the message, prefixed by the contents of
/mail/box/username/headers. This allows the addition of personal headers like From:
lines with a full name or a different return address. Command line options direct marshal to add a
subject line and append attachments. The arguments to marshal are the addresses of the recipi
ents.

When running in a rio(1) window, marshal automatically puts the window into hold mode (see
rio(1)); this means that the message can be edited freely, because nothing will be sent to marshal
until the ESC key is hit to exit hold mode.

The options are:

−afile directs marshal to append file as a mime attachment. Unless explicitly specified by
the −t option, the type of the attachment is determined by running the file(1) com
mand.

−Afile is like −a but the message disposition is marked as inline directing any mail reader
to display the attachment (if it can) when the mail message is read.

−Ccopyaddr or −Bcopyaddr adds a Cc: or Bcc: header with copyaddr and also adds copyaddr
as a recipient.

−F file the message
−Ssaveto file the message into the saveto mailbox.
−n intentionally no standard input
−#xr are all passed as command line options to the send that marshal invokes.
−Rreplymsg tells marshal what message this one is in reply to. Replymsg is an upasfs(4) directory

containing the message. Marshal uses any message id in this message in its
In−Reply−To field. It also passes the directory to
/mail/box/username/pipefrom in the replymsg environment variable.
Thus, pipefrom can alter the message to somehow match the reply to the message
it is replying to.

−ssubject adds a Subject: header line to the message if one does not already exist.
−ttype sets the content type for the attachments from all subsequent −a and −A options.
−ps pgp sign the message
−pe pgp encrypt the message
−8 reads recipients (To: Cc: and Bcc:) from RFC 822 header of the message

Marshal also expands any user mail aliases contained in /mail/box/username/names. The
format of the alias file is the same as that for system aliases, see aliasmail(8).

Marshal uses the login name as the reply address. This can be overriden using the environment
variable upasname. Its value will become both the envelope and From: mailbox name. For
example:

upasname=natasha@kremvax.com mail boris@squirrel.com

Marshal interprets file attachment headers Attach: and Include: as if the −A or −a options
would have been given.

FILES
/mail/box/*/dead.letter

SOURCE
/sys/src/cmd/upas/marshal

174

MARSHAL(1) MARSHAL(1)

SEE ALSO
aliasmail(8), faces(1), filter(1), mail(1), mlmgr(1), nedmail(1), qer(8), rewrite(6), send(8), smtp(8),
upasfs(4)

175

MC(1) MC(1)

NAME
mc � multicolumn print

SYNOPSIS
mc [−] [−N] [file ...]

DESCRIPTION
Mc splits the input into as many columns as will fit in N print positions. If run in a rio(1) or
acme(1) window, the default N is the number of blanks that will fit across the window; otherwise
the default N is 80. Under option − each input line ending in a colon : is printed separately.

SOURCE
/sys/src/cmd/mc.c

SEE ALSO
rio(1), acme(1), acme(4), pr(1), lc in ls(1)

176

MINES(1) MINES(1)

NAME
mines � minesweeper

SYNOPSIS
games/mines [−aeqg]

DESCRIPTION
Mines is an implementation of the game Minesweeper. The game is played on a rectangular grid.
A certain number of mines is hidden beneath some of the tiles. Left clicking on a tile uncovers it.
If a mine is revealed, the player loses. Otherwise, a number is shown that indicates the number of
mines in the 8 adjacent tiles. The player wins once they have uncovered all tiles free from mines.

Right clicking marks a square, cycling through the flag marker indicating a mine and the query
marker with no specific meaning (provided solely for the player�s convenience). Middle clicking
will uncover all adjacent squares, if it is safe to do so (assuming the flag markers are set correctly).

The number at the top left indicates the number of mines remaining that are not marked by flags.
The number in the top right indicates the number of seconds elapsed. The smiley face can be
clicked to restart the game.

The n key restarts the game. The b, a and e keys restart the game and set the difficulty to begin
ner, advanced and expert, respectively. The q and DEL keys quit the game.

There are a number of options:

−a Start at advanced difficulty.

−e Start at expert difficulty.

−q Disable the query marker.

−g It�s a secret to everybody.

SOURCE
/sys/src/games/mines

HISTORY
Mines was written in 2001 by Antonin Vecera for Plan 9 Third Edition. It was added to 9front in
May 2011. The −g option was added by 9front in February 2018.

LICENSE
Mines is licensed under the GNU General Public License, Version 2, reproduced in the file
/lib/legal/gpl.

177

MIX(1) MIX(1)

NAME
mix � MIX assembler and emulator

SYNOPSIS
games/mix [−g] [file ...]

DESCRIPTION
Mix is an assembler and emulator for Donald Knuth�s fictitious MIX architecture. The command
assembles the named MIXAL files into memory and then presents a command prompt to control
an emulated MIX machine. The −g option causes the emulator immediately to run a complete
assembled MIX program and exits when the emulator halts.

The following commands are accepted:

addr[(a:b)]
Print the value at addr. An optional field specification is given by (a:b).

a [< file]
Start the MIXAL assembler. The assembler will begin assembling at the address after the
last assembled instruction. If no file is given, the assembler will accept instructions from
the console.

b addr
Set or unset a breakpoint at addr.

c Resets the MIX machine to a fresh state by clearing all memory and registers.

d addr
Disassemble the instruction at addr.

o addr
Print the alphanumeric MIX word at addr.

o(addr, d)
Print d alphanumeric mix words starting at addr.

r*[(a:b)]
Print the value in register r* where * is one of a, x, ax, j, or 1-6. An optional field specifica
tion is given by (a:b).

s Step through one instruction of the emulated MIX machine.

g Start the emulated MIX machine at the instruction specified by the END pseudo-
instruction.

x Quit the emulator/assembler.

The addr field of the above instructions must be an integer between 0 and 3999 inclusive. A
number-sign (#) or an asterisk (*) at the beginning of a line starts a comment which extends to the
end of the line.

SOURCE
/sys/src/games/mix

SEE ALSO
Donald Knuth, ��The Art of Computer Programming��, Volume 1. Section 1.3

/sys/src/games/mix/examples

BUGS
As opposed to Knuth�s specification, the ALF pseudo-instruction takes as argument five MIX
characters surrounded by quotation marks. Unresolved forward references are assembled to 0
instead of to a location determined by the END psuedo-instruction.

The magnetic tapes and drum units are not implemented.

Comments are handled as described above and not exactly as Knuth specifies.

178

MK(1) MK(1)

NAME
mk, membername � maintain (make) related files

SYNOPSIS
mk [−f mkfile] ... [option ...] [target ...]

membername aggregate ...

DESCRIPTION
Mk uses the dependency rules specified in mkfile to control the update (usually by compilation) of
targets (usually files) from the source files upon which they depend. The mkfile (default mkfile)
contains a rule for each target that identifies the files and other targets upon which it depends and
an rc(1) script, a recipe, to update the target. The script is run if the target does not exist or if it
is older than any of the files it depends on. Mkfile may also contain meta−rules that define actions
for updating implicit targets. If no target is specified, the target of the first rule (not meta-rule) in
mkfile is updated.

The environment variable $NPROC determines how many targets may be updated simultaneously;
Plan 9 sets $NPROC automatically to the number of CPUs on the current machine.

Options are:

−a Assume all targets to be out of date. Thus, everything is updated.
−d[egp] Produce debugging output (p is for parsing, g for graph building, e for execution).
−e Explain why each target is made.
−i Force any missing intermediate targets to be made.
−k Do as much work as possible in the face of errors.
−n Print, but do not execute, the commands needed to update the targets.
−s Make the command line arguments sequentially rather than in parallel.
−t Touch (update the modified date of) file targets, without executing any recipes.
−wtarget1,target2,...

Pretend the modify time for each target is the current time; useful in conjunction with
−n to learn what updates would be triggered by modifying the targets.

The rc(1) script membername extracts member names (see �Aggregates� below) from its argu
ments.

The mkfile
A mkfile consists of assignments (described under �Environment�) and rules. A rule contains
targets and a tail. A target is a literal string and is normally a file name. The tail contains zero or
more prerequisites and an optional recipe, which is an rc script. Each line of the recipe must
begin with white space. A rule takes the form

target: prereq1 prereq2
rc recipe using prereq1, prereq2 to build target

When the recipe is executed, the first character on every line is elided.

After the colon on the target line, a rule may specify attributes, described below.

A meta−rule has a target of the form A%B where A and B are (possibly empty) strings. A meta-rule
acts as a rule for any potential target whose name matches A%B with % replaced by an arbitrary
string, called the stem. In interpreting a meta-rule, the stem is substituted for all occurrences of %
in the prerequisite names. In the recipe of a meta-rule, the environment variable $stem contains
the string matched by the %. For example, a meta-rule to compile a C program using 2c(1) might
be:

%: %.c
2c $stem.c
2l −o $stem $stem.2

Meta-rules may contain an ampersand & rather than a percent sign %. A % matches a maximal
length string of any characters; an & matches a maximal length string of any characters except
period or slash.

The text of the mkfile is processed as follows. Lines beginning with < followed by a file name are
replaced by the contents of the named file. Lines beginning with <| followed by a file name are

179

MK(1) MK(1)

replaced by the output of the execution of the named file. Blank lines and comments, which run
from unquoted # characters to the following newline, are deleted. The character sequence
backslash-newline is deleted, so long lines in mkfile may be folded. Non-recipe lines are pro
cessed by substituting for ‘{command} the output of the command when run by rc. References
to variables are replaced by the variables� values. Special characters may be quoted using single
quotes ’’ as in rc(1).

Assignments and rules are distinguished by the first unquoted occurrence of : (rule) or = (assign
ment).

A later rule may modify or override an existing rule under the following conditions:

� If the targets of the rules exactly match and one rule contains only a prerequisite clause
and no recipe, the clause is added to the prerequisites of the other rule. If either or both
targets are virtual, the recipe is always executed.

� If the targets of the rules match exactly and the prerequisites do not match and both rules
contain recipes, mk reports an ��ambiguous recipe�� error.

� If the target and prerequisites of both rules match exactly, the second rule overrides the
first.

Environment
Rules may make use of rc environment variables. A legal reference of the form $OBJ is
expanded as in rc(1). A reference of the form ${name:A%B=C%D}, where A, B, C, D are (possi
bly empty) strings, has the value formed by expanding $name and substituting C for A and D for B
in each word in $name that matches pattern A%B.

Variables can be set by assignments of the form
var=[attr=]value

Blanks in the value break it into words, as in rc but without the surrounding parentheses. Such
variables are exported to the environment of recipes as they are executed, unless U, the only legal
attribute attr, is present. The initial value of a variable is taken from (in increasing order of prece
dence) the default values below, mk’s environment, the mkfiles, and any command line assign
ment as an argument to mk. A variable assignment argument overrides the first (but not any sub
sequent) assignment to that variable.

The variable MKFLAGS contains all the option arguments (arguments starting with − or containing
=) and MKARGS contains all the targets in the call to mk.

It is recommended that mkfiles start with

</$objtype/mkfile

to set CC, LD, AS, O, YACC, and MK to values appropriate to the target architecture (see the exam
ples below).

Execution
During execution, mk determines which targets must be updated, and in what order, to build the
names specified on the command line. It then runs the associated recipes.

A target is considered up to date if it has no prerequisites or if all its prerequisites are up to date
and it is newer than all its prerequisites. Once the recipe for a target has executed, the target is
considered up to date.

The date stamp used to determine if a target is up to date is computed differently for different
types of targets. If a target is virtual (the target of a rule with the V attribute), its date stamp is ini
tially zero; when the target is updated the date stamp is set to the most recent date stamp of its
prerequisites. Otherwise, if a target does not exist as a file, its date stamp is set to the most
recent date stamp of its prerequisites, or zero if it has no prerequisites. Otherwise, the target is
the name of a file and the target�s date stamp is always that file�s modification date. The date
stamp is computed when the target is needed in the execution of a rule; it is not a static value.

Nonexistent targets that have prerequisites and are themselves prerequisites are treated specially.
Such a target t is given the date stamp of its most recent prerequisite and if this causes all the tar
gets which have t as a prerequisite to be up to date, t is considered up to date. Otherwise, t is
made in the normal fashion. The −i flag overrides this special treatment.

180

MK(1) MK(1)

Files may be made in any order that respects the preceding restrictions.

A recipe is executed by supplying the recipe as standard input to the command
/bin/rc −e −I

(the −e is omitted if the E attribute is set). The environment is augmented by the following vari
ables:

$alltarget
all the targets of this rule.

$newprereq
the prerequisites that caused this rule to execute.

$newmember
the prerequisites that are members of an aggregate that caused this rule to execute.
When the prerequisites of a rule are members of an aggregate, $newprereq con
tains the name of the aggregate and out of date members, while $newmember con
tains only the name of the members.

$nproc the process slot for this recipe. It satisfies 0d$nproc<$NPROC.

$pid the process id for the mk executing the recipe.

$prereq all the prerequisites for this rule.

$stem if this is a meta-rule, $stem is the string that matched % or &. Otherwise, it is
empty. For regular expression meta-rules (see below), the variables stem0, ...,
stem9 are set to the corresponding subexpressions.

$target the targets for this rule that need to be remade.

These variables are available only during the execution of a recipe, not while evaluating the mkfile.

Unless the rule has the Q attribute, the recipe is printed prior to execution with recognizable envi
ronment variables expanded. Commands returning nonempty status (see intro(1)) cause mk to
terminate.

Recipes and backquoted rc commands in places such as assignments execute in a copy of mk’s
environment; changes they make to environment variables are not visible from mk.

Variable substitution in a rule is done when the rule is read; variable substitution in the recipe is
done when the recipe is executed. For example:

bar=a.c
foo: $bar

$CC −o foo $bar
bar=b.c

will compile b.c into foo, if a.c is newer than foo.

Aggregates
Names of the form a(b) refer to member b of the aggregate a. Currently, the only aggregates sup
ported are ar(1) archives.

Attributes
The colon separating the target from the prerequisites may be immediately followed by attributes
and another colon. The attributes are:

D If the recipe exits with a non-null status, the target is deleted.

E Continue execution if the recipe draws errors.

N If there is no recipe, the target has its time updated.

n The rule is a meta-rule that cannot be a target of a virtual rule. Only files match the pat
tern in the target.

P The characters after the P until the terminating : are taken as a program name. It will be
invoked as rc −c prog ’arg1’ ’arg2’ and should return a null exit status if and
only if arg1 is up to date with respect to arg2. Date stamps are still propagated in the nor
mal way.

181

MK(1) MK(1)

Q The recipe is not printed prior to execution.

R The rule is a meta-rule using regular expressions. In the rule, % has no special meaning.
The target is interpreted as a regular expression as defined in regexp(6). The prerequisites
may contain references to subexpressions in form \n, as in the substitute command of
sam(1).

U The targets are considered to have been updated even if the recipe did not do so.

V The targets of this rule are marked as virtual. They are distinct from files of the same
name.

EXAMPLES
A simple mkfile to compile a program:

</$objtype/mkfile

prog: a.$O b.$O c.$O
$LD $LDFLAGS −o $target $prereq

%.$O: %.c
$CC $CFLAGS $stem.c

Override flag settings in the mkfile:

% mk target ’CFLAGS=−S −w’

Maintain a library:

libc.a(%.$O):N: %.$O
libc.a: libc.a(abs.$O) libc.a(access.$O) libc.a(alarm.$O) ...

ar r libc.a $newmember

String expression variables to derive names from a master list:

NAMES=alloc arc bquote builtins expand main match mk var word
OBJ=${NAMES:%=%.$O}

Regular expression meta-rules:

([^/]*)/(.*)\.$O:R: \1/\2.c
cd $stem1; $CC $CFLAGS $stem2.c

A correct way to deal with yacc(1) grammars. The file lex.c includes the file x.tab.h rather
than y.tab.h in order to reflect changes in content, not just modification time.

lex.$O: x.tab.h
x.tab.h: y.tab.h

cmp −s x.tab.h y.tab.h || cp y.tab.h x.tab.h
y.tab.c y.tab.h: gram.y

$YACC −d gram.y

The above example could also use the P attribute for the x.tab.h rule:

x.tab.h:Pcmp −s: y.tab.h
cp y.tab.h x.tab.h

SOURCE
/sys/src/cmd/mk

SEE ALSO
rc(1), regexp(6)

A. Hume, ��Mk: a Successor to Make��.

Andrew G. Hume and Bob Flandrena, ��Maintaining Files on Plan 9 with Mk��.

BUGS
Identical recipes for regular expression meta-rules only have one target.

Seemingly appropriate input like CFLAGS=−DHZ=60 is parsed as an erroneous attribute; correct
it by inserting a space after the first =.

182

MK(1) MK(1)

The recipes printed by mk before being passed to rc for execution are sometimes erroneously
expanded for printing. Don�t trust what�s printed; rely on what rc does.

183

MKDIR(1) MKDIR(1)

NAME
mkdir � make a directory

SYNOPSIS
mkdir [−p] [−m mode] dirname ...

DESCRIPTION
Mkdir creates the specified directories. It requires write permission in the parent directory.

If the −p flag is given, mkdir creates any necessary parent directories and does not complain if the
target directory already exists.

The −m flag sets the permissions to be used when creating the directory. The default is 0777.

SEE ALSO
rm(1)
cd in rc(1)

SOURCE
/sys/src/cmd/mkdir.c

DIAGNOSTICS
Mkdir returns null exit status if all directories were successfully made. Otherwise it prints a diag
nostic and returns "error" status.

184

MLMGR(1) MLMGR(1)

NAME
ml, mlmgr, mlowner � unmoderated mailing lists

SYNOPSIS
upas/mlmgr −c listname

upas/mlmgr −ar listname address

upas/ml [−r replyto−address] addressfile listname

upas/mlowner addressfile listname

DESCRIPTION
Mlmgr creates and updates unmoderated mailing lists. The −c option creates mail directories for
both listname and listname−owner, each containing a pipeto file. Messages mailed to listname
are sent to all members of the mailing list. Any Reply−to: and Precedence: fields are
removed from the messages and new ones are added directing replies to listname and specifying
bulk precedence. The envelope address for error replies is set to /dev/null.

The mailing list membership is the file /mail/box/listname/address−list. This file is an
add/remove log. Each line represents a single address. Lines beginning with a hash (#) are com
ments. Lines beginning with an exclamation point (!) are removals. All other lines are additions.

Addition and removal entries can be appended using the −a and −r options to mlmgr. However,
they are normally appended as a consequence of user requests.

To be added or removed from the list, a user may send a message to listname−owner containing
a key word in the header or body. The key words are:

subscribe - add my From: address to the list

remove - remove my From: address from the list

unsubscribe - remove my From: address from the list

Addition and removal events cause notification messages to be sent to the added/removed
address. In the case of addition, the message describes how to be removed.

Ml and mlowner are the programs that receive messages for listname and listname−owner
respectively. Appropriate calls to them are inserted in the pipeto files created by mlmgr.

Ml�s −r option sets the Reply−to: field in the mail sent out by ml.

FILES
/mail/box/<listname> list�s mailbox directory
/mail/box/<listname>−owner owner�s mailbox directory
/mail/box/<listname>/address−list log of mailing list deletions and additions

SOURCE
/sys/src/cmd/upas/ml

SEE ALSO
aliasmail(8), faces(1), filter(1), mail(1), marshal(1), nedmail(1), qer(8), rewrite(6), send(8),
smtp(8), upasfs(4)

185

MOTHRA(1) MOTHRA(1)

NAME
mothra � retrieve and display World-Wide Web files

SYNOPSIS
mothra [−dvak] [−m mtpt] [url]

DESCRIPTION
Mothra uses webfs(4) to retrieve and display files from the World-Wide Web, by name or through
hypertext links. Web names, called URLs, have a peculiar syntax:

http://9front.org/
https://code.9front.org/hg/plan9front/
http://cat−v.org/

The part up to the first colon gives the protocol for retrieving the file. http:, Hyper-Text Trans
fer Protocol, is the usual way of accessing web files.

// begins the Internet address of the server where the file resides. The address may contain a
colon and a TCP port number, which overrides the default port number for the service. Next
comes a file name. Finally, the file name may be followed by # and a string giving a label within
the file where the display should begin.

Mothra starts with the url given on the command line, defaulting to the environment variable
$url.

There are a number of options:

−a Alt display. Starts in alt display mode, see menu commands table below.

−k Kill images. Don�t fetch/display images.

−m Specify the webfs(4) mountpoint with −m mtpt. The default is /mnt/web.

−v Verbose mode. Causes HTML errors to be printed on file-descriptor 2.

−d Enables debug mode.

The display contains the last message from mothra, a box where typed commands appear, a scrol
lable list of previously visited files, the title and URL of the current file, and the scrollable text of
the current file.

Button 1 selects and displays a file, either from the list of previously visited pages or from a link
(indicated by underlined text or a boxed image) in the current file. Button 2 shows the URL of a
file, but does not retrieve or display it. Button 3 pops up a menu of commands:

alt display Collapse or expand the navigation boxes at the top of the browser window.
moth mode Enter moth mode and switch to the moth cursor. If the HREF of an image link is

different from the URL of the image itself, a link to the HREF will be printed on
the right side of the image. Clicking an image or link with mouse button 1
prompts the user to save a copy of the file in the current directory. Clicking
mouse button 2 sets the target as the current URL. Clicking the moth mode
menu option again exits moth mode.

snarf Copy the current entry text or selected page text to snarf buffer. If nothing is
selected, the current URL is copied.

paste Paste the snarf buffer to the current text entry.
plumb Plumb the current URL.
search Search for a regular expression in the current page.
save hit Save the current URL to the hit list.
hit list Retrieve and display the hit list.
exit Ask for confirmation and quit.

The typed commands are:

a Toggle alt display.
g url Go to the page with the given URL.
j n Jump to page n from the list of previously viewed pages.
k Toggle killing of images.

186

MOTHRA(1) MOTHRA(1)

m Enter or exit moth mode.
r Reload the current page.
s file Save the current page in the given file.
W file Capture a screenshot of the entire browser window in the given file.
w file Capture a screenshot of the content area in the given file.
q Quit.

When mothra retrieves a direct link to a file that is not an HTML document (for example a GIF or
JPEG image), it will start up an appropriate viewer, for example page (see page(1)) for most image
files.

FILES
$home/lib/mothra/hit.html the hit list

SOURCE
/sys/src/cmd/mothra

SEE ALSO
webfs(4)

BUGS
Files are saved in the form received, not in the form suggested by the name in an s command. A
directory index saved from moth mode may be written in the local directory as a file named
index. Sanitizing remote file names for the local file system is imperfect.

Mothra is distributed in a preliminary state; it has more than its share of bugs. Note that mothra,
like the other Guardian Monsters, has no particular concern for humanity.

HISTORY
Mothra first appeared in Plan 9 from Bell Labs (1995). It was later modified for inclusion in 9front
(September, 2011).

187

MPC(1) MPC(1)

NAME
mpc � extended precision arithmetic code generator

SYNOPSIS
mpc [file ...]

DESCRIPTION
Mpc generates C functions from a simple language that operates on extended precision integers
using the mp(2) library.

LANGUAGE
The language consists of a series of function definitions of the form:

name (parameter list) { statements }

All variables and parameters are extended precision integers and are passed by reference. State
ments are separated by semicolon and the following statemens are defined:

name = expression

if (condition) { statements } else if (condition) { statements } else { statements }

while (condition) { statements }

break

name (parameter list)

mod (modulus) { statements }

There is no distinction between input and output parameters, but conventionally, the outputs are
put at the end of the parameter list and the language allows one to write

F (X, Y, Z) as Y, Z = F (X)

Expressions are composed out of the following arithmetic operations:

+ addition.
− subtraction.
* multiplication.
/ division, or multiplicative inverse when enclosed in mod block.
% division remainder.
^ exponentiation.
>>constant right shift by a constant.
<<constant left shift by a constant.
condition?a:b pick a when condition is true, otherwise b when false.

Conditions can use the following operations:

== equality.
!= inequality.
> bigger than.
< smaller than.
!condition negation.

SOURCE
/sys/src/cmd/mpc.y

SEE ALSO
mp(2)

188

MS2HTML(1) MS2HTML(1)

NAME
ms2html, html2ms � convert between troff�s ms macros and html

SYNOPSIS
ms2html [−q] [−b basename] [−d delims] [−t title]
html2ms

DESCRIPTION
Ms2html converts the ms(6) source on standard input into HTML and prints it to standard output.
If the source contains tbl(1) or eqn input, you must first pipe the text through those preproces
sors. Postscript images, equations, and tables will be converted to gif files. If the document has a
.TL entry, its contents will be used as the title; otherwise ms2html will look for a ._T macro,
unknown to ms(6), and take its value. Options are:

q suppresses warnings about malformed input;
b sets the HTML base name to basename ;
d sets the eqn(1) delimiters to delim;
t sets the HTML title to title.

Html2ms reads HTML from standard input and converts it to ms(6) source on standard output. The
document is expected to be UTF encoded so a preprocessor like uhtml(1) should be used to nor
malize the HTML.

SOURCE
/sys/src/cmd/ms2html.c
/sys/src/cmd/html2ms.c

SEE ALSO
htmlroff(1), ms(6), uhtml(1)

BUGS
Ms2html doesn�t understand a number of troff commands. It does handle macros and defined
strings.

189

MTIME(1) MTIME(1)

NAME
mtime � print file modification time

SYNOPSIS
mtime file ...

DESCRIPTION
Mtime prints the modification time (in seconds since the epoch) and name of each file.

SOURCE
/sys/src/cmd/mtime.c

SEE ALSO
du(1), seconds(1)

190

MUG(1) MUG(1)

NAME
mug - convert an image to a face icon

SYNOPSIS
mug [file]

DESCRIPTION
Mug reads a Plan 9 image(6) from file (or standard input if there is no file) and displays a working
version of the icon a gray ramp, and a larger image (the �crop box�), all derived from file. Selecting
Write from the button-3 menu will write the icon in face(6) format to standard output.

Imagine a 3x3 grid on the crop box. You can move an edge or corner of the box by putting the
mouse in the corresponding section of the grid and dragging. Dragging in the middle box in the
grid translates the crop box. The mouse cursor changes to tell you where you are.

The bar in the gray ramp controls the map from picture gray levels to the output levels. The val
ues along the bar are mapped to 0 through 255 in the output. You can move the bar vertically by
grabbing the midsection or adjust the width by grabbing an endpoint.

The current icon is shown in the bottom left corner, surrounded by eight small empty boxes. You
can save the settings as they are by dragging the current icon into one of the other boxes. You
can restore the settings by dragging an icon from one of the periphery boxes into the middle.

EXAMPLES
Convert a JPEG image into a face icon.

jpg −c plus.jpg | mug >plus.1

SEE ALSO
faces(1), jpg(1), face(6), image(6)

191

MUS(1) MUS(1)

NAME
mus � MUS to MIDI converter

SYNOPSIS
games/mus [musfile]

DESCRIPTION
The MUS format is a simplified MIDI music format used in doom and several related games.

Mus decodes MIDI music encoded in MUS format, either from musfile or from standard input,
and produces a MIDI format file on standard output.

SEE ALSO
games(1)

SOURCE
/sys/src/games/mus.c

HISTORY
Mus first appeared in 9front (September, 2015).

192

NEDMAIL(1) NEDMAIL(1)

NAME
nedmail � reading mail

SYNOPSIS
upas/nedmail [−nr] [−f mailfile] [−s mailfile]

upas/nedmail −c dir

DESCRIPTION
Nedmail edits a mailbox. The default mailbox is /mail/box/username/mbox. The −f com
mand line option specifies an alternate mailbox. Unrooted path names are interpreted relative to
/mail/box/username. If the mailfile argument is omitted, the name defaults to stored.

The options are:

−c dir Create a mailbox. If dir is specified, the new mailbox is created in
/mail/box/username/dir/mbox. Otherwise, the default mailbox is cre
ated.

−r Reverse: show messages in first-in, first-out order; the default is last-in, first-
out.

−n Make the message numbers the same as the file names in the mail box direc
tory. This implies the −r option.

−f mailfile Read messages from the specified file (see above) instead of the default mail
box.

−s mailfile Read a single message file mailfile, as produced by fs, and treat it as an entire
mailbox. This is provided for use in plumbing rules; see faces(1).

Nedmail starts by reading the mail box, printing out the number of messages, and then prompting
for commands from standard input. Commands, as in ed(1), are of the form �[range] command
[arguments]�. The command is applied to each message in the (optional) range.

The address range can be:

address to indicate a single message header
address,address to indicate a range of contiguous message headers
g/expression/ to indicate all messages whose headers match the regular expression.
g%expression% to indicate all messages whose contents match the regular expression.

The addresses can be:

number to indicate a particular message
address.number to indicate a subpart of a particular message
/expression/ to indicate the next message whose header matches expression
%expression% to indicate the next message whose contents match expression
empty or . to indicate the current message
−address to indicate backwards search or movement

Since messages in MIME are hierarchical structures, in nedmail all the subparts are individually
addressable. For example if message 2 contains 3 attachments, the attachments are numbered
2.1, 2.2, and 2.3.

The commands are:

a args Reply to all addresses in the To:, From:, and Cc: header lines. Marshal is
used to format the reply and any arguments the user specifies are added to the
command line to marshal before the recipient. The possibility of making a fool
of yourself is very high with this command.

A args Like a but with the message appended to the reply.
b Print the headers for the next ten messages.
d Mark message to be deleted upon exiting nedmail.
f Append the message to the file /mail/box/username/sendername where

sendername is the account name of the sender.
h Print the disposition, size in characters, reception time, sender, and subject of

the message.
H Print the MIME structure of the message.

193

NEDMAIL(1) NEDMAIL(1)

help Print a summary of the commands.
m person ... Forward the message as a mime attachment to the named persons.
M person ... Like m but allow the user to type in text to be included with the forwarded mes

sage.
p Print message. An interrupt stops the printing.
r args Reply to the sender of the message. Marshal is used to format the reply. If any

optional args are specified, they are added to the command line to marshal
before the recipient�s address.

R args Like r but with the original message included as an attachment.
rf Like r but append the message and the reply to the file

/mail/box/username/sendername where sendername is the account name
of the sender.

Rf Like R but append the message and the reply to the file
/mail/box/username/sendername where sendername is the account name
of the sender.

s mfile Append the message to the specified mailbox. If mfile doesn�t start with a �/�, it
is interpreted relative to the directory in which the mailbox resides. If mfile is a
directory then the destination is a file in that directry. If the MIME header speci
fies a file name, that one is used. Otherwise, one is generated using mktemp(2)
and the string att.XXXXXXXXXXX.

q Put undeleted mail back in the mailbox and stop.
EOT (control-D) Same as q.
w file Same as s with the mail header line(s) stripped. This can be used to save binary

mail bodies.
u Remove mark for deletion.
x Exit, without changing the mailbox file.
y Synchronize with the mail box. Any deleted messages are purged and any new

messages read. This is equivalent to quiting nedmail and restarting.
|command Run the command with the message body as standard input.
||command Run the command with the whole message as standard input.
!command Escape to the shell to do command.
= Print the number of the current message.

Here�s an example of a mail session that looks at a summary of the mail messages, saves away an
html file added as an attachment to a message and then deletes the message:

% mail
7 messages
: ,h
1 H 2129 07/22 12:30 noone@madeup.net "Add Up To 2000 free miles"
2 504 07/22 11:43 jmk
3 H 784 07/20 09:05 presotto
4 822 07/11 09:23 xxx@yyy.net "You don’t call, you don’t write..."
5 193 07/06 16:55 presotto
6 529 06/01 19:42 jmk
7 798 09/02 2000 howard
: 1H
1 multipart/mixed 2129 from=noone@madeup.net
1.1 text/plain 115
1.2 text/html 1705 filename=northwest.htm
: 1.2w /tmp/northwest.html
!saved in /tmp/northwest.html
1.2: d
1: q
!1 message deleted
%

Notice that the delete of message 1.2 deleted the entire message and not just the attachment.

FILES
/mail/box/* mail directories

194

NEDMAIL(1) NEDMAIL(1)

/mail/box/*/mbox mailbox files
/mail/box/*/forward forwarding address(es)
/mail/box/*/pipeto mail filter
/mail/box/*/L.reading mutual exclusion lock for multiple mbox readers
/mail/box/*/L.mbox mutual exclusion lock for altering mbox

SOURCE
/sys/src/cmd/upas/ned

SEE ALSO
mail(1), aliasmail(8), filter(1), marshal(1), mlmgr(1), nedmail(1), upasfs(4), smtp(8), faces(1),
rewrite(6)

195

NETSTAT(1) NETSTAT(1)

NAME
netstat � summarize network connections

SYNOPSIS
netstat [−in] [−p proto] [netmtpt]

DESCRIPTION
Netstat prints information about network mounted at netmtpt, default /net. For IP connections,
netstat reports the protocol, connection number, user, connection state, local port, remote port
and remote address.

The options are:

−i Instead of the usual listing, print one line per network interface. Each line gives the device,
MTU, local address, mask, remote address, packets in, packets out, errors in, and errors
out for this interface.

−n By default, netstat looks up port numbers and addresses in the network databases to print
symbolic names if possible. This option disables such translation.

−p Show only connections with the given protocol.

FILES
/net/*/*

SOURCE
/sys/src/cmd/netstat.c

SEE ALSO
ipconfig(8)

196

NEWS(1) NEWS(1)

NAME
news � print news items

SYNOPSIS
news [−a] [−n] [item ...]

DESCRIPTION
When invoked without options, this simple local news service prints files that have appeared in
/lib/news since last reading, most recent first, with each preceded by an appropriate header.
The time of reading is recorded. The options are

−a Print all items, regardless of currency. The recorded time is not changed.

−n Report the names of the current items without printing their contents, and without chang
ing the recorded time.

Other arguments select particular news items.

To post a news item, create a file in /lib/news.

You may arrange to receive news automatically by registering your mail address in
/sys/lib/subscribers. A daemon mails recent news to all addresses on the list.

Empty news items, and news items named core or dead.letter are ignored.

FILES
/lib/news/* articles
$HOME/lib/newstime modify time is time news was last read
/sys/lib/subscribers who gets news mailed to them

SOURCE
/sys/src/cmd/news.c

197

NEWT(1) NEWT(1)

NAME
newt � network news transport protocol (NNTP) client

SYNOPSIS
newt [−f newsgroup] [−m mountpoint] [−p maxposts]

DESCRIPTION
Newt provides an interactive, text-based interface to NNTP articles served by nntpfs(4).

There are a number of options:

−f Load the specified newsgroup. Default is alt.test.

−m Directory where nntpfs is mounted. Default is /mnt/news.

−p Number of posts to display, up to and including the most recent post. Default is 30.

Newt starts by reading the list of messages in the newsgroup, printing out the number of mes
sages, and then prompting for commands. The prompt itself represents the name of the group
followed by the message number in the form of a file system path, relative to the mountpoint.

Commands, as in ed(1), are of the form �[range] command [arguments]�. The command is applied
to each message in the (optional) range.

The address range can be:

address to indicate a single message header.

address,address to indicate a range of contiguous message headers.

The addresses can be:

number to indicate a particular message.

The commands are:

number
Print message number.

b Print the headers for the next ten messages.

e Enter a new message, honoring the environment variable editor. Default is hold(1).

g newsgroup
Change to the specified newsgroup. The name of a group may be provided in dotted
(alt.test) or path (alt/test) format.

h Print the disposition, date, sender and subject line of the message. These lines are suitable
for selecting and sending to the prompt, in order to print messages either singly or in
aggregate.

help Print a summary of the available commands.

k [newsgroup]
Without an argument, k walks the directories under the current group and prints com
mands suitable for changing to each available sub-group. When provided with an argu
ment, it instead walks the directories under the group specified by the argument.

kf regexp
Greps $home/lib/newsgroups for regexp and prints commands suitable for changing
to each match.

p Print the current message with minimal headers.

P Print the raw message with full headers.

q Quit.

r Reply to the current message.

y Synchronize message list with the server.

|command
Run the command with the message body as standard input.

198

NEWT(1) NEWT(1)

||command
Run the command with the whole message as standard input.

!command
Escape to the shell to do command.

" Print the current message in quoted form, suitable for reply.

The environment variables $editor and $pager are honored.

FILES
$home/lib/newsgroups list of newsgroups, one per line

SOURCE
/rc/bin/newt

SEE ALSO
nntpfs(4)

BUGS
The list of available newsgroups offered by a given server may be quite large. This complicates
walking the list over a slow Internet connection, and renders searching in real-time all but infeasi
ble. Grepping a pre-generated newsgroups file is a compromise.

HISTORY
Newt first appeared in 9front (April, 2014).

199

NIETZSCHE(1) NIETZSCHE(1)

NAME
nietzsche � print out Nietzsche quote

SYNOPSIS
nietzsche [numbers]

DESCRIPTION
Nietzsche cites ��Human, all too human�� by Friedrich Nietzsche. It prints the aphorisms with the
numbers given as arguments, or a random one, if no argument is supplied.

FILES
/lib/human

SOURCE
/rc/bin/nietzsche

HISTORY
Nietzsche first appeared in 9front (July, 2011).

200

NINTENDO(1) NINTENDO(1)

NAME
gb, gba, nes, snes � emulators

SYNOPSIS
games/gb [−acd] [−C ...] [−x scale] romfile
games/gba [−a] [−b biosfile] [−s savetype] [−x scale] romfile
games/nes [−aos] [−x scale] romfile
games/snes [−ahms] [−x scale] romfile

DESCRIPTION
Gb, gba, nes and snes are emulators for the Nintendo Game Boy and Game Boy Color (GB and GBC),
Nintendo Game Boy Advance (GBA), Nintendo Entertainment System (NES), and Super Nintendo
Entertainment System (SNES). They execute the romfile given as an argument. The z, x, a, s, q, w,
return and shift keys correspond to B, A, Y, X, L1, L2, Start and Select, respectively. Other keys:

F1 Pause the emulator. If already paused it will step one video frame.

F5 Save the current state in gb.save / gba.save / nes.save / snes.save.

F6 Load the current state from gb.save / gba.save / nes.save / snes.save.

F12 Toggle the emulator�s speedometer. It shows in the upper left, off-viewport corner, the
ratio between the expected and observed time it took to draw 60 frames.

t Toggle tracing of the emulator.

� It uncaps the 60fps frame rate and lets emulation go as fast as possible.

Esc Pause the emulator.

Del Exit the emulator.

Command line options:

−a Enable audio output.

−x Scale the screen to a given factor regardless of the window�s size.

gb options:

−c Run GBC roms in GBC mode and DMG (GB) roms in GBC�s DMG compatibility mode.

−d Run GB roms in DMG mode. GBC-only roms will not run in this mode; others will run only in
black & white.

−Cnnnnnn,nnnnnn,nnnnnn,nnnnnn
Select a color palette. Has no effect on roms in color mode. The syntax is of the form -C
ffffff,aaaaaa,555555,000000 (using HTML style rrggbb notation).

gba options:

−b Location of the GBA BIOS file (required to operate the emulator). Default is
/sys/games/lib/gbabios.bin.

−s Save format used by the original game. Valid formats are: eeprom4, eeprom64, sram256,
flash512, flash1024. The number corresponds to the size, in kilobits, of the save file. By
default, the emulator attempts to automatically detect the save format, but does not always
succeed.

nes options:

−o Hide the top and bottom eight pixels (overscan area), like a real television would.

−s Save contents of battery backed SRAM (used by some games for savegames) as a file (gb
and snes automatically detect if this is needed).

snes options:

−h Override HiROM/LoROM detection: −h sets LoROM, −hh sets HiROM.

−m Enable mouse emulation using system mouse. Mouse button 1 (left button) engages the
SNES left mouse button. Mouse button 3 (right button) engages the SNES right mouse but
ton. Holding down mouse button 2 (middle button) disengages the SNES mouse entirely so
that the Plan 9 cursor offset can be adjusted to align with the SNES cursor.

201

NINTENDO(1) NINTENDO(1)

SOURCE
/sys/src/games/gb
/sys/src/games/gba
/sys/src/games/nes
/sys/src/games/snes

BUGS
You bet!
SRAM saving on the NES only functions when the −s option is used.
The SNES horizontal hires mode is supported only with −2 scaling.
All emulators assume a North American (i.e. NTSC) system. PAL games (and in some cases
Japanese games) are not supported.

HISTORY
Gb first appeared in 9front (April, 2012).
Gba first appeared in 9front (September, 2014).
Nes first appeared in 9front (February, 2014).
Snes first appeared in 9front (March, 2014).

202

NM(1) NM(1)

NAME
nm � name list (symbol table)

SYNOPSIS
nm [−aghnsTu] file ...

DESCRIPTION
Nm prints the name list of each executable or object file in the argument list. If the file is an
archive (see ar(1)), the name list of each file in the archive is printed. If more than one file is given
in the argument list, the name of each file is printed at the beginning of each line.

Each symbol name is preceded by its hexadecimal value (blanks if undefined) and one of the let
ters

U undefined symbol
T text segment symbol
t static text segment symbol
L leaf function text segment symbol
l static leaf function text segment symbol
D data segment symbol
d static data segment symbol
B bss segment symbol
b static bss segment symbol
a automatic (local) variable symbol
p function parameter symbol
z source file name
Z source file line offset
f source file name components

The output is sorted alphabetically.

Options are:

−a Print all symbols; normally only user-defined text, data, and bss segment symbols are
printed.

−g Print only global (T, L, D, B) symbols.

−h Do not print file name headers with output lines.

−n Sort according to the address of the symbols.

−s Don�t sort; print in symbol-table order.

−T Prefix each line with the symbol�s type signature.

−u Print only undefined symbols.

SOURCE
/sys/src/cmd/nm.c

SEE ALSO
ar(1), 2l(1), db(1), acid(1), a.out(6)

203

NS(1) NS(1)

NAME
ns � display name space

SYNOPSIS
ns [−r] [pid]

DESCRIPTION
Ns prints a representation of the file name space of the process with the named pid, or by default
itself. The output is in the form of an rc(1) script that could, in principle, recreate the name space.
The output is produced by reading and reformatting the contents of /proc/pid/ns.

By default, ns rewrites the names of network data files to represent the network address that data
file is connected to, for example replacing /net/tcp/82/data with tcp!123.122.121.9.
The −r flag suppresses this rewriting.

FILES
/proc/*/ns

SOURCE
/sys/src/cmd/ns.c

SEE ALSO
ps(1), proc(3), namespace(4), namespace(6)

BUGS
The names of files printed by ns will be inaccurate if a file or directory it includes has been
renamed.

The name of this tool is reminiscent of National Socialism and NeXTSTEP, it�s hard to decide which
one is worse.

204

OPL3(1) OPL3(1)

NAME
opl3 � OPL3 chip emulator

SYNOPSIS
opl3 [−n rate] [file]

DESCRIPTION
Opl3 is an emulator of a single Yamaha 262 chip, also known as OPL3.

The emulated chip is programmed by a stream of commands either from file or from standard in.
It then synthesizes a number of stereo 16 bit little-endian samples for a sampling rate of 44.1
kHz, and writes them to standard out.

Commands are 5 bytes wide, in little-endian byte order:

register[2] value[1] delay[2]

Each command specifies a value to be written to an OPL3 chip register, modifying its internal state.

The delay field provides timing. It is a multiple of a command period, during which the OPL3 chip
may be sampled before processing the next command. The period itself is the inverse of the com
mand rate, 44100 Hz by default. This rate can be set using the −n parameter.

SOURCE
/sys/src/games/opl3

SEE ALSO
audio(3)

HISTORY
Opl3 first appeared in 9front (July, 2018), based on ymf262.c from the Multiple Arcade Machine
Emulator (MAME).

205

OS(1) OS(1)

NAME
os � interface to host OS commands (drawterm only)

SYNOPSIS
os [−b] [−m mountpoint] [−d dir] [−n] [−N level] cmd [arg...]

DESCRIPTION
Os uses a cmd(3) device to execute a command, cmd, on a host system. If the −m option is given,
os uses the device at mountpoint, otherwise it is assumed to be at /mnt/term/cmd.

The −d option causes the command to run in directory dir; an error results and the command will
not run if dir does not exist or is inaccessible. The standard output and standard error of the com
mand appear on the standard output and standard error streams of the os command itself. Os
copies the standard input to the remote command�s standard input; redirect os�s input to
/dev/null if there is no input to the command. Os terminates when cmd does, and its exit sta
tus reflects the status of cmd (if available).

If the os command is killed or exits (eg, for lack of input and output), the host�s own process con
trol operations are used to (attempt to) kill cmd, if it is still running. The −b (background) option
suppresses that behaviour.

The −n option causes cmd to run with less than normal priority (�nice�). The −N option sets low
priority to a particular level from 1 to 3.

FILES
/mnt/term/cmd/clone

SOURCE
/sys/src/cmd/os.c

SEE ALSO
rcpu(1), cmd(3)

DIAGNOSTICS
The exit status of os reflects any error that occurs when starting cmd and, if it starts successfully,
the status of os is the exit status of cmd.

206

P(1) P(1)

NAME
p � paginate

SYNOPSIS
p [−number] [file ...]

DESCRIPTION
P copies its standard input, or the named files if given, to its standard output, stopping at the end
of every 22nd line, and between files, to wait for a newline from the user. The option sets the
number of lines on a page.

While waiting for a newline, p interprets the commands:

! Pass the rest of the line to the shell as a command.

q Quit.

SOURCE
/sys/src/cmd/p.c

207

PAGE(1) PAGE(1)

NAME
page � view FAX, image, graphic, PostScript, PDF, and typesetter output files

SYNOPSIS
page [−iRw] [−p ppi] [−j addr] [file...]

DESCRIPTION
Page is a general purpose document viewer. It can be used to display the individual pages of a
PostScript, PDF, or troff(1) device independent output file. Troff output is simply converted to
PostScript in order to be viewed. It can also be used to view any number of graphics files (such as
a FAX page, a Plan 9 image(6) file, an Inferno bitmap file, or other common format). Page displays
these in sequence. In the absence of named files, page reads one from standard input.

By default, page runs in the window in which it is started and leaves the window unchanged. The
−R option causes page to grow the window if necessary to display the page being viewed. The −w
option causes page to create a new window for itself. The newly created window will grow as
under the −R option.

The −p option sets the resolution for PostScript and PDF files, in pixels per inch. The default is
100 ppi.

When viewing images with page, it listens to the image plumbing channel (see plumber(4)) for
more images to display. The −i option causes page to not load any graphics files nor to read
from standard input but rather to listen for ones to load from the plumbing channel.

The −j option with a page address addr jumps to the specified page on startup.

Pressing and holding button 1 permits panning about the page.

Button 2 raises a menu of operations on the current image or the entire set. The image transfor
mations are non-destructive and are valid only for the currently displayed image. They are lost as
soon as another image is displayed. The button 2 menu operations are:

Orig size
Restores the image to the original. All modifications are lost.

Zoom controls magnification.
Fit Resizes the image so that it fits in the current window.
Rotate 90

Rotates the image 90 degrees clockwise
Upside down

Toggles whether images are displayed upside-down.
Next Displays the next page.
Prev Displays the previous page.
Snarf Writes the current page address to the snarf buffer.
Zerox Displays the current image in a new page window. Useful for selecting important pages

from large documents.
Write Asks for a filename and writes the current image as Plan 9 bitmap.
Ext Shows the current image using external jpg(1) program in a separate window. This is

mostly useful for animated gifs.

Button 3 raises a menu of the pages to be selected for viewing in any order.

Typing a q or control-D exits the program.

To go to a specific page, one can type its number followed by enter. Typing left arrow or back
space displays the previous page. Typing right arrow, space, or enter displays the next page. The
up and down arrow pan up and down one half screen height, changing pages when panning off the
top or bottom of the page.

Page calls gs(1) to draw each page of PostScript and PDF files. It also calls a variety of conversion
programs, such as those described in jpg(1), to convert the various raster graphics formats into
Inferno bitmap files. Pages are converted ��on the fly,�� as needed.

EXAMPLES
page /sys/src/cmd/gs/examples/tiger.eps

Display a color PostScript file.

208

PAGE(1) PAGE(1)

page /usr/inferno/icons/*.bit
Browse the Inferno bitmap library.

page −j /sys/doc/troff.ps!7 /sys/doc/troff.ps
Jump to page 7 in the troff manual.

man −t page | page −w
Preview this manual in a new window.

SEE ALSO
gs(1), jpg(1), troff(1)

SOURCE
/sys/src/cmd/page.c

BUGS
The interface to the plumber is experimental.

HISTORY
Page first appeared in Plan 9 from Bell Labs. It was rewritten from scratch for 9front (September,
2011).

209

PAINT(1) PAINT(1)

NAME
paint � create image files by drawing with a mouse or other pointing device

SYNOPSIS
paint [file]

DESCRIPTION
Paint displays a canvas upon which can be drawn lines using the mouse holding down buttons 1 or
2 for foreground or background color. The canvas may be moved with button 3. Colors and brush
sizes may be selected by clicking on the palette at the bottom of the screen with buttons 1 or 2.
Clicking button 3 on the palette allows changing a color by entering its hex value.

If the optional file argument is specified, then it is read and used as the canvas. Paint only recog
nizes Plan 9 bitmap format (see image(6)).

A number of immediate keyboard commands are recognized:

u Undos the previous action.

c Clears the canvas with the background color.

1−9 Select brush size.

f Select flood fill brush.

+ Doubles magnification.

− Halves magnification.

esc Centers the canvas and resets magnification.

Hitting any other key on the keyboard shows a command prompt where the following commands
may be entered:

rfile Reads the canvas from file.

wfile Writes the canvas to file.

<command
Executes command and reads the canvas from its standard output.

>command
Executes command and writes the canvas to its standard input.

|command
Transforms the canvas by piping it thru command.

q Quits the program.

SOURCE
/sys/src/cmd/paint.c

SEE ALSO
resample(1), rotate(1), crop(1), jpg(1), page(1), image(6)

HISTORY
Paint first appeared in 9front (October, 2011).

210

PASSWD(1) PASSWD(1)

NAME
passwd, netkey � change or verify user password

SYNOPSIS
passwd [−1] [username[@domain]]

netkey

DESCRIPTION
Passwd changes the invoker�s Plan 9 password and/or APOP secret. The Plan 9 password is used
to login to a terminal while the APOP secret is used for a number of external services: POP3, IMAP,
and VPN access. The optional argument specifies the user name and authentication domain to use
if different than the one associated with the machine passwd is run on.

The program first prompts for the old Plan 9 password in the specified domain to establish iden
tity. It then prompts for changes to the password and the secret. New passwords and secrets
must be typed twice, to forestall mistakes. New passwords must be sufficiently hard to guess.
They may be of any length greater than seven characters.

By default, passwd requires the auth server to support dp9ik(6). The −1 flag forces passwd to
authenticate using p9sk1(6).

Netkey prompts for a password to encrypt network challenges. It is a substitute for a SecureNet
box. It may only be run on a terminal.

SOURCE
/sys/src/cmd/auth/passwd.c
/sys/src/cmd/auth/netkey.c

SEE ALSO
readnvram in authsrv(2), encrypt(2), cons(3), auth(8), securenet(8)

Robert Morris and Ken Thompson, ��UNIX Password Security,�� AT&T Bell Laboratories Technical
Journal Vol 63 (1984), pp. 1649-1672

BUGS
Now that cpu connections are always encrypted, the only good reason to require that these com
mands be run only on terminals is concern that the CPU server might be subverted.

211

PATCH(1) PATCH(1)

NAME
patch � simple patch creation and tracking system

SYNOPSIS
patch/create name email files ... [< description]

patch/list [name ...]

patch/diff name

patch/apply name

patch/undo name

patch/note name [< note]

DESCRIPTION
These scripts are a simple patch submission and tracking system used to propose additions or
changes to Plan 9. There is no guarantee that any patch will be accepted, nor that it will be
accepted verbatim. Each patch has a name (lowercase letters, numbers, dash, dot, and underscore
only) and is stored in /n/sources/patch/name.

Patch/create creates a new patch consisting of the changes to the listed files from the distribution,
reading a description of the patch from standard input: please provide an explanation of what the
change is supposed to do, some context, and a rationale for the change. Test data or pointers to
same to verify that the fix works are also welcome. When sending a patch, follow these guidelines:

" Before preparing the patch, run replica/pull and base your patch on current distribution source
code.

" If this is a bug fix, explain the bug clearly. Don�t assume the bug is obvious from the fix.

" If this is a new feature, explain it clearly. Don�t assume it is obvious from the change.

" Make the new code look as much like the old code as possible: don�t make gratuitous changes,
and do follow the style of the old code. See style(6) for the canonical Plan 9 coding style.

" If your patch changes externally-visible behaviour, update the manual page.

The email address, if not −, will be sent notification messages when the patch is applied, rejected,
or commented on. If rejected, the e-mail will contain a note explaining why and probably listing
suggested changes and encouraging you to resubmit.

Patch/list displays information about the named patches, or all currently pending patches if none
are specified.

Patch/diff shows a patch as diffs between the original source files and the patched source files.

Patch/apply applies the patch to the current source tree. It is intended to be run by the Plan 9
developers with pie as their root file system. If the source has changed since the patch was cre
ated, apply will report the conflict and not change any files. Before changing any files, patch/apply
makes backup copies of the current source tree�s files. The backups are stored in the patch direc
tory.

Patch/undo will copy the backups saved by patch/apply back into the source tree. It will not
restore a backup if the file being replaced is not byte-identical to the one created by patch/apply.

EXAMPLES
Propose a change to pwd, which you have modified locally:

% patch/create pwd−errors user@host.dom /sys/src/cmd/pwd.c
Fix pwd to print errors to fd 2 rather than 1.
^D
%

Then the developers at Bell Labs run

patch/diff pwd−errors

to inspect the change (possibly viewing /n/sources/patch/pwd−errors/pwd.c to see the
larger context). To make the change, they run

212

PATCH(1) PATCH(1)

patch/apply pwd−errors

Otherwise they run

% patch/note pwd−errors
Pwd should definitely print errors to fd 1 because ...
^D
%

to add a note to the /n/sources/pwd−errors/notes file.

FILES
/n/sources/patch

SOURCE
/rc/bin/patch

SEE ALSO
diff(1)
http://plan9.bell−labs.com/wiki/plan9/How_to_contribute

213

PC(1) PC(1)

NAME
pc � programmer�s calculator

SYNOPSIS
pc [−n]

DESCRIPTION
Pc is an arbitrary precision integer calculator with a special emphasis on supporting two�s comple
ment bit operations and working with different number bases.

Pc reads input statements which are either expressions or control statements. Multiple statements
in one line can be separated by semicolons. Pc prints the value of all expressions that are not ter
minated by a semicolon.

Pc can be run non-interactively by using the −n switch. In this case no input prompt is printed.

Expressions can use the C-like operators

+ − * ** (exponentiation)

/ % (Euclidean division, by default)

& | ^ ~ ! << >>

&& || (returning the second argument, if appropriate)

< >= < <= == !=

The $ operator performs sign extension. n$x truncates x to n bits and sign extends. If n is omit
ted, it is inferred from the highest set bit (the result is always d 0 in this case).

Variables can be defined using =. The builtin variable @ always refers to the last printed result.

Numbers can use the prefixes 0b (binary), 0 (octal), 0d (decimal) and 0x (hexadecimal). _ in
numbers can be added for readability and is ignored.

Builtin functions
bin(n) Display n in binary.
oct(n) Display n in octal.
dec(n) Display n in decimal.
hex(n) Display n in hexadecimal.
pb(n, b) Display n in base b (currently must be one of 0, 2, 8, 10, 16; 0 uses the

defined output base).
abs(n) Absolute value of n.
round(n,m) n rounded to the nearest multiple of m. Numbers exactly halfway between

are rounded to the next even multiple.
floor(n,m) n rounded down to the next multiple of m.
ceil(n,m) n rounded up to the next multiple of m.
trunc(n,m) n truncated to m bits.
xtend(n,m) n truncated to m bits, with the highest bit interpreted as a sign bit.
rev(n,m) n truncated to m bits, with the order of bits reversed.
ubits(n) The minimum number of bits required to represent n as an unsigned number.
sbits(n) The minimum number of bits required to represent n as an signed number.
nsa(n) The number of bits set in n.
cat(a

0
,n

0
,...,a

N
,n

N
) Truncate each of the a

i
arguments to n

i
bits and concatenate their binary rep

resentation.
gcd(n,m) The greatest common divisor of n and m.
clog(a,b) The ceiling of the logarithm of a with respect to base b. b can be omitted, in

which case it defaults to 2.
minv(n,m) The inverse of n mod m.
rand(n) A random number satisfying 0 d rand(n) < n.

Control statements
Control statements are always evaluated with default input base 10.

_ n If n ` 0, insert _ in all printed numbers, every n digits.

214

PC(1) PC(1)

< n Set the default input base to n (default 10). The input base can always be overriden by the
base prefixes defined above.

> n Set the output base to n. If n = 0 (default), print each number in the base it was input in.

/ 0 Use Euclidean division (default). a / b is rounded towards ±� (opposite sign as b). a % b
is always non-negative.

/ 1 Use truncating division (same as C). a / b is rounded towards zero. a % b can be negative.

’ 1 Enable numbering bits (disable with 0). If the base is a power of two, print the number of
the corresponding bit above each digit.

SOURCE
/sys/src/cmd/pc.y

SEE ALSO
bc(1), hoc(1)

BUGS
With the input base set to 16, terms such as ABC are ambiguous. They are interpreted as numbers
only if there is no function or variable of the same name. To force interpretation as a number, use
the 0x prefix.

Arbitrary bases should be supported, but are not supported by the mp(2) string functions.

HISTORY
Pc first appeared in 9front (August, 2016).

215

PCC(1) PCC(1)

NAME
pcc � APE C compiler driver

SYNOPSIS
pcc [option ...] [name ...]

DESCRIPTION
Pcc compiles and loads C programs, using APE (ANSI C/POSIX) include files and libraries. Named
files ending with .c are preprocessed with cpp(1), then compiled with one of the compilers
described in 2c(1), as specified by the environment variable $objtype. The object files are then
loaded using one of the loaders described in 2l(1). The options are:

−o out Place loader output in file out instead of the default 2.out, v.out, etc.

−P Omit the compilation and loading phases; leave the result of preprocessing
name.c in name.i.

−E Like −P, but send the result to standard output.

−c Omit the loading phase.

−p Insert profiling code into the executable output.

−w Print compiler warning messages.

−llib Include /$objtype/lib/ape/liblib.a as a library during the linking phase.

−B Don�t complain about functions used without ANSI function prototypes.

−V Enable void* conversion warnings, as in 2c(1).

−v Echo the preprocessing, compiling, and loading commands before they are exe
cuted.

−Dname=def
−Dname Define the name to the preprocessor, as if by #define. If no definition is given,

the name is defined as 1.

−Uname Undefine the name to the preprocessor, as if by #undef.

−Idir #include files whose names do not begin with / are always sought first in the
directory of the file argument, then in directories named in −I options, then in
/$objtype/include/ape.

−N Don�t optimize compiled code.

−S Print an assembly language version of the object code on standard output.

−a Instead of compiling, print on standard output acid functions (see acid(1)) for
examining structures declared in the source files.

−aa Like −a except that functions for structures declared in included header files are
omitted.

−F Enable vararg type checking as described in 2c(1). This is of limited use without the
appropriate #pragma definitions.

The APE environment contains all of the include files and library routines specified in the ANSI C
standard (X3.159-1989), as well as those specified in the IEEE Portable Operating System Interface
standard (POSIX, 1003.1-1990, ISO 9945-1). In order to access the POSIX routines, source pro
grams should define the preprocessor constant _POSIX_SOURCE.

FILES
/sys/include/ape directory for machine-independent #include files.
/$objtype/include/ape directory for machine-dependent #include files.
/$objtype/lib/ape/libap.a ANSI C/POSIX library.

SEE ALSO
cpp(1), 2c(1), 2a(1), 2l(1), mk(1), nm(1), acid(1), db(1), prof(1)

Howard Trickey, ��APE � The ANSI/POSIX Environment��

216

PCC(1) PCC(1)

SOURCE
/sys/src/cmd/pcc.c

BUGS
The locale manipulation functions are minimal. Signal functions and terminal characteristic han
dlers are only minimally implemented. Link always fails, because Plan 9 doesn�t support multiple
links to a file. The functions related to setting effective user and group ids cannot be implemented
because the concept doesn�t exist in Plan 9.

217

PIC(1) PIC(1)

NAME
pic � troff preprocessor for drawing pictures

SYNOPSIS
pic [files]

DESCRIPTION
Pic is a troff(1) preprocessor for drawing figures on a typesetter. Pic code is contained between
.PS and .PE lines:

.PS optional−width optional−height
element−list
.PE

or in a file mentioned in a .PS line:

.PS <file

If optional−width is present, the picture is made that many inches wide, regardless of any dimen
sions used internally. The height is scaled in the same proportion unless optional−height is pre
sent. If .PF is used instead of .PE, the typesetting position after printing is restored to what it
was upon entry.

An element−list is a list of elements:
primitive attribute−list
placename : element
placename : position
var = expr
direction
{ element−list }
[element−list]
for var = expr to expr by expr do { anything }
if expr then { anything } else { anything }
copy file, copy thru macro, copy file thru macro
sh { commandline }
print expr
reset optional var−list
troff−command

Elements are separated by newlines or semicolons; a long element may be continued by ending the
line with a backslash. Comments are introduced by a # and terminated by a newline. Variable
names begin with a lower case letter; place names begin with upper case. Place and variable
names retain their values from one picture to the next.

After each primitive the current position moves in the current direction (up,down, left,right
(default)) by the size of the primitive. The current position and direction are saved upon entry to a
{...} block and restored upon exit. Elements within a block enclosed in [...] are treated as a
unit; the dimensions are determined by the extreme points of the contained objects. Names, vari
ables, and direction of motion within a block are local to that block.

Troff−command is any line that begins with a period. Such a line is assumed to make sense in the
context where it appears; generally, this means only size and font changes.

The primitive objects are:
box circle ellipse arc line arrow spline move text−list

arrow is a synonym for line −>.

An attribute−list is a sequence of zero or more attributes; each attribute consists of a keyword,
perhaps followed by a value.

h(eigh)t expr wid(th) expr
rad(ius) expr diam(eter) expr
up opt−expr down opt−expr
right opt−expr left opt−expr
from position to position

218

PIC(1) PIC(1)

at position with corner
by expr, expr then
dotted opt−expr dashed opt−expr
chop opt−expr −> <− <−>
invis same
fill opt−expr
text−list expr

Missing attributes and values are filled in from defaults. Not all attributes make sense for all prim
itives; irrelevant ones are silently ignored. The attribute at causes the geometrical center to be
put at the specified place; with causes the position on the object to be put at the specified place.
For lines, splines and arcs, height and width refer to arrowhead size. A bare expr implies
motion in the current direction.

Text is normally an attribute of some primitive; by default it is placed at the geometrical center of
the object. Stand-alone text is also permitted. A text list is a list of text items:

text−item:
"..." positioning ...
sprintf("format", expr, ...) positioning ...

positioning:
center ljust rjust above below

If there are multiple text items for some primitive, they are arranged vertically and centered except
as qualified. Positioning requests apply to each item independently. Text items may contain troff
commands for size and font changes, local motions, etc., but make sure that these are balanced so
that the entering state is restored before exiting.

A position is ultimately an x,y coordinate pair, but it may be specified in other ways.
position:

expr, expr
place ± expr, expr
place ± (expr, expr)
(position, position) x from one, y the other
expr [of the way] between position and position
expr < position , position >
(position)

place:
placename optional−corner
corner of placename
nth primitive optional−corner
corner of nth primitive
Here

An optional−corner is one of the eight compass points or the center or the start or end of a primi
tive.

optional−corner:
.n .e .w .s .ne .se .nw .sw .c .start .end

corner:
top bot left right start end

Each object in a picture has an ordinal number; nth refers to this.
nth:

nth, nth last

The built-in variables and their default values are:
boxwid 0.75 boxht 0.5
circlerad 0.25 arcrad 0.25
ellipsewid 0.75 ellipseht 0.5
linewid 0.5 lineht 0.5
movewid 0.5 moveht 0.5
textwid 0 textht 0
arrowwid 0.05 arrowht 0.1
dashwid 0.1 arrowhead 2
scale 1

These may be changed at any time, and the new values remain in force from picture to picture

219

PIC(1) PIC(1)

until changed again or reset by a reset statement. Variables changed within [and] revert to
their previous value upon exit from the block. Dimensions are divided by scale during output.

Expressions in pic are evaluated in floating point. All numbers representing dimensions are taken
to be in inches.

expr:
expr op expr
− expr
! expr
(expr)
variable
number
place .x place .y place .ht place .wid place .rad
sin(expr) cos(expr) atan2(expr,expr) log(expr) exp(expr)
sqrt(expr) max(expr,expr) min(expr,expr) int(expr) rand()

op:
+ − * / % < <= > >= == != && ||

The define and undef statements are not part of the grammar.
define name { replacement text }
undef name

Occurrences of $1, $2, etc., in the replacement text will be replaced by the corresponding argu
ments if name is invoked as

name(arg1, arg2, ...)
Non-existent arguments are replaced by null strings. Replacement text may contain newlines.
The undef statement removes the definition of a macro.

SOURCE
/sys/src/cmd/pic

SEE ALSO
grap(1), doctype(1), troff(1)
B. W. Kernighan, ��PIC�a Graphics Language for Typesetting��, Unix Research System
Programmer’s Manual, Tenth Edition, Volume 2

220

PIPEFILE(1) PIPEFILE(1)

NAME
pipefile � attach filter to file in name space

SYNOPSIS
pipefile [−d] [−r command] [−w command] file

DESCRIPTION
Pipefile uses bind(2) to attach a pair of pipes to file, using them to interpose filter commands
between the true file and the simulated file that subsequently appears in the name space. Option
−r interposes a filter that will affect the data delivered to programs that read from file; −w inter
poses a filter that will affect the data written by programs to file. At least one command must be
specified; pipefile will insert a cat(1) process in the other direction.

After pipefile has been run, the filters are established for programs that subsequently open the
file; programs already using the file are unaffected.

Pipefile opens the file twice, once for each direction. If the file is a single-use device, such as
/dev/mouse, use the −d flag to specify that the file is to be opened once, in ORDWR mode.

EXAMPLES
Simulate an old terminal:

% pipefile -w �tr a-z A-Z� /dev/cons
% rc -i </dev/cons >/dev/cons >[2=1]
% echo hello
HELLO
%

Really simulate an old terminal:

% pipefile -r �tr A-Z a-z� -w �tr a-z A-Z� /dev/cons
% rc -i </dev/cons >/dev/cons >[2=1]
% DATE
THU OCT 12 10:13:45 EDT 2000
%

SOURCE
/sys/src/cmd/pipefile.c

SEE ALSO
mouse(8)

BUGS
The I/O model of pipefile is peculiar; it doesn�t work well on plain files. It is really intended for use
with continuous devices such as /dev/cons and /dev/mouse. Pipefile should be rewritten to be a
user-level file system.

If the program using the file managed by pipefile exits, the filter will see EOF and exit, and the file
will be unusable until the name space is repaired.

221

PLAY(1) PLAY(1)

NAME
play � simple audio player

SYNOPSIS
play [−o file] [file | url ...]

DESCRIPTION
Play is a simple audio player that understands a number of audio and playlist formats.

If no file or url arguments are given, standard input is used. The file type is determined using the
file(1) command and a matching audio(1) decoder is applied.

By default, raw audio data is written to /dev/audio unless changed with the −o option.

SOURCE
/rc/bin/play

SEE ALSO
audio(1), hget(1)

HISTORY
Play first appeared in 9front (January, 2012).

222

PLOT(1) PLOT(1)

NAME
plot � graphics filter

SYNOPSIS
plot [file ...]

DESCRIPTION
Plot interprets plotting instructions (see plot(6)) from the files or standard input, drawing the
results on the screen. Plot persists until a newline is typed. Various options may be interspersed
with the file arguments; they take effect at the given point in processing. Options are:

−d Double buffer: accumulate the plot off-screen and write to the screen all at once
when an erase command is encountered or at end of file.

−e Erase the screen.

−c col Set the foreground color (see plot(6) for color names).

−f fill Set the background color.

−g grade Set the quality factor for arcs. Higher grades give better quality.

−p col Set the pen color.

−w Pause until a newline is typed on standard input.

−C Close the current plot.

SOURCE
/sys/src/cmd/plot

SEE ALSO
plot(6)

223

PLUMB(1) PLUMB(1)

NAME
plumb � send message to plumber

SYNOPSIS
plumb [−p plumbfile] [−a attributes] [−s source] [−d destination] [−t type] [−w directory]
−i | data...

DESCRIPTION
The plumb command formats and sends a plumbing message whose data is, by default, the con
catenation of the argument strings separated by blanks. The options are:

−p write the message to plumbfile (default /mnt/plumb/send).

−a set the attr field of the message (default is empty).

−s set the src field of the message (default is plumb).

−d set the dst field of the message (default is empty).

−t set the type field of the message (default is text).

−w set the wdir field of the message (default is the current working directory of plumb).

−i take the data from standard input rather than the argument strings. If an action=
attribute is not otherwise specified, plumb will add an action=showdata attribute to
the message.

FILES
/usr/$user/lib/plumbing default rules file
/mnt/plumb mount point for plumber(4).

SOURCE
/sys/src/cmd/plumb

SEE ALSO
plumb(2), plumber(4), plumb(6)

224

PR(1) PR(1)

NAME
pr � print file

SYNOPSIS
pr [option ...] [file ...]

DESCRIPTION
Pr produces a printed listing of one or more files on its standard output. The output is separated
into pages headed by a date, the name of the file or a specified header, and the page number.
With no file arguments, pr prints its standard input.

Options apply to all following files but may be reset between files:

−n Produce n-column output.

+n Begin printing with page n.

−b Balance columns on last page, in case of multi-column output.

−d Double space.

−en Set the tab stops for input text every n spaces.

−h Take the next argument as a page header (file by default).

−in Replace sequences of blanks in the output by tabs, using tab stops set every n spaces.

−f Use form feeds to separate pages.

−ln Take the length of the page to be n lines instead of the default 66.

−m Print all files simultaneously, each in one column.

−nm Number the lines of each file. The numeric argument m, default 5, sets the width of the
line-number field.

−on Offset the left margin n character positions.

−p Pad each file printed to an even number of pages, if necessary. For two-sided printers, this
will ensure each file will start a new page.

−sc Separate columns by the single character c instead of aligning them with white space. A
missing c is taken to be a tab.

−t Do not print the 5-line header or the 5-line trailer normally supplied for each page.

−wn For multi-column output, take the width of the page to be n characters instead of the
default 72.

SOURCE
/sys/src/cmd/pr.c

SEE ALSO
cat(1), lp(1)

225

PROF(1) PROF(1)

NAME
prof, tprof, kprof � display profiling data

SYNOPSIS
prof [−dr] [program] [profile]

tprof pid

kprof kernel kpdata

DESCRIPTION
Prof interprets files produced automatically by programs loaded using the −p option of 2l(1) or
other loader. The symbol table in the named program file (2.out etc., according to $objtype,
by default) is read and correlated with the profile file (prof.out by default). For each symbol,
the percentage of time (in seconds) spent executing between that symbol and the next is printed
(in decreasing order), together with the time spent there and the number of times that routine was
called.

Under option −d, prof prints the dynamic call graph of the target program, annotating the calls
with the time spent in each routine and those it calls, recursively. The output is indented two
spaces for each call, and is formatted as

symbol:time/ncall

where symbol is the entry point of the call, time is in milliseconds, and ncall is the number of times
that entry point was called at that point in the call graph. If ncall is one, the /ncall is elided.
Normally recursive calls are compressed to keep the output brief; option −r prints the full call
graph.

The size of the buffer in program used to hold the profiling data, by default 2000 entries, may be
controlled by setting the environment variable profsize before running program. If the buffer
fills, subsequent function calls may not be recorded.

The profiling code provided by the linker initializes itself to profile the current pid, producing a file
called prof.pid. If a process forks, only the parent will continue to be profiled. Forked children
can cause themselves to be profile by calling

prof(fn, arg, entries, what)

which causes the function fn(arg) to be profiled. When fn returns prof.pid is produced for the
current process pid.

The environment variable proftype can be set to one of user, kernel, elapsed, or
sample, to profile time measured spent in user mode, time spent in user+kernel mode, or
elapsed time, using the cycle counter, or the time in user mode using the kernel�s HZ clock. The
cycle counter is currently only available on modern PCs and on the PowerPC. Default profiling
measures user time, using the cycle counter if it is available.

Tprof is similar to prof, but is intended for profiling multiprocess programs. It uses the
/proc/pid/profile file to collect instruction frequency counts for the text image associated
with the process, for all processes that share that text. It must be run while the program is still
active, since the data is stored with the running program. To enable tprof profiling for a given pro
cess,

echo profile > /proc/pid/ctl

and then, after the program has run for a while, execute

tprof pid

Since the data collected for tprof is based on interrupt-time sampling of the program counter,
tprof has no −d or −r options.

Kprof is similar to prof, but presents the data accumulated by the kernel profiling device, kprof(3).
The symbol table file, that of the operating system kernel, and the data file, typically
/dev/kpdata, must be provided. Kprof has no options and cannot present dynamic data.

SOURCE
/sys/src/cmd/prof.c

226

PROF(1) PROF(1)

/sys/src/cmd/kprof.c

SEE ALSO
2l(1), exec(2), kprof(3)

227

PROOF(1) PROOF(1)

NAME
proof � troff output interpreter

SYNOPSIS
proof [−mmag] [−/nview] [−F dir] [−d] [file]

DESCRIPTION
Proof reads troff(1) intermediate language from file or standard input and simulates the resulting
pages on the screen.

After a page of text is displayed, proof pauses for a command from the keyboard. The typed com
mands are:

newline Go on to next page of text.

− Go back to the previous page.

q Quit.

pn Print page n. An out-of-bounds page number means the end nearer to that number; a
missing number means the current page; a signed number means an offset to the current
page.

n Same as pn.

c Clear the screen, then wait for another command.

mmag Change the magnification at which the output is printed. Normally it is printed with mag
nification .9; mag=.5 shrinks it to half size; mag=2 doubles the size.

xval Move everything val screen pixels to the right (left, if val is negative).

yval Move everything val screen pixels down (up, if val is negative).

/nview Split the window into nview pieces. The current page goes into the rightmost, bottom
most piece, and previous pages are shown in the other pieces.

−F dir Use dir for fonts instead of /lib/font/bit.

d Toggle the debug flag.

These commands are also available, under slightly different form, from a menu on button 3. The
pan menu item allows arbitrary positioning of the page: after selecting pan, press the mouse but
ton again and hold it down while moving the page to the desired location. The page will be redis
played in its entirety when the button is released. Mouse button 1 also pans, without the need for
selecting from a menu.

The m, x, y, F, /, and d commands are also available as command line options.

FILES
/lib/font/bit/* fonts
/lib/font/bit/MAP how to convert troff output fonts and character names into screen

fonts and character numbers

SOURCE
/sys/src/cmd/proof

SEE ALSO
lp(1), gs(1), page(1)
J. F. Ossanna and B. W. Kernighan, ��Troff User�s Manual��

228

PS(1) PS(1)

NAME
ps, psu, pstree � process status

SYNOPSIS
ps [−apnr]

psu [−apnr] [user]

pstree

DESCRIPTION
Ps prints information about processes. Psu prints only information about processes started by
user (default $user).

For each process reported, the user, process id, user time, system time, size, state, and command
name are printed. State is one of the following:

Moribund Process has exited and is about to have its resources reclaimed.

Ready on the queue of processes ready to be run.

Scheding about to be run.

Running running.

Queueing waiting on a queue for a resource.

Wakeme waiting for I/O or some other kernel event to wake it up.

Broken dead of unnatural causes; lingering so that it can be examined.

Stopped stopped.

Stopwait waiting for another process to stop.

Fault servicing a page fault.

Idle waiting for something to do (kernel processes only).

New being created.

Pageout paging out some other process.

Syscall performing the named system call.

no resource waiting for more of a critical resource.

The −n flag causes ps to print, after the process id, the note group to which the process belongs.

The −r flag causes ps to print, before the user time, the elapsed real time for the process.

The −p flag causes ps to print, after the system time, the baseline and current priorities of each
process.

The −a flag causes ps to print the arguments for the process. Newlines in arguments will be trans
lated to spaces for display.

Pstree prints the processes as a tree in a two colum layout where the first colum being the process
id and second column the program name and arguments indented and prefixed with line drawing
runes to reflect the nesting in the hierarchy.

FILES
/proc/*/status

SOURCE
/sys/src/cmd/ps.c
/rc/bin/psu
/sys/src/cmd/pstree.c

SEE ALSO
acid(1), db(1), kill(1), ns(1), proc(3)

HISTORY
Pstree first appeared in 9front (June, 2011).

229

PS2PDF(1) PS2PDF(1)

NAME
ps2pdf, pdf2ps � convert between PostScript and PDF

SYNOPSIS
ps2pdf [gs−options] [input−file [output−file]]

pdf2ps [gs−options] [input−file [output−file]]

DESCRIPTION
Ps2pdf and pdf2ps convert from PostScript to PDF and back by invoking gs(1). If output−file is not
specified, they write to standard output. If neither input−file nor output−file is not specified, they
read from standard input and write to standard output.

The gs−options are passed to Ghostscript unaltered. The most useful option to ps2pdf is
−dCompatibilityLevel=level, which sets the version of PDF to be written. The default is
1.2; 1.3 and 1.4 are also possible. Similarly, the most useful option to pdf2ps is
−dLanguageLevel=level, which sets the version of PostScript to be written. The default is 2; 1
and 3 are also possible.

Ps2pdf produces output competitive with Adobe Distiller in most cases, and it accepts all the
embedded PDF-generation hints that Adobe Distiller does.

Pdf2ps produces a PostScript file containing one large bitmap per page. For a more direct and
smaller translation, use Adobe Acrobat�s −toPostScript command-line option.

SOURCE
/rc/bin/ps2pdf
/rc/bin/pdf2ps

SEE ALSO
gs(1)

BUGS
Gs�s pdfwrite sometimes emits bad PDF at the default level 1.2. Adding
’−dCompatibilityLevel=1.4’ should cure it.

230

PUMP(1) PUMP(1)

NAME
pump � copy asynchronously via a large circular buffer

SYNOPSIS
pump [−b iando] [−d sleepms] [−f ofile] [−i ireadsize] [−k KB−buf] [−o owritesize] [−s
start−KB] [file ...]

DESCRIPTION
Pump copies files (or standard input if none) to standard output by using two processes, one read
ing and one writing, sharing a large circular buffer, thus permitting the reading process to get
ahead of the writing process if the output device is slow (e.g., an optical disc). This in turn can
keep the output device busy. The pipeline dd | dd can approximate this, but pipe buffering is
limited to 64K bytes, which is fairly modest.

Options are:

−b sets the size of read and write operations to iando bytes. The default size is 8 kilobytes.
−d causes the output process to sleep for sleepms milliseconds initially, giving the reading pro

cess time to accumulate data in the buffer.
−f writes ofile rather than standard output
−i sets the size of read operations to ireadsize bytes.
−k allocates a circular buffer of KB−buf kilobytes rather than the default 5000 kilobytes.
−o sets the size of write operations to owritesize bytes.
−s prevents output until start−KB kilobytes have been read.

EXAMPLES
Append a venti(8) arena to a DVD or BD quickly.

cdfs
venti/rdarena arena0 arena.3 |

pump −b 65536 −k 51200 >/mnt/cd/wd/arena.3

SOURCE
/sys/src/cmd/pump.c

SEE ALSO
cp(1), dd(1), ecp(1), cdfs(4)

BUGS
Pump processes spin while waiting for the circular buffer to fill or drain.

231

PWD(1) PWD(1)

NAME
pwd, pbd � working directory

SYNOPSIS
pwd
pbd

DESCRIPTION
Pwd prints the path name of the working (current) directory. Pwd is guaranteed to return the same
path that was used to enter the directory. If, however, the name space has changed, or directory
names have been changed, this path name may no longer be valid. (See fd2path(2) for a descrip
tion of pwd�s mechanism.)

Pbd prints the base name of the working (current) directory. It prints no final newline and is
intended for applications such as constructing shell prompts.

SOURCE
/sys/src/cmd/pwd.c
/sys/src/cmd/pbd.c

SEE ALSO
cd in rc(1), bind(1), intro(2), getwd(2), fd2path(2)

232

PYTHON(1) PYTHON(1)

NAME
python � an interpreted, interactive, object-oriented programming language

SYNOPSIS
python [�d] [�E] [�h] [�i] [�m module−name] [�O]

[−Q argument] [�S] [�t] [�u]
[�v] [�V] [�W argument] [�x]
[�c command | script | �] [arguments]

DESCRIPTION
Python is an interpreted, interactive, object-oriented programming language that combines
remarkable power with very clear syntax. For an introduction to programming in Python you are
referred to the Python Tutorial. The Python Library Reference documents built-in and standard
types, constants, functions and modules. Finally, the Python Reference Manual describes the syn
tax and semantics of the core language in (perhaps too) much detail. (These documents may be
located via the INTERNET RESOURCES below; they may be installed on your system as well.)

Python�s basic power can be extended with your own modules written in C or C++. On most sys
tems such modules may be dynamically loaded. Python is also adaptable as an extension lan
guage for existing applications. See the internal documentation for hints.

Documentation for installed Python modules and packages can be viewed by running the pydoc
program.

COMMAND LINE OPTIONS
�c command

Specify the command to execute (see next section). This terminates the option list (follow
ing options are passed as arguments to the command).

�d Turn on parser debugging output (for wizards only, depending on compilation options).

�E Ignore environment variables like PYTHONPATH and PYTHONHOME that modify the behav
ior of the interpreter.

�h Prints the usage for the interpreter executable and exits.

�i When a script is passed as first argument or the �c option is used, enter interactive mode
after executing the script or the command. It does not read the $PYTHONSTARTUP file.
This can be useful to inspect global variables or a stack trace when a script raises an excep
tion.

�m module−name
Searches sys.path for the named module and runs the corresponding .py file as a script.

�O Turn on basic optimizations. This changes the filename extension for compiled (bytecode)
files from .pyc to .pyo. Given twice, causes docstrings to be discarded.

�Q argument
Division control; see PEP 238. The argument must be one of "old" (the default, int/int and
long/long return an int or long), "new" (new division semantics, i.e. int/int and long/long
returns a float), "warn" (old division semantics with a warning for int/int and long/long), or
"warnall" (old division semantics with a warning for all use of the division operator). For a
use of "warnall", see the Tools/scripts/fixdiv.py script.

�S Disable the import of the module site and the site-dependent manipulations of sys.path
that it entails.

�t Issue a warning when a source file mixes tabs and spaces for indentation in a way that
makes it depend on the worth of a tab expressed in spaces. Issue an error when the option
is given twice.

�u Force stdin, stdout and stderr to be totally unbuffered. On systems where it matters, also
put stdin, stdout and stderr in binary mode. Note that there is internal buffering in xread
lines(), readlines() and file-object iterators ("for line in sys.stdin") which is not influenced by
this option. To work around this, you will want to use "sys.stdin.readline()" inside a "while
1:" loop.

233

PYTHON(1) PYTHON(1)

�v Print a message each time a module is initialized, showing the place (filename or built-in
module) from which it is loaded. When given twice, print a message for each file that is
checked for when searching for a module. Also provides information on module cleanup at
exit.

�V Prints the Python version number of the executable and exits.

�W argument
Warning control. Python sometimes prints warning message to sys.stderr. A typical warn
ing message has the following form: file:line: category: By default, each warning is
printed once for each source line where it occurs. This option controls how often warnings
are printed. Multiple �W options may be given; when a warning matches more than one
option, the action for the last matching option is performed. Invalid �W options are ignored
(a warning message is printed about invalid options when the first warning is issued).
Warnings can also be controlled from within a Python program using the warnings module.

The simplest form of argument is one of the following action strings (or a unique abbrevia
tion): ignore to ignore all warnings; default to explicitly request the default behavior
(printing each warning once per source line); all to print a warning each time it occurs
(this may generate many messages if a warning is triggered repeatedly for the same source
line, such as inside a loop); module to print each warning only the first time it occurs in
each module; once to print each warning only the first time it occurs in the program; or
error to raise an exception instead of printing a warning message.

The full form of argument is action:message:category: Here, action is as explained
above but only applies to messages that match the remaining fields. Empty fields match all
values; trailing empty fields may be omitted. The message field matches the start of the
warning message printed; this match is case-insensitive. The category field matches the
warning category. This must be a class name; the match test whether the actual warning
category of the message is a subclass of the specified warning category. The full class
name must be given. The module field matches the (fully-qualified) module name; this
match is case-sensitive. The line field matches the line number, where zero matches all
line numbers and is thus equivalent to an omitted line number.

�x Skip the first line of the source. This is intended for a DOS specific hack only. Warning: the
line numbers in error messages will be off by one!

INTERPRETER INTERFACE
The interpreter interface resembles that of the UNIX shell: when called with standard input con
nected to a tty device, it prompts for commands and executes them until an EOF is read; when
called with a file name argument or with a file as standard input, it reads and executes a script
from that file; when called with �c command, it executes the Python statement(s) given as
command. Here command may contain multiple statements separated by newlines. Leading
whitespace is significant in Python statements! In non-interactive mode, the entire input is parsed
before it is executed.

If available, the script name and additional arguments thereafter are passed to the script in the
Python variable sys.argv , which is a list of strings (you must first import sys to be able to access
it). If no script name is given, sys.argv[0] is an empty string; if �c is used, sys.argv[0] contains the
string ’−c’. Note that options interpreted by the Python interpreter itself are not placed in sys.argv.

In interactive mode, the primary prompt is �>>>�; the second prompt (which appears when a com
mand is not complete) is �...�. The prompts can be changed by assignment to sys.ps1 or sys.ps2.
The interpreter quits when it reads an EOF at a prompt. When an unhandled exception occurs, a
stack trace is printed and control returns to the primary prompt; in non-interactive mode, the
interpreter exits after printing the stack trace. The interrupt signal raises the KeyboardInterrupt
exception; other UNIX signals are not caught (except that SIGPIPE is sometimes ignored, in favor of
the IOError exception). Error messages are written to stderr.

FILES AND DIRECTORIES
These are subject to difference depending on local installation conventions; ${prefix} and
${exec_prefix} are installation-dependent and should be interpreted as for GNU software; they may
be the same. The default for both is /usr/local.

234

PYTHON(1) PYTHON(1)

${exec_prefix}/bin/python
Recommended location of the interpreter.

${prefix}/lib/python<version>
${exec_prefix}/lib/python<version>

Recommended locations of the directories containing the standard modules.

${prefix}/include/python<version>
${exec_prefix}/include/python<version>

Recommended locations of the directories containing the include files needed for develop
ing Python extensions and embedding the interpreter.

~/.pythonrc.py
User-specific initialization file loaded by the user module; not used by default or by most
applications.

ENVIRONMENT VARIABLES
PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched
in ${prefix}/lib/python<version> and ${exec_prefix}/lib/python<version>, where ${prefix}
and ${exec_prefix} are installation-dependent directories, both defaulting to /usr/local.
When $PYTHONHOME is set to a single directory, its value replaces both ${prefix} and
${exec_prefix}. To specify different values for these, set $PYTHONHOME to
${prefix}:${exec_prefix}.

PYTHONPATH
Augments the default search path for module files. The format is the same as the shell�s
$PATH: one or more directory pathnames separated by colons. Non-existent directories
are silently ignored. The default search path is installation dependent, but generally begins
with ${prefix}/lib/python<version> (see PYTHONHOME above). The default search path is
always appended to $PYTHONPATH. If a script argument is given, the directory containing
the script is inserted in the path in front of $PYTHONPATH. The search path can be manip
ulated from within a Python program as the variable sys.path .

PYTHONSTARTUP
If this is the name of a readable file, the Python commands in that file are executed before
the first prompt is displayed in interactive mode. The file is executed in the same name
space where interactive commands are executed so that objects defined or imported in it
can be used without qualification in the interactive session. You can also change the
prompts sys.ps1 and sys.ps2 in this file.

PYTHONY2K
Set this to a non-empty string to cause the time module to require dates specified as
strings to include 4-digit years, otherwise 2-digit years are converted based on rules
described in the time module documentation.

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the �O option. If set to an
integer, it is equivalent to specifying �O multiple times.

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the �d option. If set to an
integer, it is equivalent to specifying �d multiple times.

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the �i option.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the �u option.

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the �v option. If set to an
integer, it is equivalent to specifying �v multiple times.

AUTHOR
The Python Software Foundation: http://www.python.org/psf

235

PYTHON(1) PYTHON(1)

INTERNET RESOURCES
Main website: http://www.python.org/
Documentation: http://docs.python.org/
Community website: http://starship.python.net/
Developer resources: http://www.python.org/dev/
FTP: ftp://ftp.python.org/pub/python/
Module repository: http://www.vex.net/parnassus/
Newsgroups: comp.lang.python, comp.lang.python.announce

LICENSING
Python is distributed under an Open Source license. See the file "LICENSE" in the Python source
distribution for information on terms & conditions for accessing and otherwise using Python and
for a DISCLAIMER OF ALL WARRANTIES.

236

QR(1) QR(1)

NAME
qr � generate QR code

SYNOPSIS
qr [−LMQHna] [−v version]

DESCRIPTION
Qr generates a QR code from the data it reads on standard input. The QR code is generated as an
image(6) on standard output.

The −LMQH options set the level of error correction. −L is the lowest and −H is the highest level.
The default is −M.

The QR standard defines different sizes labelled version 1 to version 40. By default the smallest
possible is chosen automatically. The −v option forces the use of a particular version.

By default bytes are encoded directly with no translation. Coding efficiency can be increased by
reducing the set of legitimate characters using the −an options. The −n option supports only
numbers and the −a option supports letters, numbers, spaces and the symbols $%*+−./:. Note
that all letters are converted to upper case. Both options ignore any characters they do not recog
nize.

SOURCE
/sys/src/cmd/qr.c

SEE ALSO
International Standard ISO/IEC 18004.

BUGS
The standard specifies the use of JIS-8 encoding in the default mode, however rumour has it that
readers recognize UTF-8.

The more advanced coding features (Kanji mode, extended modes, switching modes midstream)
are not supported.

237

RATRACE(1) RATRACE(1)

NAME
ratrace � trace process system calls

SYNOPSIS
ratrace [pid] | [−c command]

DESCRIPTION
Ratrace shows the system calls executed by a process, either the one with pid or a fresh invocation
of command.

Trace output is determined by the kernel, not ratrace. Certain fixed rules apply. The first four
fields of the output are pid, text name, system call name, and the PC of the user program. Data is
always printed as pointer/"string", where the string is the first 32 bytes of the data, with . replac
ing non-printing ASCII characters (printing characters are those between ASCII space (SP) and
delete (DEL), exclusive). Return values follow an =, and include the integer return value, the errstr
(with "" if there is no errstr), and the start and stop times for the system call in nanoseconds. The
times are exclusive of the overhead for tracing.

FILES
/proc/pid/syscall
/proc/pid/ctl

SOURCE
/sys/src/cmd/ratrace.c

SEE ALSO
acid(1), db(1), proc(3)

BUGS
The printing of the data is too limited in length; printing . instead of something more sensible is
limiting.

238

RC(1) RC(1)

NAME
rc, cd, eval, exec, exit, flag, rfork, shift, wait, whatis, ., ~ � command language

SYNOPSIS
rc [−srdiIlxepvV] [−c command] [−m initial] [file [arg ...]]

DESCRIPTION
Rc is the Plan 9 shell. It executes command lines read from a terminal or a file or, with the −c
flag, from rc’s argument list.

Command Lines
A command line is a sequence of commands, separated by ampersands or semicolons (& or ;), ter
minated by a newline. The commands are executed in sequence from left to right. Rc does not
wait for a command followed by & to finish executing before starting the following command.
Whenever a command followed by & is executed, its process id is assigned to the rc variable
$apid. Whenever a command not followed by & exits or is terminated, the rc variable $status
gets the process�s wait message (see wait(2)); it will be the null string if the command was suc
cessful.

A long command line may be continued on subsequent lines by typing a backslash (\) followed by
a newline. This sequence is treated as though it were a blank. Backslash is not otherwise a special
character.

A number-sign (#) and any following characters up to (but not including) the next newline are
ignored, except in quotation marks.

Simple Commands
A simple command is a sequence of arguments interspersed with I/O redirections. If the first
argument is the name of an rc function or of one of rc’s built-in commands, it is executed by rc.
Otherwise if the name starts with a slash (/), it must be the path name of the program to be exe
cuted. Names containing no initial slash are searched for in a list of directory names stored in
$path. The first executable file of the given name found in a directory in $path is the program
to be executed. To be executable, the user must have execute permission (see stat(2)) and the file
must be either an executable binary for the current machine�s CPU type, or a shell script. Shell
scripts begin with a line containing the full path name of a shell (usually /bin/rc), prefixed by
#!.

The first word of a simple command cannot be a keyword unless it is quoted or otherwise dis
guised. The keywords are

for in while if not switch fn ~ ! @

Arguments and Variables
A number of constructions may be used where rc’s syntax requires an argument to appear. In
many cases a construction�s value will be a list of arguments rather than a single string.

The simplest kind of argument is the unquoted word: a sequence of one or more characters none
of which is a blank, tab, newline, or any of the following:

; & | ^ $ = ‘ ’ { } () < >
An unquoted word that contains any of the characters * ? [is a pattern for matching against file
names. The character * matches any sequence of characters, ? matches any single character, and
[class] matches any character in the class. If the first character of class is ~, the class is comple
mented. The class may also contain pairs of characters separated by −, standing for all characters
lexically between the two. The character / must appear explicitly in a pattern, as must the first
character of the path name components . and ... A pattern is replaced by a list of arguments,
one for each path name matched, except that a pattern matching no names is not replaced by the
empty list, but rather stands for itself. Pattern matching is done after all other operations. Thus,

x=/tmp echo $x^/*.c
matches /tmp/*.c, rather than matching /*.c and then prefixing /tmp.

A quoted word is a sequence of characters surrounded by single quotes (’). A single quote is rep
resented in a quoted word by a pair of quotes (’’).

Each of the following is an argument.
(arguments)

The value of a sequence of arguments enclosed in parentheses is a list comprising the

239

RC(1) RC(1)

members of each element of the sequence. Argument lists have no recursive structure,
although their syntax may suggest it. The following are entirely equivalent:

echo hi there everybody
((echo) (hi there) everybody)

$argument
$argument(subscript)

The argument after the $ is the name of a variable whose value is substituted. Multiple lev
els of indirection are possible, but of questionable utility. Variable values are lists of
strings. If argument is a number n, the value is the nth element of $*, unless $* doesn�t
have n elements, in which case the value is empty. If argument is followed by a parenthe
sized list of subscripts, the value substituted is a list composed of the requested elements
(origin 1). The parenthesis must follow the variable name with no spaces. Subscripts can
also take the form m−n or m− to indicate a sequence of elements. Assignments to vari
ables are described below.

$#argument
The value is the number of elements in the named variable. A variable never assigned a
value has zero elements.

$"argument
The value is a single string containing the components of the named variable separated by
spaces. A variable with zero elements yields the empty string.

‘{command}
‘split {command}

rc executes the command and reads its standard output, splitting it into a list of argu
ments, using characters in $ifs as separators. If $ifs is not otherwise set, its value is
’ \t\n’. In the second form of the command, split is used instead of $ifs.

<{command}
>{command}

The command is executed asynchronously with its standard output or standard input con
nected to a pipe. The value of the argument is the name of a file referring to the other end
of the pipe. This allows the construction of non-linear pipelines. For example, the follow
ing runs two commands old and new and uses cmp to compare their outputs

cmp <{old} <{new}
argument^argument

The ^ operator concatenates its two operands. If the two operands have the same number
of components, they are concatenated pairwise. If not, then one operand must have one
component, and the other must be non-empty, and concatenation is distributive.

Free Carets
In most circumstances, rc will insert the ^ operator automatically between words that are not sepa
rated by white space. Whenever one of $ ’ ‘ follows a quoted or unquoted word or an unquoted
word follows a quoted word with no intervening blanks or tabs, a ^ is inserted between the two. If
an unquoted word immediately follows a $ and contains a character other than an alphanumeric,
underscore, or *, a ^ is inserted before the first such character. Thus

cc −$flags $stem.c

is equivalent to

cc −^$flags $stem^.c

I/O Redirections
The sequence >file redirects the standard output file (file descriptor 1, normally the terminal) to
the named file; >>file appends standard output to the file. The standard input file (file descriptor
0, also normally the terminal) may be redirected from a file by the sequence <file, or from an
inline �here document� by the sequence <<eof−marker. The contents of a here document are lines
of text taken from the command input stream up to a line containing nothing but the eof−marker,
which may be either a quoted or unquoted word. If eof−marker is unquoted, variable names of the
form $word have their values substituted from rc’s environment. If $word is followed by a caret
(^), the caret is deleted. If eof−marker is quoted, no substitution occurs. The standard input file
may also be redirected from a file by the sequence <>file, which opens file exactly once, for read
ing and writing.

240

RC(1) RC(1)

Redirections may be applied to a file-descriptor other than standard input or output by qualifying
the redirection operator with a number in square brackets. For example, the diagnostic output
(file descriptor 2) may be redirected by writing cc junk.c >[2]junk.

A file descriptor may be redirected to an already open descriptor by writing >[fd0=fd1],
<>[fd0=fd1], or <[fd0=fd1]. Fd1 is a previously opened file descriptor and fd0 becomes a
new copy (in the sense of dup(2)) of it. A file descriptor may be closed by writing >[fd0=] or
<[fd0=].

Redirections are executed from left to right. Therefore, cc junk.c >/dev/null >[2=1]
and cc junk.c >[2=1] >/dev/null have different effects: the first puts standard output
in /dev/null and then puts diagnostic output in the same place, where the second directs diag
nostic output to the terminal and sends standard output to /dev/null.

newconn <>/net/tcp/clone >[1=0] opens /net/tcp/clone exactly once for reading
and writing and puts it on standard input and output. lpd <>[3]/net/tcp/42/data opens
/net/tcp/42/data exactly once for reading and writing and puts it on file descriptor 3.

Compound Commands
A pair of commands separated by a pipe operator (|) is a command. The standard output of the
left command is sent through a pipe to the standard input of the right command. The pipe opera
tor may be decorated to use different file descriptors. |[fd] connects the output end of the pipe
to file descriptor fd rather than 1. |[fd0=fd1] connects output to fd1 of the left command and
input to fd0 of the right command.

A pair of commands separated by && or || is a command. In either case, the left command is
executed and its exit status examined. If the operator is && the right command is executed if the
left command�s status is null. || causes the right command to be executed if the left command�s
status is non-null.

The exit status of a command may be inverted (non-null is changed to null, null is changed to
non-null) by preceding it with a !.

The | operator has highest precedence, and is left-associative (i.e. binds tighter to the left than
the right). ! has intermediate precedence, and && and || have the lowest precedence.

The unary @ operator, with precedence equal to !, causes its operand to be executed in a subshell.

Each of the following is a command.
if (list) command

A list is a sequence of commands, separated by &, ;, or newline. It is executed and if its
exit status is null, the command is executed.

if not command
The immediately preceding command must have been if(list) command. If its condition
was non-zero, the command is executed.

for(name in arguments) command
for(name) command

The command is executed once for each argument with that argument assigned to name. If
the argument list is omitted, $* is used.

while(list) command
The list is executed repeatedly until its exit status is non-null. Each time it returns null sta
tus, the command is executed. An empty list is taken to give null status.

switch(argument){list}
The list is searched for simple commands beginning with the word case. (The search is
only at the �top level� of the list. That is, cases in nested constructs are not found.)
Argument is matched against each word following case using the pattern-matching algo
rithm described above, except that / and the first characters of . and .. need not be
matched explicitly. When a match is found, commands in the list are executed up to the
next following case command (at the top level) or the closing brace.

{list}
Braces serve to alter the grouping of commands implied by operator priorities. The body is
a sequence of commands separated by &, ;, or newline.

fn name{list}
fn name

The first form defines a function with the given name. Subsequently, whenever a command

241

RC(1) RC(1)

whose first argument is name is encountered, the current value of the remainder of the
command�s argument list will be assigned to $*, after saving its current value, and rc will
execute the list. The second form removes name�s function definition.

fn note{list}
fn note

A function with a special name will be called when rc receives a corresponding note; see
notify(2). The valid note names (and corresponding notes) are sighup (hangup),
sigint (interrupt), sigalrm (alarm), and sigfpe (floating point trap). By
default rc exits on receiving any signal, except when run interactively, in which case inter
rupts and quits normally cause rc to stop whatever it�s doing and start reading a new com
mand. The second form causes rc to handle a signal in the default manner. Rc recognizes
an artificial note, sigexit, which occurs when rc is about to finish executing.

name=argument command
Any command may be preceded by a sequence of assignments interspersed with redirec
tions. The assignments remain in effect until the end of the command, unless the com
mand is empty (i.e. the assignments stand alone), in which case they are effective until
rescinded by later assignments.

Built−in Commands
These commands are executed internally by rc, usually because their execution changes or
depends on rc�s internal state.
. file ...

Execute commands from file. $* is set for the duration to the remainder of the argument
list following file. File is searched for using $path.

builtin command ...
Execute command as usual except that any function named command is ignored in favor of
the built-in meaning.

cd [dir]
Change the current directory to dir. The default argument is $home. dir is searched for in
each of the directories mentioned in $cdpath.

eval [arg ...]
The arguments are concatenated separated by spaces into a single string, read as input to
rc, and executed.

exec [command ...]
This instance of rc replaces itself with the given (non-built-in) command.

flag f [+−]
Either set (+), clear (−), or test (neither + nor −) the flag f, where f is a single character, one
of the command line flags (see Invocation, below).

exit [status]
Exit with the given exit status. If none is given, the current value of $status is used.

rfork [nNeEsfFm]
Become a new process group using rfork(flags) where flags is composed of the bitwise
OR of the rfork flags specified by the option letters (see fork(2)). If no flags are given,
they default to ens. The flags and their meanings are: n is RFNAMEG; N is RFCNAMEG; e
is RFENVG; E is RFCENVG; s is RFNOTEG; f is RFFDG; F is RFCFDG; and m is
RFNOMNT.

shift [n]
Delete the first n (default 1) elements of $*.

wait [pid]
Wait for the process with the given pid to exit. If no pid is given, all outstanding processes
are waited for.

whatis name ...
Print the value of each name in a form suitable for input to rc. The output is an assignment
to any variable, the definition of any function, a call to builtin for any built-in com
mand, or the completed pathname of any executable file.

~ subject pattern ...
The subject is matched against each pattern in sequence. If it matches any pattern,
$status is set to zero. Otherwise, $status is set to one. Patterns are the same as for
file name matching, except that / and the first character of . and .. need not be matched
explicitly. The patterns are not subjected to file name matching before the ~ command is

242

RC(1) RC(1)

executed, so they need not be enclosed in quotation marks.

Environment
The environment is a list of strings made available to executing binaries by the env device (see
env(3)). Rc creates an environment entry for each variable whose value is non-empty, and for each
function. The string for a variable entry has the variable�s name followed by = and its value. If the
value has more than one component, these are separated by nul (’\000’) characters. The string
for a function is just the rc input that defines the function. The name of a function in the environ
ment is the function name preceded by fn#.

When rc starts executing it reads variable and function definitions from its environment.

Special Variables
The following variables are set or used by rc.
$* Set to rc�s argument list during initialization. Whenever a . command or a function

is executed, the current value is saved and $* receives the new argument list. The
saved value is restored on completion of the . or function.

$apid Whenever a process is started asynchronously with &, $apid is set to its process id.
$home The default directory for cd.
$ifs The input field separators used in backquote substitutions. If $ifs is not otherwise

set, its value is ’ \t\n’.
$path The search path used to find commands and input files for the . command. If not

set in the environment, it is initialized by path=(. /bin). Its use is discouraged;
instead use bind(1) to build a /bin containing what�s needed.

$pid Set during initialization to rc�s process id.
$prompt When rc is run interactively, the first component of $prompt is printed before read

ing each command. The second component is printed whenever a newline is typed
and more lines are required to complete the command. If not set in the environment,
it is initialized by prompt=(’% ’ ’ ’).

$status Set to the wait message of the last-executed program. (unless started with &). !
and ~ also change $status. Its value is used to control execution in &&, ||, if
and while commands. When rc exits at end-of-file of its input or on executing an
exit command with no argument, $status is its exit status.

Invocation
If rc is started with no arguments it reads commands from standard input. Otherwise its first
non-flag argument is the name of a file from which to read commands (but see −c below). Subse
quent arguments become the initial value of $*. Rc accepts the following command-line flags.
−c string Commands are read from string.
−s Print out exit status after any command where the status is non-null.
−e Exit if $status is non-null after executing a simple command.
−i If −i is present, or rc is given no arguments and its standard input is a terminal, it

runs interactively. Commands are prompted for using $prompt.
−I Makes sure rc is not run interactively.
−l If −l is given or the first character of argument zero is −, rc reads commands from

$home/lib/profile, if it exists, before reading its normal input.
−m Read commands to initialize rc from initial instead of from /rc/lib/rcmain.
−p A no-op.
−d A no-op.
−v Echo input on file descriptor 2 as it is read.
−x Print each simple command before executing it.
−r Print debugging information (internal form of commands as they are executed).

FILES
$home/lib/profile the user�s local rc start script
/rc/lib/rcmain System rc start script
/rc/lib/rcmain.local Site specific system rc start script

SOURCE
/sys/src/cmd/rc

SEE ALSO
Tom Duff, ��Rc � The Plan 9 Shell��.

243

RC(1) RC(1)

BUGS
There should be a way to match patterns against whole lists rather than just single strings.

Using ~ to check the value of $status changes $status.

Functions containing here documents don�t work.

Free carets don�t get inserted next to keywords.

244

RCPU(1) RCPU(1)

NAME
rcpu, rimport, rexport, rconnect � connection to CPU server

SYNOPSIS
rcpu [−u user] [−k keypattern] [−P patternfile] [−p] [−h host] [−c cmd arg ...]

rimport [−abcCnq] [−s name] [−u user] [−k keypattern] [−p] host tree [mountpoint]

rexport [−abcCnq] [−s remotename] [−m remotemtpt] [−u user] [−k keypattern] [−P
patternfile] [−p] tree host [remotecmd arg ...]

rconnect [−u user] [−k keypattern] [−p] host remotescript localcommand arg ...

DESCRIPTION
Rcpu runs commands from rc(1) on a cpu server with the local namespace exported to the remote
side under /mnt/term. The current directory, interrupt notes, standard file descriptors 0,1,2
and /dev/cons are passed to the remote side. The command to run can be passed with −c cmd
arg ... , otherwise an interactive shell is started. The user�s profile is run before the command with
$service set to cpu to allow further customization of the environment (see rc(1) for more infor
mation). The cpu server can be specified with −h host, otherwise it defaults to the environment
variable $cpu or is looked up from ndb(6).

Rimport mounts a remote directory tree from a cpu server host into the local namespace at
mountpoint. When mountpoint is omitted, it is set the same as tree. When the −s name option is
present, the service is also posted to /srv/name allowing it to be mounted in other namespaces.

Rexport is the reverse of rimport, exporting a local directory tree to the server host and optionally
executing remotecmd arg on the server side after posting the service to /srv/remotename or
mounting it at remotemtpt.

Rconnect is a helper program handling client side connection setup for the commands listed
above. The rcpu protocol starts by setting up a mutual authenticated and encrypted TLS connec
tion using tlssrv(8) followed by the client sending an rc(1) remotescript file to the server which
gets executed under the authenticated user with file descriptors 0,1,2 cross connected to file
descriptors 0,1 of the client side running localcommand over the encrypted connection.

The common options are:

−a −b −c −C −n −q
Specifies the mount options (see bind(1)) for rimport and rexport.

−P patternfile
Restricts the set of exported files (see exportfs(4)) for rcpu and rexport.

−u user
Remote user id to authenticate as.

−k keypattern
Use keypattern to select a key to authenticate to the remote side (see auth(2)).

−p Protect the connection against connection resets by establishing aan(8) tunnel.

FILES
/rc/bin/service/tcp17019

SOURCE
/rc/bin/rcpu
/rc/bin/rimport
/rc/bin/rexport
/rc/bin/rconnect

SEE ALSO
rc(1), cpu(1), con(1), import(4), exportfs(4), tlssrv(8), aan(8)

245

REPLICA(1) REPLICA(1)

NAME
changes, pull, push, scan � client-server replica management

SYNOPSIS
replica/pull [−nv] [−c name]... [−s name]... name [path]
replica/push [−nv] name [path]
replica/changes name [path]
replica/scan name [path]

DESCRIPTION
These shell scripts provide a simple log-based client-server replica management. The server
keeps a log of changes made to its file system, and clients synchronize by reading the log and
applying these changes locally.

These scripts are a polished interface to the low-level tools described in replica(8). See replica(8)
for details on the inner workings of replica management. These tools were written primarily as the
fourth edition Plan 9 distribution mechanism, but they have wider applicability. For example, they
could be used to synchronize one�s home directory between a laptop and a central file server.

Replicas are described by configuration files. The name in all the replica commands is a configura
tion file. Paths that do not begin with /, ./, or ../ are assumed to be relative to
$home/lib/replica. Configuration files are described below.

Replica/scan is the only one of these programs that does not need to be run on the client. It scans
the server file system for changes and appends entries for those changes into the server log. Typi
cally it is run on a machine with a fast network connection to the server file system.

Replica/pull copies changes from the server to the client, while replica/push copies changes from
the client to the server. (Both run on the client.) If a list of paths is given, only changes to those
paths or their children are copied. The −v flag causes pull or push to print a summary of what it is
doing. Each status line is of the form

verb path serverpath mode uid gid mtime length

Verb describes the event: addition of a file (a), deletion of a file (d), a change to a file�s contents
(c), or a change to a file�s metadata (m). Path is the file path on the client; serverpath is the file
path on the server. Mode, uid, gid, and mtime are the file�s metadata as in the Dir structure (see
stat(5)). For deletion events, the metadata is that of the deleted file. For other events, the meta
data is that after the event. The −n flag causes pull or push to print the summary but not actually
carry out the actions.

Push and pull are careful to notice simultaneous changes to a file or its metadata on both client
and server. Such simultaneous changes are called conflicts. Here, simultaneous does not mean at
the same instant but merely that both changes were carried out without knowledge of the other.
For example, if a client and server both make changes to a file without an intervening push or pull,
the next push or pull will report an update/update conflict. If a conflict is detected, both files are
left the same. The −c flag to pull specifies that conflicts for paths beginning with name should be
resolved using the client�s copy, while −s specifies the server�s copy. The −c and −s options may
be repeated.

Replica/changes prints a list of local changes made on the client that have not yet been pushed to
the server. It is like push with the −n flag, except that it does not check for conflicts and thus
does not require the server to be available.

The replica configuration file is an rc(1) script that must define the following functions and vari
ables:

servermount
A function that mounts the server; run on both client and server.

serverupdate
A function that rescans the server for changes. Typically this command dials a CPU server
known to be close to the file server and runs replica/scan on that well-connected machine.

serverroot
The path to the root of the replicated file system on the server, as it will be in the name

246

REPLICA(1) REPLICA(1)

space after running servermount.

serverlog
The path to the server�s change log, after running servermount.

serverproto
The path to the proto file describing the server�s files, after running servermount. Only
used by scan.

serverdb
The path to the server�s file database, after running servermount. Only used by scan.

clientmount
A function to mount the client file system; run only on the client.

clientroot
The path to the root of the replicated file system on the client, after running
clientmount.

clientlog
The path to the client�s copy of the server log file. The client log is maintained by pull.

clientproto
The path to the proto file describing the client�s files. Only used by changes. Often just a
copy of $serverproto.

clientdb
The path to the client�s file database, after running clientmount.

clientexclude
A (potentially empty) list of paths to exclude from synchronization. A typical use of this is
to exclude the client database and log files. These paths are relative to the root of the
replicated file system.

As an example, the Plan 9 distribution replica configuration looks like:
fn servermount { 9fs sources; bind /n/sources/plan9 /n/dist }
fn serverupdate { status=’’ }
serverroot=/n/dist
s=/n/dist/dist/replica
serverlog=$s/plan9.log
serverproto=$s/plan9.proto

fn clientmount { 9fs boot }
clientroot=/n/boot
c=/n/boot/dist/replica
clientlog=$c/client/plan9.log
clientproto=$c/plan9.proto
clientdb=$c/client/plan9.db
clientexclude=(dist/replica/client)

(Since the Plan 9 developers run scan manually to update the log, the clients need not do anything
to rescan the file system. Thus serverupdate simply returns successfully.)

The fourth edition Plan 9 distribution uses these tools to synchronize installations with the central
server at Bell Labs. The replica configuration files and metadata are kept in /dist/replica.
To update your system, make sure you are connected to the internet and run

replica/pull /dist/replica/network
If conflicts are reported (say you have made local changes to /rc/bin/cpurc and
/rc/bin/termrc, but only want to keep the cpurc changes), use

replica/pull −c rc/bin/cpurc −s rc/bin/termrc /dist/replica/network
to instruct pull to ignore the server�s change to cpurc.

The script /usr/glenda/bin/rc/pull runs pull with the −v flag and with
/dist/replica/network inserted at the right point on the command line. Logged in as
glenda, one can repeat the above example with:

pull −c rc/bin/cpurc −s rc/bin/termrc

247

REPLICA(1) REPLICA(1)

To see a list of changes made to the local file system since installation, run
replica/changes /dist/replica/network

(Although the script is called network, since changes is a local-only operation, the network need
not be configured.)

SOURCE
/rc/bin/replica

SEE ALSO
replica(8)

248

RESAMPLE(1) RESAMPLE(1)

NAME
resample, resize - resample a picture

SYNOPSIS
resample [−x size] [−y size] [file]
resize [−n] [−x size] [−y size] [file]

DESCRIPTION
Resample and Resize resamples its input image (default standard input) to a new size. Resample
uses a Kaiser window which produces high quality results and resize uses bilinear interpolation
which is faster but produces more fuzzy images. By specifying the −n option, resize can also use
nearest neighbour interpolation which preserves the individual pixels and is appropriate for pixel
art or qr(1) output.

The size of the resampled image can be specified with the −x and −y options. An unadorned
value sets the number of pixels of that dimension; a suffixed percent sign specifies a percentage.
If only one of −x or −y is given, the other dimension is scaled to preserve the aspect ratio of the
original image. Thus, −x50% will reduce the image to half its original dimension in both x and y.

The input should be a Plan 9 image as described in image(6), and the output will be a compressed
24-bit r8g8b8 image. To uncompress the image or change the pixel format, use iconv (see
crop(1)).

SOURCE
/sys/src/cmd/resample.c
/sys/src/cmd/resize.c

SEE ALSO
crop(1), image(6)

249

RIO(1) RIO(1)

NAME
rio, label, window, wloc � window system

SYNOPSIS
rio [−i ’cmd’] [−k ’kbdcmd’] [−s] [−b] [−f font]

label name

window [−m] [−r minx miny maxx maxy] [−dx n] [−dy n] [−minx n] [−miny n] [−maxx
n] [−maxy n] [−cd dir] [−hide] [−scroll] [−noscroll] [cmd arg ...]

wloc

DESCRIPTION
Rio manages asynchronous layers of text, or windows, on a raster display. It also serves a variety
of files for communicating with and controlling windows; these are discussed in section rio(4).

Commands
The rio command starts a new instance of the window system. Its −i option names a startup
script, which typically contains several window commands generated by wloc. The −k option
causes rio to run the command kbdcmd at startup and allow it to provide characters as keyboard
input; the keyboard program described in bitsyload(1) is the usual choice.

The −s option initializes windows so that text scrolls; the default is not to scroll. The −b option
reverses the normal color scheme for windows, painting white text on a black background. The
font argument names a font used to display text, both in rio�s menus and as a default for any pro
grams running in its windows; it also establishes the environment variable $font. If −f is not
given, rio uses the imported value of $font if set; otherwise it imports the default font from the
underlying graphics server, usually the terminal�s operating system.

The label command changes a window�s identifying name.

The window command creates a window. By default, it creates a shell window and sizes and places
it automatically. The geometry arguments control the size (dx, dy) and placement (minx, miny,
maxx, maxy); the units are pixels with the upper left corner of the screen at (0, 0). The hide
option causes the window to be created off-screen. The scroll and noscroll options set the
scroll mode. The cd option sets the working directory. The optional command and arguments
define which program to run in the window.

By default, window uses /dev/wctl (see rio(4)) to create the window and run the command.
Therefore, the window and command will be created by rio and run in a new file name space, just
as if the window had been created using the interactive menu. However, the −m option uses the
file server properties of rio to mount (see bind(1)) the new window�s name space within the name
space of the program calling window. This means, for example, that running window in a CPU
window will create another window whose command runs on the terminal, where rio is running;
while window −m will create another window whose command runs on the CPU server.

The wloc command prints the coordinates and label of each window in its instance of rio and is
used to construct arguments for window.

Window control
Each window behaves as a separate terminal with at least one process associated with it. When a
window is created, a new process (usually a shell; see rc(1)) is established and bound to the win
dow as a new process group. Initially, each window acts as a simple terminal that displays charac
ter text; the standard input and output of its processes are attached to /dev/cons. Other spe
cial files, accessible to the processes running in a window, may be used to make the window a
more general display. Some of these are mentioned here; the complete set is discussed in rio(4).

One window is current, and is indicated with a dark border and text; characters typed on the key
board are available in the /dev/cons file of the process in the current window. Characters writ
ten on /dev/cons appear asynchronously in the associated window whether or not the window
is current.

Windows are created, deleted and rearranged using the mouse. Clicking (pressing and releasing)
mouse button 1 in a non-current window makes that window current and brings it in front of any
windows that happen to be overlapping it. When the mouse cursor points to the background area

250

RIO(1) RIO(1)

or is in a window that has not claimed the mouse for its own use, pressing mouse button 3 acti
vates a menu of window operations provided by rio. Releasing button 3 then selects an operation.
At this point, a gunsight or cross cursor indicates that an operation is pending. The button 3
menu operations are:

New Create a window. Press button 3 where one corner of the new rectangle should appear
(cross cursor), and move the mouse, while holding down button 3, to the diagonally
opposite corner. Releasing button 3 creates the window, and makes it current. Very
small windows may not be created.

Resize Change the size and location of a window. First click button 3 in the window to be
changed (gunsight cursor). Then sweep out a window as for the New operation. The
window is made current.

Move Move a window to another location. After pressing and holding button 3 over the win
dow to be moved (gunsight cursor), indicate the new position by dragging the rectan
gle to the new location. The window is made current. Windows may be moved par
tially off-screen.

Delete Delete a window. Click in the window to be deleted (gunsight cursor). Deleting a win
dow causes a hangup note to be sent to all processes in the window�s process group
(see notify(2)).

Hide Hide a window. Click in the window to be hidden (gunsight cursor); it will be moved
off-screen. Each hidden window is given a menu entry in the button 3 menu according
to the value of the file /dev/label, which rio maintains (see rio(4)).

label Restore a hidden window.

Windows may also be arranged by dragging their borders. Pressing button 1 or 2 over a window�s
border allows one to move the corresponding edge or corner, while button 3 moves the whole win
dow.

Text windows
Characters typed on the keyboard or written to /dev/cons collect in the window to form a long,
continuous document.

There is always some selected text, a contiguous string marked on the screen by reversing its
color. If the selected text is a null string, it is indicated by a hairline cursor between two charac
ters. The selected text may be edited by mousing and typing. Text is selected by pointing and
clicking button 1 to make a null-string selection, or by pointing, then sweeping with button 1
pressed. Text may also be selected by double-clicking: just inside a matched delimiter-pair with
one of {[(<«‘’" on the left and }])>»‘’" on the right, it selects all text within the pair; at the
beginning or end of a line, it selects the line; within or at the edge of an alphanumeric word, it
selects the word.

Characters typed on the keyboard replace the selected text; if this text is not empty, it is placed in
a snarf buffer common to all windows but distinct from that of sam(1).

Programs access the text in the window at a single point maintained automatically by rio. The
output point is the location in the text where the next character written by a program to
/dev/cons will appear; afterwards, the output point is the null string beyond the new character.
The output point is also the location in the text of the next character that will be read (directly
from the text in the window, not from an intervening buffer) by a program from /dev/cons.
When such a read will occur is, however, under control of rio and the user.

In general there is text in the window after the output point, usually placed there by typing but
occasionally by the editing operations described below. A pending read of /dev/cons will block
until the text after the output point contains a newline, whereupon the read may acquire the text,
up to and including the newline. After the read, as described above, the output point will be at the
beginning of the next line of text. In normal circumstances, therefore, typed text is delivered to
programs a line at a time. Changes made by typing or editing before the text is read will not be
seen by the program reading it. If the program in the window does not read the terminal, for
example if it is a long-running computation, there may accumulate multiple lines of text after the
output point; changes made to all this text will be seen when the text is eventually read. This
means, for example, that one may edit out newlines in unread text to forestall the associated text
being read when the program finishes computing. This behavior is very different from most sys
tems.

251

RIO(1) RIO(1)

Even when there are newlines in the output text, rio will not honor reads if the window is in hold
mode, which is indicated by a white cursor and blue text and border. The ESC character toggles
hold mode. Some programs, such as mail(1), automatically turn on hold mode to simplify the edit
ing of multi-line text; type ESC when done to allow mail to read the text.

An EOT character (control-D) behaves exactly like newline except that it is not delivered to a pro
gram when read. Thus on an empty line an EOT serves to deliver an end-of-file indication: the
read will return zero characters. Like newlines, unread EOTs may be successfully edited out of the
text. The BS character (control-H) erases the character before the selected text. The ETB character
(control-W) erases any nonalphanumeric characters, then the alphanumeric word just before the
selected text. �Alphanumeric� here means non-blanks and non-punctuation. The NAK character
(control-U) erases the text after the output point, and not yet read by a program, but not more
than one line. All these characters are typed on the keyboard and hence replace the selected text;
for example, typing a BS with a word selected places the word in the snarf buffer, removes it from
the screen, and erases the character before the word.

An ACK character (control-F) or Insert character triggers file name completion for the preceding
string (see complete(2)).

Typing a left or right arrow moves the cursor one character in that direction. Typing an SOH char
acter (control-A) moves the cursor to the beginning of the current line; an ENQ character (control-
E) moves to the end. The STX character (control-B) moves the cursor to the output point.

Text may be moved vertically within the window. A scroll bar on the left of the window shows in
its clear portion what fragment of the total output text is visible on the screen, and in its gray part
what is above or below view; it measures characters, not lines. Mousing inside the scroll bar
moves text: clicking button 1 with the mouse pointing inside the scroll bar brings the line at the
top of the window to the cursor�s vertical location; button 3 takes the line at the cursor to the top
of the window; button 2, treating the scroll bar as a ruler, jumps to the indicated portion of the
stored text. Holding a button pressed in the scroll bar will cause the text to scroll continuously
until the button is released. Also, a page down or down-arrow scrolls forward half a window, and
page up or up-arrow scrolls back. Typing the home key scrolls to the top of the window; typing
the end key scrolls to the bottom.

The DEL character sends an interrupt note to all processes in the window�s process group.
Unlike the other characters, the DEL, VIEW, and up- and down-arrow keys do not affect the
selected text. The left (right) arrow key moves the selection to one character before (after) the cur
rent selection.

Normally, written output to a window blocks when the text reaches the end of the screen; a button
2 menu item toggles scrolling.

Other editing operations are selected from a menu on button 2. The cut operation deletes the
selected text from the screen and puts it in the snarf buffer; snarf copies the selected text to the
buffer without deleting it; paste replaces the selected text with the contents of the buffer; and
send copies the snarf buffer to just after the output point, adding a final newline if missing.
Paste will sometimes and send will always place text after the output point; the text so placed
will behave exactly as described above. Therefore when pasting text containing newlines after the
output point, it may be prudent to turn on hold mode first.

The plumb menu item sends the contents of the selection (not the snarf buffer) to the plumber(4).
If the selection is empty, it sends the white-space-delimited text containing the selection (typing
cursor). A typical use of this feature is to tell the editor to find the source of an error by plumbing
the file and line information in a compiler�s diagnostic.

Raw text windows
Opening or manipulating certain files served by rio suppresses some of the services supplied to
ordinary text windows. While the file /dev/mouse is open, any mouse operations are the
responsibility of another program running in the window. Thus, rio refrains from maintaining the
scroll bar, supplying text editing or menus, interpreting the VIEW key as a request to scroll, and
also turns scrolling on.

The file /dev/consctl controls interpretation of keyboard input. In particular, a raw mode may
be set: in a raw-input window, no typed keyboard characters are special, they are not echoed to
the screen, and all are passed to a program immediately upon reading, instead of being gathered

252

RIO(1) RIO(1)

into lines.

Graphics windows
A program that holds /dev/mouse and /dev/consctl open after putting the console in raw
mode has complete control of the window: it interprets all mouse events, gets all keyboard charac
ters, and determines what appears on the screen.

FILES
/lib/font/bit/* font directories
/mnt/wsys Files served by rio (also unioned in /dev in a window�s name

space, before the terminal�s real /dev files)
/srv/rio.user.pid Server end of rio.
/srv/riowctl.user.pid Named pipe for wctl messages.

SOURCE
/sys/src/cmd/rio
/rc/bin/label
/rc/bin/window
/rc/bin/wloc

SEE ALSO
rio(4), rc(1), cpu(1), sam(1), mail(1), proof(1), graphics(2), frame(2), window(2), notify(2),
cons(3), draw(3), mouse(3), keyboard (6)

BUGS
The standard input of window is redirected to the newly created window, so there is no way to pipe
the output of a program to the standard input of the new window. In some cases, plumb(1) can be
used to work around this limitation.

253

RM(1) RM(1)

NAME
rm � remove files

SYNOPSIS
rm [−fr] file ...

DESCRIPTION
Rm removes files or directories. A directory is removed only if it is empty. Removal of a file
requires write permission in its directory, but neither read nor write permission on the file itself.
The options are

−f Don�t report files that can�t be removed.

−r Recursively delete the entire contents of a directory and the directory itself.

SOURCE
/sys/src/cmd/rm.c

SEE ALSO
remove(2)

254

ROTATE(1) ROTATE(1)

NAME
rotate - rotate or mirror a picture

SYNOPSIS
rotate [−r degree] [−u | −l] [file]

DESCRIPTION
Rotate reads its input image (default from standard input), applies the rotation or mirroring and
outputs the transformed image in compressed plan9 bitmap format.

The option −r rotates the image clockwise in 90 degree steps by the degree argument. The
options −u and −l mirror the image upside/down or left/right.

SOURCE
/sys/src/cmd/rotate.c

SEE ALSO
crop(1), resample(1), image(6)

HISTORY
Rotate first appeared in 9front (September, 2011).

255

RWD(1) RWD(1)

NAME
rwd, conswdir � maintain remote working directory

SYNOPSIS
rwd path

conswdir [prog]

DESCRIPTION
Rwd and conswdir conspire to keep rio(4) and acme(4) informed about the current directory on
remote systems during login sessions. Rio and acme include this information in plumb messages
sent to plumber(4). If the remote system�s name space is mounted in the plumber�s name space,
the end result is that file paths printed during the session are plumbable.

Rwd informs rio and acme of directory changes. The name of the remote machine is taken from
the environment variable $remotesys. Rwd writes the full path to /dev/wdir; writes the last
element of the path, suffixed by @remotesys, to /dev/label; and when run inside a win (see
acme(1)) window, changes the window title to path/−remotesys using /dev/acme/ctl.

Conswdir copies standard input to standard output, looking for in-band messages about directory
changes. The messages are of the form:

\033];path\007

where \033 and \007 are ASCII escape and bell characters. Such messages are removed from
the stream and not printed to standard output; for each such message conswdir runs prog (default
/bin/rwd) with path as its only argument.

EXAMPLES
Add this plumbing rule (see plumb(6)) in order to run commands in the plumber�s name space:

have plumber run command
kind is text
data matches ’Local (.*)’
plumb to none
plumb start rc −c $1

Mount a Unix system in your name space and the plumber�s:

% 9fs unix
% plumb ’Local 9fs unix’

(If you�re using acme, execute Local 9fs unix with the middle button to mount the Unix sys
tem in acme�s name space.)

Connect to the Unix system, processing in-band directory change messages:

% ssh unix | aux/conswdir

Add this shell function to your .profile on the Unix system to generate directory change mes
sages every time a cd command is executed:

H=‘hostname | sed ’s/\..*//’‘
_cd () {

\cd $* &&
case $− in
i)

_dir=‘pwd‘
echo /n/H_dir | awk ’{printf("\033];%s\007", $1);}’

esac
}
alias cd=_cd

The examples described so far only help for relative path names. Add this plumbing rule to handle
rooted names like /usr/include/stdio.h:

remote rooted path names
type is text
wdir matches ’/n/unix(/.*)?’

256

RWD(1) RWD(1)

data matches ’/([.a−zA−Z¡− 0−9_/\−]*[a−zA−Z¡− 0−9_/\−])(’$addr’)?’
arg isfile /n/unix/$1
data set $file
attr add addr=$3
plumb to edit
plumb client window $editor

SOURCE
/rc/bin/rwd
/sys/src/cmd/aux/conswdir.c

SEE ALSO
plumber(4), plumb(6), srv(4)

BUGS
This mechanism is clunky, but Unix and SSH make it hard to build a better one.

The escape sequence was chosen because it changes the title on xterm windows.

257

SAM(1) SAM(1)

NAME
sam, B, sam.save, samterm � screen editor with structural regular expressions

SYNOPSIS
sam [option ...] [files]

sam −r machine

sam.save

B [−nnnn] file ...

DESCRIPTION
Sam is a multi-file editor. It modifies a local copy of an external file. The copy is here called a
file. The files are listed in a menu available through mouse button 3 or the n command. Each file
has an associated name, usually the name of the external file from which it was read, and a �modi
fied� bit that indicates whether the editor�s file agrees with the external file. The external file is
not read into the editor�s file until it first becomes the current file�that to which editing com
mands apply�whereupon its menu entry is printed. The options are

−a Autoindent. In this mode, when a newline character is typed in the terminal inter
face, samterm copies leading white space on the current line to the new line.

−i Indent with spaces. In this mode, when a tab character is typed in the terminal
interface, samterm will insert spaces until the next tabstop. Backspace will delete
spaces until the previous tabstop or another character is encountered.

−d Do not �download� the terminal part of sam. Editing will be done with the com
mand language only, as in ed(1).

−r machine Run the host part remotely on the specified machine, the terminal part locally.
−s path Start the host part from the specified file on the remote host. Only meaningful

with the −r option.
−t path Start the terminal part from the specified file. Useful for debugging.

Regular expressions
Regular expressions are as in regexp(6) with the addition of \n to represent newlines. A regular
expression may never contain a literal newline character. The empty regular expression stands for
the last complete expression encountered. A regular expression in sam matches the longest left
most substring formally matched by the expression. Searching in the reverse direction is equiva
lent to searching backwards with the catenation operations reversed in the expression.

Addresses
An address identifies a substring in a file. In the following, �character n� means the null string
after the n-th character in the file, with 1 the first character in the file. �Line n� means the n-th
match, starting at the beginning of the file, of the regular expression .*\n?. All files always have
a current substring, called dot, that is the default address.

Simple Addresses
#n The empty string after character n; #0 is the beginning of the file.
n Line n; 0 is the beginning of the file.
/regexp/
?regexp?

The substring that matches the regular expression, found by looking toward the end (/) or
beginning (?) of the file, and if necessary continuing the search from the other end to the
starting point of the search. The matched substring may straddle the starting point. When
entering a pattern containing a literal question mark for a backward search, the question
mark should be specified as a member of a class.

0 The string before the first full line. This is not necessarily the null string; see + and −
below.

$ The null string at the end of the file.

. Dot.

’ The mark in the file (see the k command below).

258

SAM(1) SAM(1)

"regexp"
Preceding a simple address (default .), refers to the address evaluated in the unique file
whose menu line matches the regular expression.

Compound Addresses
In the following, a1 and a2 are addresses.

a1+a2 The address a2 evaluated starting at the end of a1.
a1−a2 The address a2 evaluated looking in the reverse direction starting at the beginning of

a1.
a1,a2 The substring from the beginning of a1 to the end of a2. If a1 is missing, 0 is substi

tuted. If a2 is missing, $ is substituted.
a1;a2 Like a1,a2, but with a2 evaluated at the end of, and dot set to, a1.

The operators + and − are high precedence, while , and ; are low precedence.

In both + and − forms, if a2 is a line or character address with a missing number, the number
defaults to 1. If a1 is missing, . is substituted. If both a1 and a2 are present and distinguishable,
+ may be elided. a2 may be a regular expression; if it is delimited by ?�s, the effect of the + or −
is reversed.

It is an error for a compound address to represent a malformed substring. Some useful idioms:
a1+− (a1−+) selects the line containing the end (beginning) of a1. 0/regexp/ locates the first
match of the expression in the file. (The form 0;// sets dot unnecessarily.) ./regexp/// finds
the second following occurrence of the expression, and .,/regexp/ extends dot.

Commands
In the following, text demarcated by slashes represents text delimited by any printable character
except alphanumerics. Any number of trailing delimiters may be elided, with multiple elisions then
representing null strings, but the first delimiter must always be present. In any delimited text,
newline may not appear literally; \n may be typed for newline; and \/ quotes the delimiter, here
/. Backslash is otherwise interpreted literally, except in s commands.

Most commands may be prefixed by an address to indicate their range of operation. Those that
may not are marked with a * below. If a command takes an address and none is supplied, dot is
used. The sole exception is the w command, which defaults to 0,$. In the description, �range� is
used to represent whatever address is supplied. Many commands set the value of dot as a side
effect. If so, it is always set to the �result� of the change: the empty string for a deletion, the new
text for an insertion, etc. (but see the s and e commands).

Text commands
a/text/
or
a
lines of text
. Insert the text into the file after the range. Set dot.

c
i Same as a, but c replaces the text, while i inserts before the range.

d Delete the text in the range. Set dot.

s/regexp/text/
Substitute text for the first match to the regular expression in the range. Set dot to the
modified range. In text the character & stands for the string that matched the expression.
Backslash behaves as usual unless followed by a digit: \d stands for the string that
matched the subexpression begun by the d-th left parenthesis. If s is followed immedi
ately by a number n, as in s2/x/y/, the n-th match in the range is substituted. If the
command is followed by a g, as in s/x/y/g, all matches in the range are substituted.

m a1
t a1 Move (m) or copy (t) the range to after a1. Set dot.

Display commands
p Print the text in the range. Set dot.
= Print the line address and character address of the range.

259

SAM(1) SAM(1)

=# Print just the character address of the range.

File commands
* b file−list

Set the current file to the first file named in the list that sam also has in its menu. The list
may be expressed <Plan 9 command in which case the file names are taken as words (in
the shell sense) generated by the Plan 9 command.

* B file−list
Same as b, except that file names not in the menu are entered there, and all file names in
the list are examined.

* n Print a menu of files. The format is:
’ or blank indicating the file is modified or clean,
− or + indicating the file is unread or has been read (in the terminal, * means more

than one window is open),
. or blank indicating the current file,
a blank,
and the file name.

* D file−list
Delete the named files from the menu. If no files are named, the current file is deleted. It
is an error to D a modified file, but a subsequent D will delete such a file.

I/O Commands
* e filename

Replace the file by the contents of the named external file. Set dot to the beginning of the
file.

r filename
Replace the text in the range by the contents of the named external file. Set dot.

w filename
Write the range (default 0,$) to the named external file.

* f filename
Set the file name and print the resulting menu entry.

If the file name is absent from any of these, the current file name is used. e always sets the file
name; r and w do so if the file has no name.
< Plan 9−command

Replace the range by the standard output of the Plan 9 command.
> Plan 9−command

Send the range to the standard input of the Plan 9 command.
^ Plan 9−command

Send the standard output of the Plan 9 command to the command window.
| Plan 9−command

Send the range to the standard input, and replace it by the standard output, of the Plan 9
command.

_ Plan 9−command
Send the range to the standard input, and send the standard output of the Plan 9 command
to the command window.

* ! Plan 9−command
Run the Plan 9 command.

* cd directory
Change working directory. If no directory is specified, $home is used.

In any of <, >, ^, _, | or !, if the Plan 9 command is omitted the last Plan 9 command (of any
type) is substituted. If sam is downloaded (using the mouse and raster display, i.e. not using
option −d), ! sets standard input to /dev/null, and otherwise unassigned output (stdout for
! and >, stderr for all) is placed in /tmp/sam.err and the first few lines are printed.

Sam sets two environmental variables depending on the current file. $% is set to the file name.
$%dot is set to a list consisting of three values that define the dot.

Loops and Conditionals
x/regexp/ command

For each match of the regular expression in the range, run the command with dot set to the
match. Set dot to the last match. If the regular expression and its slashes are omitted,

260

SAM(1) SAM(1)

/.*\n/ is assumed. Null string matches potentially occur before every character of the
range and at the end of the range.

y/regexp/ command
Like x, but run the command for each substring that lies before, between, or after the
matches that would be generated by x. There is no default regular expression. Null sub
strings potentially occur before every character in the range.

* X/regexp/ command
For each file whose menu entry matches the regular expression, make that the current file
and run the command. If the expression is omitted, the command is run in every file.

* Y/regexp/ command
Same as X, but for files that do not match the regular expression, and the expression is
required.

g/regexp/ command
v/regexp/ command

If the range contains (g) or does not contain (v) a match for the expression, set dot to the
range and run the command.

These may be nested arbitrarily deeply, but only one instance of either X or Y may appear in a
single command. An empty command in an x or y defaults to p; an empty command in X or Y
defaults to f. g and v do not have defaults.

Miscellany
k Set the current file�s mark to the range. Does not set dot.
* q Quit. It is an error to quit with modified files, but a second q will succeed.
* u n Undo the last n (default 1) top-level commands that changed the contents or name of

the current file, and any other file whose most recent change was simultaneous with
the current file�s change. Successive u�s move further back in time. The only com
mands for which u is ineffective are cd, u, q, w and D. If n is negative, u �redoes,�
undoing the undo, going forwards in time again.

(empty) If the range is explicit, set dot to the range. If sam is downloaded, the resulting dot
is selected on the screen; otherwise it is printed. If no address is specified (the com
mand is a newline) dot is extended in either direction to line boundaries and printed.
If dot is thereby unchanged, it is set to .+1 and printed.

Grouping and multiple changes
Commands may be grouped by enclosing them in braces {}. Commands within the braces must
appear on separate lines (no backslashes are required between commands). Semantically, an
opening brace is like a command: it takes an (optional) address and sets dot for each sub-
command. Commands within the braces are executed sequentially, but changes made by one
command are not visible to other commands (see the next paragraph). Braces may be nested arbi
trarily.

When a command makes a number of changes to a file, as in x/re/c/text/, the addresses of
all changes to the file are computed in the original file. If the changes are in sequence, they are
applied to the file. Successive insertions at the same address are catenated into a single insertion
composed of the several insertions in the order applied.

The terminal
What follows refers to behavior of sam when downloaded, that is, when operating as a display edi
tor on a raster display. This is the default behavior; invoking sam with the −d (no download)
option provides access to the command language only.

Each file may have zero or more windows open. Each window is equivalent and is updated simulta
neously with changes in other windows on the same file. Each window has an independent value
of dot, indicated by a highlighted substring on the display. Dot may be in a region not within the
window. There is usually a �current window�, marked with a dark border, to which typed text and
editing commands apply. Text may be typed and edited as in rio(1); also the escape key (ESC)
selects (sets dot to) text typed since the last mouse button hit.

Ctrl+b switches to the command window and moves to the end of the text. Ctrl+g switches from
to the last focused window. If the focused window is a text window, ctrl+g switches to the next
zeroxed instance of that window.

The button 3 menu controls window operations. The top of the menu provides the following oper
ators, each of which uses one or more rio-like cursors to prompt for selection of a window or

261

SAM(1) SAM(1)

sweeping of a rectangle. �Sweeping� a null rectangle gets a large window, disjoint from the com
mand window or the whole screen, depending on where the null rectangle is.

new Create a new, empty file.
zerox Create a copy of an existing window.
resize As in rio.
close Delete the window. In the last window of a file, close is equivalent to a D for the file.
write Equivalent to a w for the file.

Below these operators is a list of available files, starting with ~~sam~~, the command window.
Selecting a file from the list makes the most recently used window on that file current, unless it is
already current, in which case selections cycle through the open windows. If no windows are open
on the file, the user is prompted to open one. Files other than ~~sam~~ are marked with one of
the characters −+* according as zero, one, or more windows are open on the file. A further mark
. appears on the file in the current window and a single quote, ’, on a file modified since last
write.

The command window, created automatically when sam starts, is an ordinary window except that
text typed to it is interpreted as commands for the editor rather than passive text, and text printed
by editor commands appears in it. The behavior is like rio, with an �output point� that separates
commands being typed from previous output. Commands typed in the command window apply to
the current open file�the file in the most recently current window.

Manipulating text
Button 1 changes selection, much like rio. Pointing to a non-current window with button 1 makes
it current; within the current window, button 1 selects text, thus setting dot. Double-clicking
selects text to the boundaries of words, lines, quoted strings or bracketed strings, depending on
the text at the click.

Button 2 provides a menu of editing commands:

cut Delete dot and save the deleted text in the snarf buffer.
paste Replace the text in dot by the contents of the snarf buffer.
snarf Save the text in dot in the snarf buffer.
plumb Send the text in the selection as a plumb message. If the selection is empty, the

white-space-delimited block of text is sent as a plumb message with a click
attribute defining where the selection lies (see plumb(6)).

look Search forward for the next occurrence of the literal text in dot. If dot is the null
string, the text in the snarf buffer is used. The snarf buffer is unaffected.

<rio> Exchange snarf buffers with rio.
/regexp Search forward for the next match of the last regular expression typed in a command.

(Not in command window.)
send Send the text in dot, or the snarf buffer if dot is the null string, as if it were typed to

the command window. Saves the sent text in the snarf buffer. (Command window
only.)

External communication
Sam listens to the edit plumb port. If plumbing is not active, on invocation sam creates a named
pipe /srv/sam.user which acts as an additional source of commands. Characters written to the
named pipe are treated as if they had been typed in the command window.

B is a shell-level command that causes an instance of sam running on the same terminal to load
the named files. B uses either plumbing or the named pipe, whichever service is available. If
plumbing is not enabled, the option allows a line number to be specified for the initial position to
display in the last named file (plumbing provides a more general mechanism for this ability).

Abnormal termination
If sam terminates other than by a q command (by hangup, deleting its window, etc.), modified files
are saved in an executable file, $home/sam.save. This program, when executed, asks whether
to write each file back to a external file. The answer y causes writing; anything else skips the file.

FILES
$home/sam.save
$home/sam.err

262

SAM(1) SAM(1)

/sys/lib/samsave the program called to unpack $home/sam.save.

SOURCE
/sys/src/cmd/sam source for sam itself
/sys/src/cmd/samterm source for the separate terminal part
/rc/bin/B

SEE ALSO
ed(1), sed(1), grep(1), rio(1), regexp(6).

Rob Pike, ��The text editor sam��.

263

SECONDS(1) SECONDS(1)

NAME
seconds � convert human-readable date (and time) to seconds since epoch

SYNOPSIS
seconds date ...

DESCRIPTION
Seconds prints the number of seconds since 1 Jan 1970 corresponding to one or more human-
readable dates. Each date must be one argument; it will usually be necessary to enclose it in
quotes.

Seconds accepts a somewhat wider range of input than just output from date(1). The main require
ment is that the date must be fully specified, with a day of month, month and year in any order.
The month must be an English name (or abbreviation), not a number, and the year must contain 4
digits. Unambiguous time-zone names are understood (i.e., not IST) or time zones may be writ
ten as ±hhmm. Case is ignored.

EXAMPLES
Print the names of all files under . modified since the start of 23 May 2011.

du −ta | awk ’$1 >= ’^‘{seconds ’23 may 2011’}^’ {print $2}’

SOURCE
/sys/src/cmd/seconds.c

SEE ALSO
date(1), du(1), mtime(1), ctime(2)

BUGS
All-numeric dates, popular in the USA, are simply ambiguous, more so if the year is truncated to 2
digits.

264

SECSTORE(1) SECSTORE(1)

NAME
aescbc, ipso, secstore � secstore commands

SYNOPSIS
auth/secstore [−cinv] [−(g|G) getfile] [−p putfile] [−r rmfile] [−s server] [−u user
]

auth/aescbc -e [-in] <cleartext >ciphertext
auth/aescbc -d [-in] <ciphertext >cleartext

ipso [−a −e −l −f −s] [file ...]

DESCRIPTION
Secstore authenticates to a secure-store server using a password and optionally a hardware token,
then saves or retrieves a file. This is intended to be a credentials store (public/private keypairs,
passwords, and other secrets) for a factotum.

Option −c prompts for a password change.

Option −g retrieves a file to the local directory; option −G writes it to standard output instead.
Specifying getfile of . will send to standard output a list of remote files with dates, lengths and
SHA1 hashes.

Option −i says that the password should be read from standard input instead of from
/dev/cons.

Option −n says that the password should be read from NVRAM (see authsrv(2)) instead of from
/dev/cons.

Option −p stores a file on the secstore.

Option −r removes a file from the secstore.

Option −s sets the dial string of the secstore(8) server. The default is contained in the
$secstore environment variable. If the −s option is absent and $secstore is empty,
secstore(1) will attempt to dial tcp!$auth!secstore.

Option −u access the secure-store files belonging to user.

Option −v produces more verbose output, in particular providing a few bits of feedback to help
the user detect mistyping.

For example, to add a secret to the file read by factotum(4) at startup, open a new window, type

% ramfs −p; cd /tmp
% auth/secstore −g factotum
secstore password:
% echo ’key proto=apop dom=x.com user=ehg !password=hi’ >> factotum
% auth/secstore −p factotum
secstore password:
% read −m factotum > /mnt/factotum/ctl

and delete the window. The first line creates an ephemeral memory-resident workspace, invisible
to others and automatically removed when the window is deleted. The next three commands fetch
the persistent copy of the secrets, append a new secret, and save the updated file back to secstore.
The final command loads the new secret into the running factotum.

The ipso command packages this sequence into a convenient script to simplify editing of files
stored on a secure store. It copies the named files into a local ramfs(4) and invokes acme(1) on
them. When the editor exits, ipso prompts the user to confirm copying modifed or newly created
files back to secstore. If no file is mentioned, ipso grabs all the user�s files from secstore for edit
ing.

By default, ipso will edit the secstore files and, if one of them is named factotum, flush current
keys from factotum and load the new ones from the file. If the −e, −f, or −l options are given,
ipso will just perform only the requested operations, i.e., edit, flush, and/or load.

The −s option of ipso invokes sam(1) as the editor insted of acme; the −a option provides a simi
lar service for files encrypted by aescbc (q.v.). With the −a option, the full rooted pathname of the

265

SECSTORE(1) SECSTORE(1)

file must be specified and all files must be encrypted with the same key. Also with −a, newly cre
ated files are ignored.

Aescbc encrypts (under −e) and decrypts (under −d) using AES (Rijndael) in cipher block chaining
(CBC) mode. Options i and n are as per secstore, except that i reads from file descriptor 3.

SOURCE
/rc/bin/ipso
/sys/src/cmd/auth/secstore

SEE ALSO
factotum(4), secstore(8)

DIAGNOSTICS
Secstore sets error status on failure but will not print an error message when reading NVRAM or
dialing the secstore server fails unless the −v flag is specified.

BUGS
There is deliberately no backup of files on the secstore, so −r (or a disk crash) is irrevocable. You
are advised to store important secrets in a second location.

When using ipso, secrets will appear as plain text in the editor window, so use the command in pri
vate.

266

SED(1) SED(1)

NAME
sed � stream editor

SYNOPSIS
sed [−n] [−g] [−u] [−e script] [−f sfile] [file ...]

DESCRIPTION
Sed copies the named files (standard input default) to the standard output, edited according to a
script of commands. The −f option causes the script to be taken from file sfile; these options
accumulate. If there is just one −e option and no −f�s, the option −e may be omitted. The −n
option suppresses the default output; −g causes all substitutions to be global, as if suffixed g. If
−u is specified, sed flushes its output buffers before reading in further input.

A script consists of editing commands, one per line, of the following form:

[address [, address]] function [argument ...] [;]

In normal operation sed cyclically copies a line of input into a pattern space (unless there is some
thing left after a D command), applies in sequence all commands whose addresses select that pat
tern space, and at the end of the script copies the pattern space to the standard output (except
under −n) and deletes the pattern space.

An address is either a decimal number that counts input lines cumulatively across files, a $ that
addresses the last line of input, or a context address, /regular−expression/, in the style of
regexp(6), with the added convention that \n matches a newline embedded in the pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address.

A command line with two addresses selects the inclusive range from the first pattern space that
matches the first address through the next pattern space that matches the second. (If the second
address is a number less than or equal to the line number first selected, only one line is selected.)
Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied to non-selected pattern spaces by use of the negation function
! (below).

An argument denoted text consists of one or more lines, all but the last of which end with \ to
hide the newline. Backslashes in text are treated like backslashes in the replacement string of an s
command, and may be used to protect initial blanks and tabs against the stripping that is done on
every script line.

An argument denoted rfile or wfile must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. There can be at most 120 dis
tinct wfile arguments.

a\
text Append. Place text on the output before reading the next input line.

b label Branch to the : command bearing the label. If label is empty, branch to the end of
the script.

c\
text Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-

address range, place text on the output. Start the next cycle.

d Delete the pattern space. Start the next cycle.

D Delete the initial segment of the pattern space through the first newline. Start the
next cycle.

g Replace the contents of the pattern space by the contents of the hold space.

G Append the contents of the hold space to the pattern space.

h Replace the contents of the hold space by the contents of the pattern space.

267

SED(1) SED(1)

H Append the contents of the pattern space to the hold space.

i\
text Insert. Place text on the standard output.

n Copy the pattern space to the standard output. Replace the pattern space with the
next line of input.

N Append the next line of input to the pattern space with an embedded newline.
(The current line number changes.)

p Print. Copy the pattern space to the standard output.

P Copy the initial segment of the pattern space through the first newline to the stan
dard output.

q Quit. Branch to the end of the script. Do not start a new cycle.

r rfile Read the contents of rfile. Place them on the output before reading the next input
line.

s/regular−expression/replacement/flags
Substitute the replacement string for instances of the regular−expression in the
pattern space. Any character may be used instead of /. For a fuller description
see regexp(6). Flags is zero or more of

g Global. Substitute for all non-overlapping instances of the regular
expression rather than just the first one.

p Print the pattern space if a replacement was made.

w wfile
Write. Append the pattern space to wfile if a replacement was made.

An ampersand & appearing in the replacement is replaced by the string matching
the regular expression. The characters \n, where n is a digit, are replaced by the
text matched by the n-th regular subexpression enclosed between (and). When
nested parenthesized subexpressions are present, n is determined by counting
occurrences of (starting from the left.

t label Test. Branch to the : command bearing the label if any substitutions have been
made since the most recent reading of an input line or execution of a t. If label is
empty, branch to the end of the script.

w wfile
Write. Append the pattern space to wfile.

x Exchange the contents of the pattern and hold spaces.

y/string1/string2/
Transform. Replace all occurrences of characters in string1 with the corresponding
character in string2. The lengths of string1 and string2 must be equal.

!function Don�t. Apply the function (or group, if function is {) only to lines not selected by
the address(es).

Comment. Ignore the rest of the line.

: label This command does nothing; it bears a label for b and t commands to branch to.

= Place the current line number on the standard output as a line.

{ Execute the following commands through a matching } only when the pattern
space is selected.

An empty command is ignored.

EXAMPLES
sed 10q file

Print the first 10 lines of the file.

sed ’/^$/d’
Delete empty lines from standard input.

268

SED(1) SED(1)

sed ’s/UNIX/& system/g’
Replace every instance of UNIX by UNIX system.

sed ’s/ *$// drop trailing blanks
/^$/d drop empty lines
s/ */\ replace blanks by newlines
/g
/^$/d’ chapter*

Print the files chapter1, chapter2, etc. one word to a line.

nroff −ms manuscript | sed ’
${

/^$/p if last line of file is empty, print it
}
//N if current line is empty, append next line
/^\n$/D’ if two lines are empty, delete the first

Delete all but one of each group of empty lines from a formatted manuscript.

SOURCE
/sys/src/cmd/sed.c

SEE ALSO
ed(1), grep(1), awk(1), lex(1), sam(1), regexp(6)
L. E. McMahon, �SED � A Non-interactive Text Editor�, Unix Research System Programmer�s Man
ual, Volume 2.

BUGS
If input is from a pipe, buffering may consume characters beyond a line on which a q command is
executed.

−u does not work as expected if $ addressing is used.

269

SEG(1) SEG(1)

NAME
seg � access a named segment

SYNOPSIS
seg [−WLrw] segment segment−size offset [value]

DESCRIPTION
seg accesses a named segment as provided by e.g. certain drivers. The operation to be per
formed is selected with −r and −w for reading and writing, respectively. The default operation
size is a byte. C style notation for integers (e.g. 0x42 or 023) is accepted for the segment−size ,
offset and value parameters.

−W Perform a word (16 bit) operation

−L Perform a long / double word (32 bit) operation.

SOURCE
/sys/src/cmd/seg.c

SEE ALSO
io(1)

BUGS
No check of the segment−size and offset parameters is performed whatsoever. Odd values may
cause the front to fall off.

HISTORY
Seg first appeared in 9front (April, 2011).

270

SEGA(1) SEGA(1)

NAME
md � emulator

SYNOPSIS
games/md [−a] [−x scale] romfile

DESCRIPTION
Md is an emulator for the Sega Megadrive/Genesis. It executes the romfile given as an argument.
The z, x, c, return and shift keys correspond to A, B, C, Start and Select, respectively. Other keys:

F1 Pause the emulator. If already paused it will step one video frame.

F12 Toggle the emulator�s speedometer. It shows in the upper left, off-viewport corner, the
ratio between the expected and observed time it took to draw 60 frames.

t Toggle tracing of the emulator.

� It uncaps the 60fps frame rate and lets emulation go as fast as possible.

Esc Pause the emulator.

Del Exit the emulator.

Command line options:

−a Enable audio output.

−x Scale the screen to a given factor regardless of the window�s size.

SOURCE
/sys/src/games/md

BUGS
Probably!

HISTORY
Md first appeared in 9front (November, 2014).

271

SEQ(1) SEQ(1)

NAME
seq � print sequences of numbers

SYNOPSIS
seq [−w] [−fformat] [first [incr]] last

DESCRIPTION
Seq prints a sequence of numbers, one per line, from first (default 1) to as near last as possible, in
increments of incr (default 1). The loop is:

for(val = min; val <= max; val += incr) print val;

The numbers are interpreted as floating point.

Normally integer values are printed as decimal integers. The options are

−fformat Use the print(2)-style format print for printing each (floating point) number. The
default is %g.

−w Equalize the widths of all numbers by padding with leading zeros as necessary. Not
effective with option −f, nor with numbers in exponential notation.

EXAMPLES
seq 0 .05 .1

Print 0 0.05 0.1 (on separate lines).

seq −w 0 .05 .1
Print 0.00 0.05 0.10.

SOURCE
/sys/src/cmd/seq.c

BUGS
Option −w always surveys every value in advance. Thus seq −w 1000000000 is a painful way
to get an �infinite� sequence.

272

SIZE(1) SIZE(1)

NAME
size � print size of executable files

SYNOPSIS
size [file ...]

DESCRIPTION
Size prints the size of the segments for each of the argument executable files (default v.out).
The format is

textsizet + datasized + bsssizeb = total

where the numbers are in bytes.

SOURCE
/sys/src/cmd/size.c

SEE ALSO
a.out(6)

273

SLEEP(1) SLEEP(1)

NAME
sleep � suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep suspends execution for time seconds. Time may be floating-point.

EXAMPLES
Execute a command 100 seconds hence.

{sleep 100; command}&

Repeat a command every 30 seconds.

while (){
command
sleep 30

}

SOURCE
/sys/src/cmd/sleep.c

SEE ALSO
sleep(2)

274

SORT(1) SORT(1)

NAME
sort � sort and/or merge files

SYNOPSIS
sort [−cmuMbdfinrwtx] [+pos1 [−pos2] ...] ... [−k pos1 [,pos2]] ...

[−o output] [−T dir ...] [option ...] [file ...]

DESCRIPTION
Sort sorts lines of all the files together and writes the result on the standard output. If no input
files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by runes. The ordering is
affected globally by the following options, one or more of which may appear.

−M Compare as months. The first three non-white space characters of the field are folded to
upper case and compared so that JAN precedes FEB, etc. Invalid fields compare low to
JAN.

−b Ignore leading white space (spaces and tabs) in field comparisons.

−d �Phone directory� order: only letters, accented letters, digits and white space are significant
in comparisons.

−f Fold lower case letters onto upper case. Accented characters are folded to their non-
accented upper case form.

−i Ignore characters outside the ASCII range 040-0176 in non-numeric comparisons.

−w Like −i, but ignore only tabs and spaces.

−n An initial numeric string, consisting of optional white space, optional plus or minus sign,
and zero or more digits with optional decimal point, is sorted by arithmetic value.

−g Numbers, like −n but with optional e-style exponents, are sorted by value.

−r Reverse the sense of comparisons.

−tx �Tab character� separating fields is x.

The notation +pos1 −pos2 restricts a sort key to a field beginning at pos1 and ending just before
pos2. Pos1 and pos2 each have the form m.n, optionally followed by one or more of the flags
Mbdfginr, where m tells a number of fields to skip from the beginning of the line and n tells a
number of characters to skip further. If any flags are present they override all the global ordering
options for this key. A missing .n means .0; a missing −pos2 means the end of the line. Under
the −tx option, fields are strings separated by x; otherwise fields are non-empty strings sepa
rated by white space. White space before a field is part of the field, except under option −b. A b
flag may be attached independently to pos1 and pos2.

The notation −k pos1[,pos2] is how POSIX sort defines fields: pos1 and pos2 have the same format
but different meanings. The value of m is origin 1 instead of origin 0 and a missing .n in pos2 is
the end of the field.

When there are multiple sort keys, later keys are compared only after all earlier keys compare
equal. Lines that otherwise compare equal are ordered with all bytes significant.

These option arguments are also understood:

−c Check that the single input file is sorted according to the ordering rules; give no out
put unless the file is out of sort.

−m Merge; assume the input files are already sorted.

−u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys
do not participate in this comparison.

−o The next argument is the name of an output file to use instead of the standard out
put. This file may be the same as one of the inputs.

275

SORT(1) SORT(1)

−Tdir Put temporary files in dir rather than in /tmp.

EXAMPLES
sort −u +0f +0 list

Print in alphabetical order all the unique spellings in a list of words where capitalized words
differ from uncapitalized.

sort −t: +1 /adm/users
Print the users file sorted by user name (the second colon-separated field).

sort −umM dates
Print the first instance of each month in an already sorted file. Options −um with just one
input file make the choice of a unique representative from a set of equal lines predictable.

grep −n ’^’ input | sort −t: +1f +0n | sed ’s/[0−9]*://’
A stable sort: input lines that compare equal will come out in their original order.

FILES
/tmp/sort.<pid>.<ordinal>

SOURCE
/sys/src/cmd/sort.c

SEE ALSO
uniq(1), look(1)

DIAGNOSTICS
Sort comments and exits with non-null status for various trouble conditions and for disorder dis
covered under option −c.

BUGS
An external null character can be confused with an internally generated end-of-field character.
The result can make a sub-field not sort less than a longer field.

Some of the options, e.g. −i and −M, are hopelessly provincial.

276

SPELL(1) SPELL(1)

NAME
spell, sprog � find spelling errors

SYNOPSIS
spell [options] ... [file] ...

aux/sprog [options] [−f file]

DESCRIPTION
Spell looks up words from the named files (standard input default) in a spelling list and places pos
sible misspellings�words not sanctioned there�on the standard output.

Spell ignores constructs of troff(1) and its standard preprocessors. It understands these options:

−b Check British spelling.

−v Print all words not literally in the spelling list, with derivations.

−x Print on standard error, marked with =, every stem as it is looked up in the spelling list,
along with its affix classes.

As a matter of policy, spell does not admit multiple spellings of the same word. Variants that fol
low general rules are preferred over those that don�t, even when the unruly spelling is more com
mon. Thus, in American usage, �modelled�, �sizeable�, and �judgment� are rejected in favor of
�modeled�, �sizable�, and �judgement�. Agglutinated variants are shunned: �crewmember� and
�backyard� cede to �crew member� and �back yard� (noun) or �back-yard� (adjective).

FILES
/sys/lib/amspell American spelling list
/sys/lib/brspell British spelling list
/bin/aux/sprog The actual spelling checker. It expects one word per line on standard

input, and takes the same arguments as spell.

SOURCE
/rc/bin/spell the script
/sys/src/cmd/spell source for sprog

SEE ALSO
deroff(1)

BUGS
The heuristics of deroff(1) used to excise formatting information are imperfect.

The spelling list�s coverage is uneven; in particular biology, medicine, and chemistry, and perforce
proper names, not to mention languages other than English, are covered very lightly.

277

SPIN(1) SPIN(1)

NAME
spin - verification tool for models of concurrent systems

SYNOPSIS
spin −a [−m] [−Pcpp] file

spin [−bglmprsv] [−nN] [−Pcpp] file

spin −c [−t] [−Pcpp] file

spin −d [−Pcpp] file

spin −f ltl

spin −F file

spin −i [−bglmprsv] [−nN] [−Pcpp] file

spin −M [−t] [−Pcpp] file

spin −t[N] [−bglmprsv] [−jN] [−Pcpp] file

spin −V

DESCRIPTION
Spin is a tool for analyzing the logical consistency of asynchronous systems, specifically dis
tributed software and communication protocols. A verification model of the system is first speci
fied in a guarded command language called Promela. This specification language, described in the
reference, allows for the modeling of dynamic creation of asynchronous processes, nondeterminis
tic case selection, loops, gotos, local and global variables. It also allows for a concise specification
of logical correctness requirements, including, but not restricted to, requirements expressed in lin
ear temporal logic.

Given a Promela model stored in file, spin can perform interactive, guided, or random simulations
of the system�s execution. It can also generate a C program that performs an exhaustive or
approximate verification of the correctness requirements for the system.

−a Generate a verifier (model checker) for the specification. The output is written into a set of
C files, named pan.[cbhmt], that can be compiled (pcc pan.c) to produce an exe
cutable verifier. The online spin manuals (see below) contain the details on compilation
and use of the verifiers.

−c Produce an ASCII approximation of a message sequence chart for a random or guided
(when combined with −t) simulation run. See also option −M.

−d Produce symbol table information for the model specified in file. For each Promela object
this information includes the type, name and number of elements (if declared as an array),
the initial value (if a data object) or size (if a message channel), the scope (global or local),
and whether the object is declared as a variable or as a parameter. For message channels,
the data types of the message fields are listed. For structure variables, the third field
defines the name of the structure declaration that contains the variable.

−f ltl Translate the LTL formula ltl into a never claim.
This option reads a formula in LTL syntax from the second argument and translates it into
Promela syntax (a never claim, which is Promela�s equivalent of a Büchi Automaton). The
LTL operators are written: [] (always), <> (eventually), and U (strong until). There is no X
(next) operator, to secure compatibility with the partial order reduction rules that are
applied during the verification process. If the formula contains spaces, it should be quoted
to form a single argument to the spin command.

−F file
Translate the LTL formula stored in file into a never claim.
This behaves identically to option −f but will read the formula from the file instead of from
the command line. The file should contain the formula as the first line. Any text that fol
lows this first line is ignored, so it can be used to store comments or annotation on the for
mula. (On some systems the quoting conventions of the shell complicate the use of option
−f. Option −F is meant to solve those problems.)

278

SPIN(1) SPIN(1)

−i Perform an interactive simulation, prompting the user at every execution step that requires
a nondeterministic choice to be made. The simulation proceeds without user intervention
when execution is deterministic.

−M Produce a message sequence chart in Postscript form for a random simulation or a guided
simulation (when combined with −t), for the model in file, and write the result into file.ps.
See also option −c.

−m Changes the semantics of send events. Ordinarily, a send action will be (blocked) if the tar
get message buffer is full. With this option a message sent to a full buffer is lost.

−nN Set the seed for a random simulation to the integer value N. There is no space between the
−n and the integer N.

−t Perform a guided simulation, following the error trail that was produces by an earlier verifi
cation run, see the online manuals for the details on verification.

−V Prints the spin version number and exits.

With only a filename as an argument and no options, spin performs a random simulation of the
model specified in the file (standard input is the default if the filename is omitted). If option −i is
added, the simulation is interactive, or if option −t is added, the simulation is guided.

The simulation normally does not generate output, except what is generated explicitly by the user
within the model with printf statements, and some details about the final state that is reached after
the simulation completes. The group of options −bglmprsv sets the desired level of information
that the user wants about a random, guided, or interactive simulation run. Every line of output
normally contains a reference to the source line in the specification that generated it.

−b Suppress the execution of printf statements within the model.

−g Show at each time step the current value of global variables.

−l In combination with option −p, show the current value of local variables of the process.

−p Show at each simulation step which process changed state, and what source statement was
executed.

−r Show all message-receive events, giving the name and number of the receiving process and
the corresponding the source line number. For each message parameter, show the mes
sage type and the message channel number and name.

−s Show all message-send events.

−v Verbose mode, add some more detail, and generate more hints and warnings about the
model.

SOURCE
/sys/src/cmd/spin

SEE ALSO
http://spinroot.com: GettingStarted.pdf, Roadmap.pdf, Manual.pdf,

WhatsNew.pdf, Exercises.pdf
G.J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1991.
�, �Design and validation of protocols: a tutorial,� Computer Networks and ISDN Systems, Vol. 25,
No. 9, 1993, pp. 981-1017.
�, �The model checker Spin,� IEEE Trans. on SE, Vol, 23, No. 5, May 1997.

279

SPLIT(1) SPLIT(1)

NAME
split � split a file into pieces

SYNOPSIS
split [option ...] [file]

DESCRIPTION
Split reads file (standard input by default) and writes it in pieces of 1000 lines per output file. The
names of the output files are xaa, xab, and so on to xzz. The options are

−n n Split into n-line pieces.

−l n Synonym for −n n, a nod to Unix�s syntax.

−e expression
File divisions occur at each line that matches a regular expression; see regexp(6). Multiple
−e options may appear. If a subexpression of expression is contained in parentheses
(...), the output file name is the portion of the line which matches the subexpression.

−f stem
Use stem instead of x in output file names.

−s suffix
Append suffix to names identified under −e.

−x Exclude the matched input line from the output file.

−i Ignore case in option −e; force output file names (excluding the suffix) to lower case.

SOURCE
/sys/src/cmd/split.c

SEE ALSO
sed(1), awk(1), grep(1), regexp(6)

280

SPRED(1) SPRED(1)

NAME
spred � sprite editor

SYNOPSIS
spred

DESCRIPTION
Spred is an editor for small images using a limited palette. It uses a window system mimicking
sam(1). There is a command window which uses a command language described below. There is
also an arbitrary number of palette and sprite windows. Each open sprite file has an associated
palette file.

A left click on a color in a palette window selects that color. Colors in different palettes can be
selected indepedently. A left click on a pixel in a sprite window sets that pixel to the selected
color.

A right click brings up the global menu to create windows etc. It also lists all currently open files,
including those that are not open in any window. A middle click brings up the menu for the local
window, if applicable. Available commands there are:

pal The pal command sets the palette for the current sprite window. The palette is selected
with a middle click.

The command language is a very stripped down version of rc(1), currently only supporting "simple"
commands consisting of a name and an arbitrary number of arguments separated by spaces. Quot
ing works just like with rc(1). Available commands are:

q Quits the program. If any files have unsaved changes, it will fail on the first attempt to quit.

pal file

spr file
Open a palette (pal) or sprite (spr) file named file. If the file does not exist it is created.

w file Write the currently selected file to file. If file is not specified, the name specified to the com
mand opening the file is used.

size sz
Sets the size of the current file to sz. Sz should be of the form n for palettes or n*m for
sprites where n and m are integers.

set 0xrrggbb
Sets the currently selected color to the rgb color (rr,gg,bb) where rr, gg and bb are in hex
adecimal notation.

zoom n
Sets the current zoom factor to n.

SOURCE
/sys/src/cmd/spred

SEE ALSO
sam(1)

281

SRC(1) SRC(1)

NAME
src, Bfn � find source code for executable

SYNOPSIS
src [−n] [−s symbol] file ...

Bfn fn

DESCRIPTION
Src examines the named files to find the corresponding source code, which is then sent to the edi
tor using B (see sam(1)). If file is an rc(1) script, the source is the file itself. If file is an exe
cutable, the source is defined to be the single file containing the definition of main and src will
point the editor at the line that begins the definition. Src uses db(1) to extract the symbol table
information that identifies the source.

Src looks for each file in the current directory, in /bin, and in the subdirectories of /bin, in that
order.

The −n flag causes src to print the file name but not send it to the editor. The −s flag identifies
a symbol other than main to locate.

Bfn finds the definition of all C functions named fn by searching the .c files in the current direc
tory. It prints the file name and line number of each match found and submits the match to the
plumber(4) if it is unique. Fn can be a regexp(6).

EXAMPLES
Find the source to the main routine in /bin/ed:

src ed

Find the source for strcmp:

src −s strcmp rc

SOURCE
/rc/bin/src

SEE ALSO
db(1), plumb(1), sam(1).

BUGS
Bfn requires the source code to follow style(6).

282

SSAM(1) SSAM(1)

NAME
ssam � stream interface to sam

SYNOPSIS
ssam [−n] [−e script] [−f sfile] [file ...]

DESCRIPTION
Ssam copies the named files (standard input default) to the standard output, edited by a script of
sam commands (q.v.). When the script starts, the entire input is selected. The −f option causes
the script to be taken from file sfile. If there is a −e option and no −f, the flag −e may be omit
ted. The −n option suppresses the default output.

EXAMPLES
ssam −n ,10p file

Print first 10 lines of file.

ssam ’y/[a−zA−Z]+/ c/\n/’ *.ms
Print one word per line.

ssam ’s/\n\n+/\n/g’
Delete empty lines from standard input.

ssam ’s/UNIX/& system/g’
Replace every instance of UNIX by UNIX system.

ssam ’y/[a−zA−Z]+/ c/\n/’ | grep .
Count frequency of words read from standard input.

SOURCE
/rc/bin/ssam

SEE ALSO
sed(1), sam(1), regexp(6)

Rob Pike, ��The text editor sam��.

BUGS
Ssam consumes all of standard input before running the script.

283

SSH(1) SSH(1)

NAME
ssh - secure shell remote login client

SYNOPSIS
ssh [−d] [−R] [−r] [−t thumbfile] [−T tries] [−u user] [−h] [user@]host [−W
remote!port] [cmd args ...]

DESCRIPTION
Ssh starts a remote shell or cmd on the computer host logged in as user. The input file descriptor
is forwarded to the remote side and output and error descriptors are forwarded to the local side.

The connection is authenticated and encrypted using the SSH2 protocol. The user authenticates
itself to the host using his RSA key pair (stored in factotum) or plaintext passwords. To authenti
cate the host to the user, the hosts RSA public key is hashed and compared to the entries in
$home/lib/sshthumbs file (see thumbprint(6)). The thumbfile location can be changed with
the −t option.

When cmd is specified, it is concatenated with the list of quoted args and run on the remote side.
No pseudo terminal will be requested. A cmd beginning with # is interpreted as a subsystem
name such as sftp (see sshfs(4)).

Without cmd, a shell is started on the remote side. In that case and when the $TERM environment
variable is set (such as when started under a terminal emulator like vt(1)), a pseudo terminal will
be requested for the shell. This can be disabled with the −R option. A pseudo-terminal can be
requested in all cases with the −r option.

With the −W option, instead of executing a command remotely, makes the server dial a tcp connec
tion to remote!port which the client relays on standard input and output. For handling multiple
connections transparently to programs, see sshnet(4).

The −d option enables debug output.

FILES
$home/lib/sshthumbs the user�s thumbfile of known host fingerprints

SOURCE
/sys/src/cmd/ssh.c

BUGS
If keyboard−interactive authentication fails, by default it is retried three times. The number of
tries can be changed with −T. Setting it to zero disables keyboard-interactive authentication.

SEE ALSO
vt(1), rsa(8), thumbprint(6), factotum(4), sshfs(4), sshnet(4)

284

STOP(1) STOP(1)

NAME
stop, start � print commands to stop and start processes

SYNOPSIS
stop name

start name

DESCRIPTION
Stop prints commands that will cause all processes called name and owned by the current user to
be stopped. The processes can then be debugged when they are in a consistent state.

Start prints commands that will cause all stopped processes called name and owned by the current
user to be started again.

Use the send command of rio(1), or pipe into rc(1) to execute the commands.

SOURCE
/rc/bin/stop
/rc/bin/start

SEE ALSO
ps(1), kill(1), proc(3)

285

STRINGS(1) STRINGS(1)

NAME
strings � extract printable strings

SYNOPSIS
strings [−m min] [file ...]

DESCRIPTION
Strings finds and prints strings containing min (default 6) or more consecutive printable UTF-
encoded characters in a (typically) binary file, default standard input. Printable characters are
taken to be ASCII characters from blank through tilde (hexadecimal 20 through 7E), inclusive, and
all other characters above A0. Strings reports the decimal offset within the file at which the string
starts and the text of the string.

SOURCE
/sys/src/cmd/strings.c

SEE ALSO
nm(1)

286

STRIP(1) STRIP(1)

NAME
strip � remove symbols from binary files

SYNOPSIS
strip file ...

strip −o ofile file

DESCRIPTION
Strip removes symbol table segments from executable files, rewriting the files in place. Stripping a
file requires write permission of the file and the directory it is in.

If the −o flag is given, the single input file file is stripped and the result written to ofile. File is
unchanged.

SOURCE
/sys/src/cmd/strip.c

SEE ALSO
a.out(6)

287

SUM(1) SUM(1)

NAME
sum, md5sum, sha1sum � sum and count blocks in a file

SYNOPSIS
sum [−5r] [file ...]

md5sum [file ...]

sha1sum [−2 bits] [file ...]

DESCRIPTION
By default, sum calculates and prints a 32-bit hexadecimal checksum, a byte count, and the name
of each file. The checksum is also a function of the input length. If no files are given, the standard
input is summed. Other summing algorithms are available. The options are

−r Sum with the algorithm of System V�s sum −r and print the length (in 1K blocks) of the
input.

−5 Sum with System V�s default algorithm and print the length (in 512-byte blocks) of the input.

Sum is typically used to look for bad spots, to validate a file communicated over some transmis
sion line or as a quick way to determine if two files on different machines might be the same.

Md5sum computes the 32 hex digit RSA Data Security, Inc. MD5 Message-Digest Algorithm
described in RFC1321.

Sha1sum computes the 40 hex digit National Institute of Standards and Technology (NIST) SHA1
secure hash algorithm described in FIPS PUB 180-1, by default. Given the 2 option, it instead com
putes the bits-bit NIST SHA2 secure hash algorithm described in FIPS PUB 180-2 and prints the
hash in hex. Currently supported values of bits are 224, 256, 384, and 512.

SOURCE
/sys/src/cmd/sum.c
/sys/src/cmd/md5sum.c
/sys/src/cmd/sha1sum.c

SEE ALSO
cmp(1), wc(1), sechash(2)

288

SYSCALL(1) SYSCALL(1)

NAME
syscall � test a system call

SYNOPSIS
syscall [−os] entry [arg ...]

DESCRIPTION
Syscall invokes the system call entry with the given arguments. The return value is printed. If an
error occured, the error string is also printed.

For convenience, write(2) and read(2) are included in entries, even though they are not strictly sys
calls.

Syscall arguments are integer constants, strings, or the literal buf. The literal buf refers to a
writable 1 megabyte buffer. Strings and buf are passed as pointers. Integers are passed as val
ues.

The −o option prints contents of the 1MB buffer. For errstr(2) and fd2path(2), the buffer is
treated as a 0-terminated string. For other calls, the number of bytes printed is determined by the
system call�s return value.

The −s option is similar, but interprets the data as a stat(5) message and formats it to standard
output.

EXAMPLES
Write a string to standard output:

syscall write 1 hello 5

Print information about the file connected to standard input:

syscall −s fstat 0 buf 1024

SOURCE
/sys/src/cmd/syscall

SEE ALSO
Section 2 of this manual.

DIAGNOSTICS
If entry is not known to syscall, the exit status is unknown. If the system call succeeds, the exit
status is null; otherwise the exit status is the string that errstr(2) returns.

289

SYSINFO(1) SYSINFO(1)

NAME
sysinfo, sysupdate � report information about, update the system

SYNOPSIS
sysinfo [−e e−mail] [−p]
sysupdate [−i]

DESCRIPTION
Sysinfo executes a number of commands that report information about the hardware and software
configuration of the running system, concatenating the output to stdout.

The −p flag causes the output to be posted at a website archive,
http://sysinfo.9front.org, which in turn forwards the message to a mailing list,
9front−sysinfo@9front.org. A URL pointing to the archived output is returned. The −e
flag causes a reply-to e-mail address to be included in the message (the e-mail address is not
divulged to the mailing list). These flags are useful for reporting new installs to the development
team.

Sysupdate updates the local mercurial repository by executing the following commands:

bind −ac /dist/plan9front /
hg −v pull −u

If the −i flag is included, the command hg incoming is prepended.

SOURCE
/rc/bin/sysinfo
/rc/bin/sysupdate

SEE ALSO
intro(3), plan9.ini(8), hg(1)

HISTORY
Sysinfo first appeared in 9front (May, 2012). Sysupdate first appeared in 9front (February, 2012).

290

TAIL(1) TAIL(1)

NAME
tail � deliver the last part of a file

SYNOPSIS
tail [+−number[lbc][rf]] [file]

tail [−fr] [−n nlines] [−c nbytes] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no file is
named, the standard input is copied.

Copying begins at position +number measured from the beginning, or −number from the end of
the input. Number is counted in lines, 1K blocks or bytes, according to the appended flag l, b, or
c. Default is −10l (ten ell).

The further flag r causes tail to print lines from the end of the file in reverse order; f (follow)
causes tail, after printing to the end, to keep watch and print further data as it appears.

The second syntax is that promulgated by POSIX, where the numbers rather than the options are
signed.

EXAMPLES
tail file

Print the last 10 lines of a file.

tail +0f file
Print a file, and continue to watch data accumulate as it grows.

sed 10q file
Print the first 10 lines of a file.

SOURCE
/sys/src/cmd/tail.c

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length.

According to custom, option +number counts lines from 1, and counts blocks and bytes from 0.

Tail is ignorant of UTF.

291

TAP(1) TAP(1)

NAME
tap � follow the pipes of a process

SYNOPSIS
tap [pid ...]

DESCRIPTION
Tap walks the file descriptors of a process looking for pipes (see pipe(3)) and then finds the pro
cesses on the other end of these pipes repeating the process recursively. The result is a tree of
alternating process and filedescriptor nodes that make up the process pipeline.

SOURCE
/rc/bin/tap

SEE ALSO
ps(1), pipe(3), proc(3).

HISTORY
Tap first appeared in 9front (March, 2012).

292

TAR(1) TAR(1)

NAME
tar, dircp � archiver

SYNOPSIS
tar key [file ...]

dircp fromdir todir

DESCRIPTION
Tar saves and restores file trees. It is most often used to transport a tree of files from one system
to another. The key is a string that contains at most one function letter plus optional modifiers.
Other arguments to the command are names of files or directories to be dumped or restored. A
directory name implies all the contained files and subdirectories (recursively).

The function is one of the following letters:

c Create a new archive with the given files as contents.

r The named files are appended to the archive.

t List all occurrences of each file in the archive, or of all files if there are no file arguments.

x Extract the named files from the archive. If a file is a directory, the directory is extracted
recursively. Modes are restored if possible. If no file argument is given, extract the entire
archive. If the archive contains multiple entries for a file, the latest one wins.

The modifiers are:

f Use the next argument as the name of the archive instead of the default standard input (for
keys x and t) or standard output (for keys c and r).

g Use the next (numeric) argument as the group id for files in the output archive.

i Ignore errors encountered when reading. Errors writing either produce a corrupt archive or
indicate deeper file system problems.

k (keep) Modifies the behavior of x not to extract files which already exist.

m Do not set the modification time on extracted files. This is the default behavior; the flag
exists only for compatibility with other tars.

p Create archive in POSIX ustar format, which raises the maximum pathname length from 100
to 256 bytes. Ustar archives are recognised automatically by tar when reading archives.
This is the default behavior; the flag exists only for backwards compatibility with older ver
sions of tar.

P Do not generate the POSIX ustar format.

R When extracting, respect leading slash on file names. By default, files are always extracted
relative to the current directory.

s When extracting, attempt to resynchronise after not finding a tape header block where
expected.

T Modifies the behavior of x to set the modified time, mode and, for POSIX archives and
filesystem permitting, the user and group of each file to that specified in the archive.

u Use the next (numeric) argument as the user id for files in the output archive. This is only
useful when moving files to a non-Plan 9 system.

v (verbose) Print the name of each file as it is processed. With t, give more details about the
archive entries.

z Operate on compressed tar archives. The type of compression is inferred from the file
name extension: gzip(1) for .tar.gz and .tgz; bzip2 (see gzip(1)) for .tar.bz,
.tbz, .tar.bz2, and .tbz2; compress for .tar.Z and .tz. If no extension
matches, gzip is used. The z flag is unnecessary (but allowed) when using the t and x
verbs on archives with recognized extensions.

293

TAR(1) TAR(1)

EXAMPLES
Tar can be used to copy hierarchies thus:

@{cd fromdir && tar c .} | @{cd todir && tar xT}

Dircp does this.

SOURCE
/sys/src/cmd/tar.c
/rc/bin/dircp

SEE ALSO
ar(1), bundle(1), tapefs(4), mkfs(8)

BUGS
There is no way to ask for any but the last occurrence of a file.

File path names are limited to 100 characters (256 when using ustar format).

The tar format allows specification of links and symbolic links, concepts foreign to Plan 9: they are
ignored.

The r key (append) cannot be used on compressed archives.

The T key (write metadata) won�t work for non-empty directories.

Tar, thus dircp, doesn�t record Plan-9-specific metadata such as append-only and exclusive-open
permission bits, so they aren�t copied.

294

TBL(1) TBL(1)

NAME
tbl � format tables for nroff or troff

SYNOPSIS
tbl [file ...]

DESCRIPTION
Tbl is a preprocessor for formatting tables for nroff or troff(1). The input files are copied to the
standard output, except for segments of the form

.TS
options ;
format .
data
.T&
format .
data
. . .
.TE

which describe tables and are replaced by troff requests to lay out the tables. If no arguments are
given, tbl reads the standard input.

The (optional) options line is terminated by a semicolon and contains one or more of

center center the table; default is left-adjust
expand make table as wide as current line length
box
doublebox enclose the table in a box or double box
allbox enclose every item in a box
tab(x) use x to separate input items; default is tab
linesize(n) set rules in n-point type
delim(xy) recognize x and y as eqn(1) delimiters

Each line, except the last, of the obligatory format describes one row of the table. The last line
describes all rows until the next .T&, where the format changes, or the end of the table at .TE. A
format is specified by key letters, one per column, either upper or lower case:

L Left justify: the default for columns without format keys.
R Right justify.
C Center.
N Numeric: align at decimal point (inferred for integers) or at \&.
S Span: extend previous column across this one.
A Alphabetic: left-aligned within column, widest item centered, indented relative to L

rows.
^ Vertical span: continue item from previous row into this row.
− Draw a horizontal rule in this column.
= Draw a double horizontal rule in this column.

Key letters may be followed by modifiers, also either case:

| Draw vertical rule between columns.
|| Draw a double vertical rule between columns.
n Gap between column is n ens wide. Default is 3.
Ffont Use specified font. B and I mean FB and FI.
T Begin vertically-spanned item at top row of range; default is vertical centering

(with ^).
Pn Use point size n.
Vn Use n-point vertical spacing in text block; signed n means relative change.
W(n) Column width as a troff width specification. Parens are optional if n is a simple

integer.
E Equalize the widths of all columns marked E.

Each line of data becomes one row of the table; tabs separate items. Lines beginning with . are
troff requests. Certain special data items are recognized:

295

TBL(1) TBL(1)

_ Draw a horizontal rule in this column.
= Draw a double horizontal rule in this column. A data line consisting of a single _ or

= draws the rule across the whole table.
_ Draw a rule only as wide as the contents of the column.
\Rx Repeat character x across the column.
\^ Span the previous item in this column down into this row.
T{ The item is a text block to be separately formatted by troff and placed in the table.

The block continues to the next line beginning with T}. The remainder of the data
line follows at that point.

When it is used in a pipeline with eqn, the tbl command should be first, to minimize the volume of
data passed through pipes.

EXAMPLES
Let <tab> represent a tab (which should be typed as a genuine tab).
.TS
c s s
c c s
c c c
l n n.
Household Population
Town<tab>Households
<tab>Number<tab>Size
Bedminster<tab>789<tab>3.26
Bernards Twp.<tab>3087<tab>3.74
Bernardsville<tab>2018<tab>3.30
.TE

Household Population
Town Households

Number Size
Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30

SOURCE
/sys/src/cmd/tbl

SEE ALSO
troff(1), eqn(1), doctype(1)
M. E. Lesk and L. L. Cherry, ��TBL�a Program to Format Tables��, Unix Research System
Programmer’s Manual, Tenth Edition, Volume 2.

296

TCS(1) TCS(1)

NAME
tcs � translate character sets

SYNOPSIS
tcs [−slcv] [−f ics] [−t ocs] [file ...]

DESCRIPTION
Tcs interprets the named file(s) (standard input default) as a stream of characters from the ics char
acter set or format, converts them to runes, and then converts them into a stream of characters
from the ocs character set or format on the standard output. The default value for ics and ocs is
utf, the UTF encoding described in utf(6). The −l option lists the character sets known to tcs.
Processing continues in the face of conversion errors (the −s option prevents reporting of these
errors). The −c option forces the output to contain only correctly converted characters; otherwise,
Runeerror (0xFFFD) characters will be substituted for UTF encoding errors and unknown charac
ters.

The −v option generates various diagnostic and summary information on standard error, or makes
the −l output more verbose.

Tcs recognizes an ever changing list of character sets. In particular, it supports a variety of Rus
sian and Japanese encodings. Some of the supported encodings are

utf The Plan 9 UTF encoding, known by ISO as UTF-8
utf1 The deprecated original UTF encoding from ISO 10646
ascii 7-bit ASCII
8859−1 Latin-1 (Central European)
8859−2 Latin-2 (Czech .. Slovak)
8859−3 Latin-3 (Dutch .. Turkish)
8859−4 Latin-4 (Scandinavian)
8859−5 Part 5 (Cyrillic)
8859−6 Part 6 (Arabic)
8859−7 Part 7 (Greek)
8859−8 Part 8 (Hebrew)
8859−9 Latin-5 (Finnish .. Portuguese)
html Unicode as encoded by HTML
koi8 KOI-8 (GOST 19769-74)
jis−kanji ISO 2022-JP
ujis EUC-JX: JIS 0208
ms−kanji Microsoft, or Shift-JIS
jis (from only) guesses between ISO 2022-JP, EUC or Shift-Jis
gb Chinese national standard (GB2312-80)
big5 Big 5 (HKU version)
unicode Unicode Standard 1.0
tis Thai character set plus ASCII (TIS 620-1986)
msdos IBM PC: CP 437
atari Atari-ST character set

EXAMPLES
tcs −f 8859−1

Convert 8859-1 (Latin-1) characters into UTF format.

tcs −s −f jis
Convert characters encoded in one of several shift JIS encodings into UTF format. Unknown
Kanji will be converted into 0xFFFD characters.

tcs −t html
Convert UTF into character set-independent HTML.

tcs −lv
Print an up to date list of the supported character sets.

SOURCE
/sys/src/cmd/tcs

297

TCS(1) TCS(1)

SEE ALSO
ascii(1), rune(2), utf(6).

298

TEE(1) TEE(1)

NAME
tee � pipe fitting

SYNOPSIS
tee [−i] [−a] files

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the files. The
options are

−i Ignore interrupts.

−a Append the output to the files rather than rewriting them.

SOURCE
/sys/src/cmd/tee.c

299

TEL(1) TEL(1)

NAME
tel, iwhois � look in phone book

SYNOPSIS
tel key ...

iwhois name[@domain]

DESCRIPTION
Tel looks up key in a private telephone book, $home/lib/tel, and in the public telephone
book, /lib/tel. It uses grep (with the −i option to ignore case differences), so the key may be
any part of a name or number. Customarily, the telephone book contains names, userids, home
numbers, and office numbers of users. It also contains a directory of area codes and miscella
neous people of general interest.

Iwhois looks up names in the Internet NIC�s personnel database. Name should be a surname
optionally followed by a comma and given name. A different server can be chosen by appending
to the name an @ followed by the server�s domain name.

FILES
/lib/areacodes Telephone area codes database.
/lib/tel Public telephone number database.
$home/lib/tel Personal telephone number database.

SOURCE
/rc/bin/tel
/rc/bin/iwhois

300

TEST(1) TEST(1)

NAME
test � set status according to condition

SYNOPSIS
test expr

DESCRIPTION
Test evaluates the expression expr. If the value is true the exit status is null; otherwise the exit sta
tus is non-null. If there are no arguments the exit status is non-null.

The following primitives are used to construct expr.

−r file True if the file exists (is accessible) and is readable.
−w file True if the file exists and is writable.
−x file True if the file exists and has execute permission.
−e file True if the file exists.
−f file True if the file exists and is a plain file.
−d file True if the file exists and is a directory.
−s file True if the file exists and has a size greater than zero.
−t fildes True if the open file whose file descriptor number is fildes (1 by default) is the same

file as /dev/cons.
−A file True if the file exists and is append-only.
−L file True if the file exists and is exclusive-use.
−Tfile True if the file exists and is temporary.
s1 = s2 True if the strings s1 and s2 are identical.
s1 != s2 True if the strings s1 and s2 are not identical.
s1 True if s1 is not the null string. (Deprecated.)
−n s1 True if the length of string s1 is non-zero.
−z s1 True if the length of string s1 is zero.
n1 −eq n2 True if the integers n1 and n2 are arithmetically equal. Any of the comparisons

−ne, −gt, −ge, −lt, or −le may be used in place of −eq. The (nonstandard)
construct −l string, meaning the length of string, may be used in place of an inte
ger.

a −nt b True if file a is newer than (modified after) file b.
a −ot b True if file a is older than (modified before) file b.
f −older t True if file f is older than (modified before) time t. If t is a integer followed by the

letters y(years), M(months), d(days), h(hours), m(minutes), or s(seconds), it repre
sents current time minus the specified time. If there is no letter, it represents sec
onds since epoch. You can also concatenate mixed units. For example, 3d12h
means three days and twelve hours ago.

These primaries may be combined with the following operators:

! unary negation operator
−o binary or operator
−a binary and operator; higher precedence than −o
(expr) parentheses for grouping.

The primitives −b, −u, −g, and −s return false; they are recognized for compatibility with POSIX.

Notice that all the operators and flags are separate arguments to test. Notice also that parentheses
and equal signs are meaningful to rc and must be enclosed in quotes.

EXAMPLES
Test is a dubious way to check for specific character strings: it uses a process to do what an rc(1)
match or switch statement can do. The first example is not only inefficient but wrong, because
test understands the purported string "−c" as an option.

if (test $1 ’=’ "−c") echo OK # wrong!

A better way is

if (~ $1 −c) echo OK

Test whether abc is in the current directory.

301

TEST(1) TEST(1)

test −f abc −o −d abc

SOURCE
/sys/src/cmd/test.c

SEE ALSO
rc(1)

BUGS
Won�t complain about extraneous arguments since there may be arguments left unprocessed by
short-circuit evaluation of −a or −o.

302

THESAURUS(1) THESAURUS(1)

NAME
thesaurus � search online thesaurus

SYNOPSIS
thesaurus word

DESCRIPTION
thesaurus searches the online thesaurus at http://thesaurus.reference.com

SOURCE
/rc/bin/thesaurus

303

TIME(1) TIME(1)

NAME
time � time a command

SYNOPSIS
time command [arg ...]

DESCRIPTION
The command is executed with the given arguments; after it is complete, time reports on standard
error the program�s elapsed user time, system time, and real time, in seconds, followed by the
command line.

SOURCE
/sys/src/cmd/time.c

SEE ALSO
prof(1)

304

TIMEPIC(1) TIMEPIC(1)

NAME
timepic � troff preprocessor for drawing timing diagrams

SYNOPSIS
timepic [files]

DESCRIPTION
Timepic is a pic(1) and troff(1) preprocessor for drawing timing diagrams. Timepic code is con
tained between .TPS and .TPE lines:

.TPS width row−height
statement−list
.TPE

There are two types of timepic statements: variable definitions and signal definitions. Variables
are defined with the syntax

var = expr;

where expr is an arithmetic expression involving floating-point constants and previously defined
variables. Currently only basic arithmetic (+, −, * and /) is supported. Signals are defined with the
syntax

name events ;

where name is a name that must be quoted unless it�s a valid symbol. Events is a list consisting of
the following things:

� The current time can be set using an arithmetic expression, that may be followed by a sym
bol interpreted as a unit. For instance if you defined µs = 1000; then 1µs and
(x+2)*3µs are both valid time expressions. Note that x+2µs is interpreted as (x+2)µs
which may or may not be intended behaviour.

A time expression can be preceded by + to mark it as relative to the previous time. The
first time is zero.

A time expression can be followed by a symbol name in square brackets. The symbol is
then defined with the time.

� An expression of the form :name creates an �event� at the current time, changing the value
of the signal to name. name can be a symbol (which is not evaluated), a numerical con
stant or a string in single quotes. The values 0, 1, x and z have special meaning, unless
they are quoted.

� A pipe symbol | draws a vertical dashed line at the next event.

� An expression of the form expr{events} evaluates the expression, rounded to the nearest
integer, and then repeats the events the specified number of times. It is illegal if the
expression evaluates to a negative number. It is also illegal to use absolute times in the
events list. It is however legal to nest this construct.

EXAMPLES
.TPS 6 0.4
c=5;
clk +5{:1 +.5c:0 +.5c};
data :x 2.3c:DQ 4c|:x;
valid :0 2.3c:1 4c:0;
ready :0 3.6c:1 4c:0;
.TPE

FILES
/sys/src/cmd/timepic.c

SEE ALSO
troff(1), pic(1)

BUGS
Yes.

305

TIMMY(1) TIMMY(1)

NAME
timmy � physics sandbox

SYNOPSIS
games/timmy [−s steps−per−frame]

DESCRIPTION
Timmy is a simple 2D physics sandbox.

To pick up an object click on it with mouse button 1. New objects can be created by picking up
their archetypes in the gray area on the bottom (the "tray"). To place an object in the working area
click at the desired position with mouse button 1; timmy will refuse to place the object if it would
collide with an existing one. To abort the process � deleting the carried object � click anywhere
with mouse button 3. Picking up an object in the working area with mouse button 3 will duplicate
the object.

The following operations can be performed with the keyboard.

w Rotate carried object by 15° to the left.

e Rotate carried object by 15° to the right.

space Start or stop the simulation.

del Exit timmy.

The small circles on some objects are "hinges". Two hinges can be connected by placing them on
top of each other. Their relative position will not change during the simulation; objects are how
ever free to rotate around them. To undo a hinge, pick up either of the objects.

The −s option adjusts the speed of the simulation; only integer values are permitted. It does not
compromise accuracy.

SOURCE
/sys/src/games/timmy

BUGS
Timmy�s physics may occasionally appear to originate from another universe.

−s is a hack.

HISTORY
Timmy first appeared in 9front (June, 2016).

306

TINYURL(1) TINYURL(1)

NAME
tinyurl � shrink a URL

SYNOPSIS
tinyurl URL

DESCRIPTION
Exchanges a long URL for a shorter URL utilizing the API at tinyurl.com.

SOURCE
/rc/bin

BUGS
Redesigns of the source website can break this program.

307

TORRENT(1) TORRENT(1)

NAME
torrent � bittorrent client

SYNOPSIS
ip/torrent [−d] [−v] [−p] [−m mtpt] [−t tracker−url] [−w webseed−url] [−s] [−c] [
−i peer−id] [−A user−agent] [file]

DESCRIPTION
BitTorrent is a protocol for efficient file distribution over the internet. Files are split into small
pieces that are then downloaded by clients in random order. As soon as a client completes a
piece, it makes the piece available for others to download.

To find other clients (peers), a tracker-server is contacted.

Before files can be transmitted, a torrent-file needs to be created describing the pieces of the files
and other meta-data like network addresses of the trackers.

This is done with the −c option. If provided, torrent reads the file given at the final file argument
(or standard-input when omitted) and writes a torrent file to standard-output and exits. A
tracker−url should be given with the −t option in that case. A list of trackers can be obtained on
the web, see the examples below.

If the files in the torrent are also available from a url, a webseed−url can be passed with the −w
option. If webseed−url ends with a slash, the filename, from the torrent, concatenated with the url
forms the target url.

Without the −c option, torrent downloads the files that are described in the torrent-file given by
the file argument to the current working directory. If no file is given, the torrent is read from
standard-input.

Normally, the program exits immediately after all pieces have been completed. The −s option
causes it to keep running and serve the remaining clients (also known as seeding).

Trackers use a subset of the HTTP protocol, so an alternative webfs(4) mountpoint can be given
with the −m option (defaults to /mnt/web).

The −v option causes torrent to list the files in the torrent-file before downloading.

The −d option produces verbose debug output to standard-error.

To monitor the download progress, the −p option can be given to cause the completed and total
number of pieces written as a line of text to standard-output in one second intervals.

The −i option allows you to set the 20-byte peer−id that is sent to trackers and peers. If less than
20 bytes, the peer−id will be padded on the right with random ASCII numbers. The −A option
allows setting the http user−agent string that is used to contact the tracker. These options are use
ful to fool trackers that filter clients based on the peer−id or user−agent

EXAMPLES
Create new torrent file
ip/torrent −t http://exodus.desync.com/announce \

−c 9atom.iso >9atom.torrent

Download the latest iso file of the distribution
cd /tmp
hget http://r−36.net/9front/9front.iso.bz2.torrent | \

ip/torrent −pv | \
aux/statusbar ’download...’

Get list of public alive trackers to choose from
hget https://newtrackon.com/api/live

SOURCE
/sys/src/cmd/ip/torrent.c

SEE ALSO
hget(1), webfs(4)

308

TORRENT(1) TORRENT(1)

HISTORY
Torrent first appeared in 9front (October, 2011).

309

TOUCH(1) TOUCH(1)

NAME
touch � set modification date of a file

SYNOPSIS
touch [−c] [−t time] file ...

DESCRIPTION
Touch attempts to set the modification time of the files to time (by default, the current time). If a
file does not exist, it will be created unless option −c is present.

SOURCE
/sys/src/cmd/touch.c

SEE ALSO
ls(1), stat(2), chmod(1)

BUGS
Touch will not touch directories.

310

TPUT(1) TPUT(1)

NAME
tput � measure read throughput

SYNOPSIS
tput [−b buflen] [−p]

DESCRIPTION
Tput continuously reads standard input writing throughput statistics to standard error. The
throughput value is calculated and written once per second and automatically scaled to kilo-,
mega- or gigabytes.

When the −p flag is specified, tput will write the data read to standard output (the default is to dis
card the data).

A read blocksize (default is 8192) in bytes can be given with the −b buflen option.

EXAMPLE
tput </dev/zero

SOURCE
/sys/src/cmd/tput.c

SEE ALSO
iostats(4)

DIAGNOSTICS
Tput sets error status on read error.

HISTORY
Tput first appeared in 9front (May, 2011).

311

TR(1) TR(1)

NAME
tr � translate characters

SYNOPSIS
tr [−cds] [string1 [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected char
acters (runes). Input characters found in string1 are mapped into the corresponding characters of
string2. When string2 is short it is padded to the length of string1 by duplicating its last character.
Any combination of the options −cds may be used:

−c Complement string1: replace it with a lexicographically ordered list of all other characters.

−d Delete from input all characters in string1.

−s Squeeze repeated output characters that occur in string2 to single characters.

In either string a noninitial sequence −x, where x is any character (possibly quoted), stands for a
range of characters: a possibly empty sequence of codes running from the successor of the previ
ous code up through the code for x. The character \ followed by 1, 2 or 3 octal digits stands for
the character whose 16-bit value is given by those digits. The character sequence \x followed by
1, 2, 3, or 4 hexadecimal digits stands for the character whose 16-bit value is given by those dig
its. A \ followed by any other character stands for that character.

EXAMPLES
Replace all upper-case ASCII letters by lower-case.

tr A−Z a−z <mixed >lower

Create a list of all the words in file1 one per line in file2, where a word is taken to be a maxi
mal string of alphabetics. String2 is given as a quoted newline.

tr −cs A−Za−z ’
’ <file1 >file2

SOURCE
/sys/src/cmd/tr.c

SEE ALSO
sed(1)

312

TRACE(1) TRACE(1)

NAME
trace � show (real-time) process behavior

SYNOPSIS
trace [−d file] [−v] [−w] [pid ...]

DESCRIPTION
Trace displays the behavior of processes running on the machine. In its window it shows a time
line for each traced process. Running processes appear as colored blocks, with arrows marking
important events in real-time processes (see proc(3)). Black up arrows mark process releases,
black down arrows mark process deadlines, green down arrows mark times when a process yielded
the processor before its deadline, red down arrows mark times when the process overran its allot
ted time.

Trace reads /proc/trace to retrieve trace events from the kernel scheduler. Trace events are
binary data structures generated by the kernel scheduler. It is assumed that the reader of
/proc/trace and the kernel providing it have the same byte order.

The options are:

−d specify an alternate trace event file

−v print events as they are read from the trace event file

−w run in a new window rather than using the current one

Trace recognizes these keystroke commands while it is running:

+ zoom in by a factor of two

− zoom out by a factor of two

p pause or resume

q quit

SEE ALSO
proc(3)

FILES
/proc/trace trace event file
/sys/include/trace.h trace event data structures

SOURCE
/sys/src/cmd/trace.c

313

TROFF(1) TROFF(1)

NAME
troff, nroff, dpost � text formatting and typesetting

SYNOPSIS
troff [option ...] [file ...]

dpost [−f] [file ...]

nroff [option ...] [file ...]

DESCRIPTION
Troff formats text in the named files for printing on a typesetter, emitting a textual intermediate
format called �typesetter-independent troff output�, understood by programs such as proof(1) and
lp(1), but also by a troff post-processor named dpost, which emits corresponding Postscript.
Under −f, dpost also emits Postscript font definitions as needed. Nroff does the same as troff,
but produces output suitable for typewriter-like devices, usually without further post-processing,
but see col(1).

If no file argument is present, the standard input is read. An argument consisting of a single
minus (−) is taken to be a file name corresponding to the standard input. The options are:

−olist Print pages in the comma-separated list of numbers and ranges. A range N−M means N
through M; initial −M means up to M; final N− means from N to the end.

−nN Number first generated page N.

−mname Process the macro file /sys/lib/tmac/tmac.name before the input files.

−raN Set register a (one character name) to N.

−i Read standard input after the input files are exhausted.

−q Invoke the simultaneous input-output mode of the rd request.

−N Produce output suitable for typewriter-like devices.

Typesetter devices (not −N) only
−a Send a printable textual approximation of the results to the standard output.

−Tdest Prepare output for typesetter dest:
−Tutf (The default.) PostScript printers with preprocessing to handle Unicode

characters encoded in UTF

−Tpost Regular PostScript printers
−T202 Mergenthaler Linotron 202

−Fdir Take font information from directory dir.

Typewriter (−N) output only
−sN Halt prior to every N pages (default N=1) to allow paper loading or changing.

−Tname Prepare output for specified terminal. Known names include utf for the normal Plan 9
UTF encoding of the Unicode Standard character set (default), 37 for the Teletype model
37, lp (�line-printer�) for any terminal without half-line capability, 450 for the DASI-450
(Diablo Hyterm), and think (HP ThinkJet).

−e Produce equally-spaced words in adjusted lines, using full terminal resolution.

−h Use output tabs during horizontal spacing to speed output and reduce output character
count. Tab settings are assumed to be every 8 nominal character widths.

FILES
/tmp/trtmp* temporary file
/sys/lib/tmac/tmac.* standard macro files
/sys/lib/troff/term/* terminal driving tables for nroff
/sys/lib/troff/font/* font width tables for troff

SOURCE
/sys/src/cmd/troff
/rc/bin/dpost

314

TROFF(1) TROFF(1)

SEE ALSO
lp(1), proof(1), page(1), eqn(1), tbl(1), pic(1), grap(1), doctype(1), ms(6), image(6), deroff(1),
col(1)
J. F. Ossanna and B. W. Kernighan, ��Troff User�s Manual��
B. W. Kernighan, ��A Typesetter-Independent TROFF��, CSTR #97
B. W. Kernighan, ��A TROFF Tutorial��, Unix Research System Programmer’s Manual, Tenth Edition,
Volume 2.

315

TROFF2HTML(1) TROFF2HTML(1)

NAME
troff2html � convert troff output into HTML

SYNOPSIS
troff2html [−t title] [file ...]

DESCRIPTION
Troff2html reads the troff(1) output in the named files, default standard input, and converts them
into HTML.

Troff2html does a tolerable job with straight troff output, but it is helped by annotations,
described below. Its main use is for man2html (see httpd(8)), which converts man(1) pages into
HTML and depends on a specially annotated set of man(6) macros, invoked by troff
−manhtml.

Troff output lines beginning

x X html ...

which are introduced by placing \X’html ...’ in the input, cause the rest of the line to be inter
polated into the HTML produced. Several such lines are recognized specially by troff2html. The
most important are the pair

x X html manref start cp 1
x X html manref end cp 1

which are used to create HTML hyperlinks around text of the form cp(1) pointing to
/magic/man2html/1/cp.

Troff2html is new and experimental; in time, it may improve and subsume ms2html(1). On the one
hand, because it uses the input, ms2html can handle pic(1), eqn(1), etc., which troff2html does
not handle at all; on the other hand, ms2html understands only ms(6) documents and is easily
confused by complex troff constructions. Troff2html has the reverse properties: it does not
handle the preprocessors but its output is reliable and (modulo helper annotations) is independent
of macro package.

SOURCE
/sys/src/cmd/troff2html

SEE ALSO
troff(1), ms2html(1), man2html in httpd(8).

BUGS
Troff and HTML have different models, and they don�t mesh well in all cases. Troff�s indented
paragraphs are not well served in HTML, and the output of troff2html shows this.

316

TROFF2PNG(1) TROFF2PNG(1)

NAME
troff2png, troff2gif � miscellaneous text processing tools

SYNOPSIS
troff2png [troffargs] [file]
troff2gif [troffargs] [file]

DESCRIPTION
Troff2png uses troff(1) to compile a document using the ms(6) macro library to a PNG image
on standard output.

Troff2gif is similar but outputs GIF data.

SOURCE
/bin/troff2png
/bin/troff2gif

SEE ALSO
ms(6)
troff(1)

317

TWEAK(1) TWEAK(1)

NAME
tweak � edit image files, subfont files, face files, etc.

SYNOPSIS
tweak [file ...]

DESCRIPTION
Tweak edits existing files holding various forms of images. To create original images, start from
an existing image, subfont, etc.

Tweak reads its argument files and displays the resulting images in a vertical column. If the image
is too wide to fit across the display, it is folded much like a long line of text in an rio window.
Under each image is displayed one or two lines of text presenting its parameters. The first line
shows the image�s depth, the number of bits per pixel; r, the rectangle covered by the image;
and the name of the file from which it was read. If the file is a subfont, a second line presents a
hexadecimal 16-bit offset to be applied to character values from the subfont (typically as
stored in a font file; see font(6)); and the subfont�s n, height, and ascent as defined in
cachechars(2).

By means described below, magnified views of portions of the images may be displayed. The text
associated with such a view includes mag, the magnification. If the view is of a single character
from a subfont, the second line of text shows the character�s value (including the subfont�s offset)
in hexadecimal and as a character in tweak’s default font; the character�s x, top, bottom, left,
and width as defined in cachechars(2); and iwidth, the physical width of the image in the
subfont�s image.

There are two methods to obtain a magnified view of a character from a subfont. The first is to
click mouse button 1 over the image of the character in the subfont. The second is to select the
char entry on the button 3 menu, point the resulting gunsight cursor at the desired subfont and
click button 3, and then type at the text prompt at the bottom of the screen the character value,
either as a multi-digit hexadecimal number or as a single rune representing the character.

To magnify a portion of other types of image files, click button 1 over the unmagnified file. The
cursor will switch to a cross. Still with button 1, sweep a rectangle, as in rio, that encloses the
portion of the image to be magnified. (If the file is 16×16 or smaller, tweak will just magnify the
entire file; no sweeping is necessary.)

Pressing buttons 1 and 2 within magnified images changes pixel values. By default, button 1 sets
the pixel to all zeros and button 2 sets the pixel to all ones.

Across the top of the screen is a textual display of global parameters. These values, as well as
many of the textual values associated with the images, may be edited by clicking button 1 on the
displayed value and typing a new value. The values along the top of the screen are:

mag Default magnification.

val(hex)
The value used to modify pixels within magnified images. The value must be in hexadeci
mal, optionally preceded by a tilde for bitwise negation.

but1

but2 The pixel value written when the corresponding button is pressed over a pixel.

invert−on−copy
Whether the pixel values are inverted when a copy operation is performed.

Under button 3 is a menu holding a variety of functions. Many of these functions prompt for the
image upon which to act by switching to a gunsight cursor; click button 3 over the selection, or
click a different button to cancel the action.

open Read and display a file. The name of the file is typed to the prompt on the bottom line.

read Reread a file.

write
Write a file.

318

TWEAK(1) TWEAK(1)

copy Use the copy function, default S, to transfer a rectangle of pixels from one image to
another. The program prompts with a cross cursor; sweep out a rectangle in one image or
just click button 3 to select the whole image. The program will leave that rectangle in place
and attach another one to the cursor. Move that rectangle to the desired place in any
image and click button 3, or another button to cancel the action.

char As described above, open a magnified view of a character image in a subfont.

pixels
Report the coordinate and value of individual pixels indicated by pressing button 3. This is
a mode of operation canceled by pressing button 1 or 2.

close
Close the specified image. If the image is the unmagnified file, also close any magnified
views of that file.

exit Quit tweak. The program will complain once about modified but unwritten files.

Tweak listens to the plumber channel imageedit for filenames as well as image data. Plumbed
image data is stored as files in /tmp and is automatically cleaned when exiting tweak.

SOURCE
/sys/src/cmd/tweak.c

SEE ALSO
cachechars(2), image(6), font(6)

BUGS
For a program written to adjust width tables in fonts, tweak has been pushed unreasonably far.

319

UHTML(1) UHTML(1)

NAME
uhtml � convert foreign character set HTML file to unicode

SYNOPSIS
uhtml [−p] [−c charset] [file]

DESCRIPTION
HTML comes in various character set encodings and has special forms to encode characters. To
make it easier to process html, uhtml is used to normalize it to a unicode only form.

Uhtml detects the character set of the html input file and calls tcs(1) to convert it to utf replacing
html-entity forms by ther unicode character representations except for lt gt amp quot and
apos . The converted html is written to standard output. If no file was given, it is read from stan
dard input. If the −p option is given, the detected character set is printed and the program exits
without conversion. In case character set detection fails, the default (utf) is assumed. This default
can be changed with the −c option.

SOURCE
/sys/src/cmd/uhtml.c

SEE ALSO
tcs(1)

320

UNIQ(1) UNIQ(1)

NAME
uniq � report repeated lines in a file

SYNOPSIS
uniq [−udcs [+−num]] [file]

DESCRIPTION
Uniq copies the input file, or the standard input, to the standard output, comparing adjacent lines.
In the normal case, the second and succeeding copies of repeated lines are removed. Repeated
lines must be adjacent in order to be found.

−u Print unique lines.

−d Print (one copy of) duplicated lines.

−c Prefix a repetition count and a tab to each output line. Implies −u and −d.

−s Count as a duplicate if the prefix matches the previous unique line.

−num The first num fields together with any blanks before each are ignored. A field is defined as
a string of non-space, non-tab characters separated by tabs and spaces from its neigh
bors.

+num The first num characters are ignored. Fields are skipped before characters.

SOURCE
/sys/src/cmd/uniq.c

SEE ALSO
sort(1)

BUGS
Field selection and comparison should be compatible with sort(1).

321

UNITS(1) UNITS(1)

NAME
units � conversion program

SYNOPSIS
units [−v] [file]

DESCRIPTION
Units converts quantities expressed in various standard scales to their equivalents in other scales.
It works interactively in this fashion:

you have: inch
you want: cm

* 2.54
/ 0.393701

A quantity is specified as a multiplicative combination of units and floating point numbers. Opera
tors have the following precedence:

+ − add and subtract
* / × ÷ multiply and divide
catenation multiply
² ³ ^ exponentiation
| divide
(...) grouping

Most familiar units, abbreviations, and metric prefixes are recognized, together with a generous
leavening of exotica and a few constants of nature including:

pi,À ratio of circumference to diameter
c speed of light
e charge on an electron
g acceleration of gravity
force same as g
mole Avogadro�s number
water pressure head per unit height of water
au astronomical unit

The pound is a unit of mass. Compound names are run together, e.g. lightyear. British
units that differ from their US counterparts are prefixed thus: brgallon. Currency is denoted
belgiumfranc, britainpound, etc.

The complete list of units can be found in /lib/units. A file argument to units specifies a file
to be used instead of /lib/units. The −v flag causes units to print its entire database.

EXAMPLE
you have: 15 pounds force/in²
you want: atm

* 1.02069
/ .97973

FILES
/lib/units

SOURCE
/sys/src/cmd/units.y

BUGS
Since units does only multiplicative scale changes, it can convert Kelvin to Rankine but not Centi
grade to Fahrenheit.

Currency conversions are only as accurate as the last time someone updated the database.

322

UPTIME(1) UPTIME(1)

NAME
uptime � show how long the system has been running

SYNOPSIS
uptime

DESCRIPTION
Uptime shows how long the system has been running. It uses the following format:

sysname up 33 days, 17:56:42

The time given accounts for the timezone.

SOURCE
/rc/bin/uptime

SEE ALSO
date(1)

323

VAC(1) VAC(1)

NAME
vac, unvac � create, extract a vac archive on Venti

SYNOPSIS
vac [−mqsv] [−a vacfile] [−b blocksize] [−d oldvacfile] [−e exclude] [−f vacfile] [−i
name] [−h host] [−x excludefile] file ...

unvac [−Tcdtv] [−h host] vacfile [file ...]

DESCRIPTION
Vac creates an archival copy of Plan 9 file trees on Venti. It can be used to build a simple backup
system. One of the unusual properties of Venti is that duplicate blocks are detected and coalesced.
When vac is used on a file tree that shares data with an existing archive, the consumption of stor
age will be approximately equal to an incremental backup. This reduction in storage consumption
occurs transparently to the user.

As an optimization, the −d and −q options, described below, can be used to explicitly create an
archive relative to an existing archive. These options do not change the resulting archive gener
ated by vac, but simply reduce the number of write operations to Venti.

The output of vac is the hexadecimal representation of the SHA1 fingerprint of the root of the
archive, in this format:

vac:64daefaecc4df4b5cb48a368b361ef56012a4f46

The options to vac are:

−a vacfile Specifies that vac should create or update a backup archive, inserting the files under
an extra two levels of directory hierarchy named yyyy/mmdd (year, month, day) in
the style of the dump file system (see Plan 9�s fs(4)). If vacfile already exists, an
additional backup day is added to the existing hierarchy, behaving as though the −d
flag was specified giving the most recent backup tree in the archive. Typically, this
option is used as part of a nightly backup script. This option cannot be used with
−d or −f.

−b blocksize Specifies the block size that data will be broken into. The units for the size can be
specified by appending k to indicate kilobytes. The default is 8k. The size must be
in the range of 512 bytes to 52k.

−d oldvacfile Reduce the number of blocks written to Venti by comparing the files to be stored
with the contents of an existing vac file tree whose score is stored in oldvacfile.

−e exclude Do not include the file or directory specified by exclude. This option may be
repeated multiple times. Exclude can be a shell pattern as accepted by rc(1), with
one extension: ... matches any sequence of characters including slashes.

−f vacfile The results of vac are placed in vacfile, or the standard output if no file is given.

−i name Include standard input as one of the input files, storing it in the archive with the
specified name.

−h host The network address of the Venti server. The default is taken from the environment
variable venti. If this variable does not exist, then the default is the metaname
$venti, which can be configured via ndb(6).

−m Expand and merge any vac archives that are found while reading the input files.
This option is useful for building an archive from a collection of existing archives.
Each archive is inserted into the new archive as if it had been unpacked in the direc
tory in which it was found. Multiple archives can be unpacked in a single directory
and the contents will be merged. To be detected, the archives must end in .vac.
Note, an archive is inserted by simply copying the root fingerprint and does not
require the archive to be unpacked.

−q Increase the performance of the −d option by detecting unchanged files based on a
match of the files name and other meta data, rather than examining the contents of
the files.

324

VAC(1) VAC(1)

−s Print out various statistics on standard error.

−v Produce more verbose output on standard error, including the name of the files
added to the archive and the vac archives that are expanded and merged.

−x excfile Read exclude patterns from the file excfile. Blank lines and lines beginning with #
are ignored. All other lines should be of the form include pattern or exclude
pattern . When considering whether to include a directory or file in the vac archive,
the earliest matching pattern in the file applies. The patterns are the same syntax
accepted by the −e option. This option may be repeated multiple times.

Unvac lists or extracts files stored in the vac archive vacfile, which can be either a vac archive
string in the format given above or the name of a file containing one. If file arguments are given,
only those files or directories will be extracted. The options are:

−T Set the modification time on extracted files to the time listed in the archive.

−c Write extracted files to standard output instead of creating a file.

−d Reduce the number of blocks read from Venti by comparing the files to be stored with their
counterparts in the file system. This option cannot be used with −c.

−t Print a list of the files to standard output rather than extracting them.

−v If extracting files, print the name of each file and directory to standard error. If listing files,
print metadata in addition to the names.

−h as per vac.

SOURCE
/sys/src/cmd/vac

SEE ALSO
vacfs(4), venti(8)

325

VENTI(1) VENTI(1)

NAME
read, write, copy � simple Venti clients

SYNOPSIS
venti/read [−h host] [−t type] score
venti/write [−z] [−h host] [−t type]
venti/copy [−fir] [−t type] srchost dsthost score [type]

DESCRIPTION
Venti is a SHA1-addressed block storage server. See venti(6) for a full introduction.

Read reads a block with the given score and numeric type from the server host and prints the block
to standard output. If the −h option is omitted, read consults the environment variable $venti
for the name of the Venti server. If the −t option is omitted, read will try each type, one at a time,
until it finds one that works. It prints the corresponding read −t command to standard error to
indicate the type of the block.

Write writes at most 56 kilobytes of data from standard input to the server host and prints the
resulting score to standard output. If the −t option is omitted, write uses type 0, denoting a data
block. If the −z option is given, write zero truncates the block before writing it to the server.

Copy expects score to be the score of a VtRoot block. It copies the entire tree of blocks reach
able from the root block from the server srchost to the server dsthost.

The −f option causes copy to run in �fast� mode, assuming that if a block already exists on the
destination Venti server, all its children also exist and need not be checked.

The −i and −r options control copy�s reaction to errors reading from srchost. Copy always prints
information to standard error about each read error. By default, copy exits after printing the first
error. If the −i option is given, read errors are ignored. This is dangerous behavior because it
breaks the assumption made by �fast� mode. If the −r option is given, copy replaces pointers to
unreadable blocks with pointers to the zero block. It writes the new root score to standard output.

SOURCE
/sys/src/cmd/venti

SEE ALSO
vac(1), venti(2), vacfs(4), venti(6), venti(8), venti−backup(8), venti−fmt(8)

BUGS
There should be programs to read and write venti files and directories.

326

VI(1) VI(1)

NAME
5i, ki, vi, qi � instruction simulators

SYNOPSIS
vi [textfile]
vi pid
5i [textfile]
5i pid
ki [textfile]
ki pid
qi [textfile]
qi pid

DESCRIPTION
Vi simulates the execution of a MIPS binary in a Plan 9 environment. It has two main uses: as a
debugger and as a statistics gatherer. Programs running under vi execute about two hundred
times slower than normal�but faster than single stepping under db. 5i, ki, and qi are similar to vi
but interpret ARM, SPARC, and PowerPC binaries. The following discussion refers to vi but applies
to the others as well.

Vi will simulate the execution of a named textfile. It will also make a copy of an existing process
with process id pid and simulate its continuation.

As a debugger vi offers more complete information than db(1). Tracing can be performed at the
level of instructions, system calls, or function calls. Vi allows breakpoints to be triggered when
specified addresses in memory are accessed. A report of instruction counts, load delay fills and
distribution is produced for each run. Vi simulates the CPU�s caches and MMU to assist the opti
mization of compilers and programs.

The command interface mirrors the interface to db; see db(1) for a detailed description. Data for
mats and addressing are compatible with db except for disassembly: vi offers only MIPS (db
−mmipsco) mnemonics for machine instructions. Ki offers both Plan 9 and Sun SPARC formats.

Several extra commands allow extended tracing and printing of statistics:

$t[0ics]
The t command controls tracing. Zero cancels all tracing options.

i Enable instruction tracing

c Enable call tracing

s Enable system call tracing

$i[itsp]
The i command prints statistics accumulated by all code run in this session.

i Print instruction counts and frequency.

p Print cycle profile.

t (Vi only) Print TLB and cache statistics.

s Print memory reference, working set and size statistics.

:b[arwe]
Vi allows breakpoints to be set on any memory location. These breakpoints monitor when
a location is accessed, read, written, or equals a certain value. For equality the compared
value is the count (see db(1)) supplied to the command.

SOURCE
/sys/src/cmd/vi etc.

SEE ALSO
nm(1), db(1)

BUGS
The code generated by the compilers is well supported, but some unusual instructions are unim
plemented. Some Plan 9 system calls such as rfork cause simulated traps. The floating point

327

VI(1) VI(1)

simulation makes assumptions about the interpreting machine�s floating point support. The float
ing point conversions performed by vi may cause a loss of precision.

328

VMX(1) VMX(1)

NAME
vmx � virtual PC

SYNOPSIS
vmx [−D] [−M mem] [−c com1] [−C com2] [−n nic] [−d blockfile] [−v|−w vga] [−m
bootmod] kernel [args ...]

DESCRIPTION
Vmx uses Intel VT-x through vmx(3) to simulate a virtual PC, running the specified kernel (see
below for supported formats).

By default the virtual PC has 64 MB of memory. The amount of memory can be changed with the
−M option, the argument of which is interpreted in bytes unless suffixed by K, M, or G to change
the unit to kilobytes, megabytes or gigabytes, respectively.

Args is passed to the kernel as its command line. Boot modules can be specified with the −m argu
ment.

−D enables debug messages.

If −v is specified, a graphics device, PS/2 keyboard and mouse are simulated. The −w flag
behaves the same as −v but also creates a new window for the screen. Clicking on the screen
"grabs" the mouse; pressing Ctrl and Alt simultaneously releases the grab. Valid values for the
argument are

text Simulate a VGA text-mode console.

widthxheight [xchan] [@addr]
Simulate a framebuffer at address addr of the specified size and channel format chan (see
image(6)). xchan and @addr are optional, in which case they default to x8r8g8b8 and
0xf0000000, respectively (in this mode there is no way to change the resolution and
accesses to VGA registers have no effect).

vesa:modes [@addr]
(modes is a comma separated list of modes of the format widthxheightxchan with the
chan optional as before.) Simulate a VESA-compatible PCI graphics adapter, initially in
text mode. The guest can use VESA functions to switch the mode to one of those listed,
which are assigned consecutive mode numbers starting with 0x120. The first mode is
indicated as the preferred mode of the monitor.

The −c and −C options specify the targets for the COM1 and COM2 devices. The argument con
sists of two fields separated by a comma, which specify the file to be used for input and output,
respectively. Either field can be left empty. If there is no comma in the argument, the same value
is used for both fields.

A −n option adds a network card. The argument to −n specifies a physical network device (such
as ether0) to use. Alternatively, a dial string such as udp!host!port can be used. It can also be
prefixed by file! to interpret the argument as a file instead and it can be prefixed by hdr! to
enable headers matching the binary snoopy(8) format. The MAC address can be specified with the
ea:nnnnnnnnnnnn! prefix, otherwise a random address is used.

A −d option adds a virtio block device (a hard disk) with the argument as a disk image.

Multiboot kernels
If the specified kernel complies with the Multiboot specification, then args is concatenated with
spaces and passed as the cmdline; the −m modules are passed as boot modules.

Note that 9front is Multiboot compliant and interprets the first boot module as plan9.ini(8).

OpenBSD kernels
If the specified kernel is an OpenBSD kernel, the boot modules are ignored and the cmdline is
interpreted as

[−asdc] [var=value ...]

where the options correspond to the boot options and the assignments to the boot variables,
which are defined in the OpenBSD manpage boot(8).

329

VMX(1) VMX(1)

Linux kernels
If the specified kernel is a Linux kernel (which must be 2.6.22 or newer and in bzImage format),
args are concatenated with spaces and passed as the cmdline (see Documentation/admin−
guide/kernel−parameters.txt). The first boot module is passed as the initrd; any fur
ther boot modules are ignored.

SOURCE
/sys/src/cmd/vmx

SEE ALSO
vmx(3), cpuid(8)

BUGS
Vmx can and will crash your kernel.

Currently only one core is supported.

The Linux vga= option is not supported, as well as many of the OpenBSD boot variables.

HISTORY
Vmx first appeared in 9front (June, 2017).

330

VNC(1) VNC(1)

NAME
vncs, vncv � remote frame buffer server and viewer for Virtual Network Computing (VNC)

SYNOPSIS
vncs [−v] [−c cert] [−d :display] [−g widthxheight] [−p pixfmt] [−x net] [cmd [args]]

vncs −k :display [−x net]

vncv [−cstv] [−e encodings] [−l charset] [−k keypattern] host[:n]

DESCRIPTION
VNC is a lightweight protocol for accessing graphical applications remotely. The protocol allows
one or more clients to connect to a server. While connected, clients display the frame buffer pre
sented by the server and can send mouse events, keyboard events, and exchange snarf buffers.
The server persists across viewer sessions, so that the virtual application can be accessed from
various locations as its owner moves around.

VNC displays have names of the form host:n, where host is the machine�s network name and n is
a small integer identifier; display n is served on TCP port 5900+n.

Vncs starts a new virtual frame buffer in memory, simulating a Plan 9 terminal running cmd args,
by default an interactive shell. As viewers connect, each is authenticated using a (rather breakable)
challenge-response protocol using the user�s Inferno/POP password.

The options are:

−c cert start TLS on each viewer connection using the certificate in the file cert. The corre
sponding private key must be loaded into the server�s factotum(4). When serving TLS
connections, the base port is 35729 rather than 5900.

−d :n run on display n ; without this option, the server searches for an unused display.

−g widthxheight
set the virtual frame buffer to be widthxheight (default 1024x768) pixels.

−p pixfmt set the virtual frame buffer�s internal pixel format to pixfmt (default r5g6b5).

−v print verbose output to standard error.

−x net announce on an alternate network interface.

−A turn off authentication.

The command vncs −k :n kills the VNC server running on display n.

Vncv provides access to remote display host:n. It resizes its window to be the smaller of the
remote frame buffer size and the local screen.

The options are:

−c when connecting to 8-bit displays, request r4g4b4 pixels rather than r3g3b2 pixels.
This takes up more bandwidth but usually gives significantly better matching to the Plan 9
color map.

−e encodings
set the ordered list of allowed frame buffer update encodings. The default (and full) set is
copyrect corre hextile rre raw. The encodings should be given as a single
space-separated argument (quoted when using the shell).

−l charset
sets the character set (see tcs(1)) used by the server to encode clipboard text. The default
is utf−8.

−k keypattern
add keypattern to the pattern used to select a key from factotum(4).

−s share the display with extant viewers; by default extant viewers are closed when a new
viewer connects.

−t start TLS on the connection.

331

VNC(1) VNC(1)

−v print verbose output to standard error.

SOURCE
/sys/src/cmd/vnc

SEE ALSO
http://www.uk.research.att.com/vnc

BUGS
If the remote frame buffer is larger than the local screen, only the upper left corner can be
accessed.

Vncv does no verification of the TLS certificate presented by the server.

Vncv supports only version 3.3 of the RFB protocol.

332

VT(1) VT(1)

NAME
vt � emulate a VT-100 or VT-220 terminal

SYNOPSIS
vt [−2abcrx] [−f font] [−l log] [cmd...]

DESCRIPTION
Vt replaces a rio window with a fresh instance of the program cmd (or the rc(1) shell when omited)
running within an emulation of a DEC VT-100 terminal.

Options
2
a
x change vt to emulate a VT-220, ANSI, or XTerm terminal respectively.
b changes the color scheme to white text on a black background, but potentially with colors

from escape sequences.
c changes the color scheme to monochrome (no colors).
f sets the font.
l names a log file for the session.
r start in raw mode.

Menus
The right button has a menu with the following entries to provide the sort of character processing
expected by non-Plan 9 systems:

24x80 Resize the vt window to hold 24 rows of 80 columns.
crnl Print a newline (linefeed) character after receiving a carriage return from the host.
cr Do not print a newline after carriage return.
nlcr Print a carriage return after receiving a newline from the host.
nl Do not print a carriage return after newline.
raw Enter raw (no echo, no interpretation) character mode for input.
cooked Leave raw mode.
blocksel

Toggle block selection for mode for rio snarf buffer.
exit Exit vt.

The middle button has a menu with the following entries:

backup Move the display back one screenful.
forward Move the display forward one screenful. (These are a poor substitute for a scroll

bar.)
reset Display the last screenful; the same as going forward to the end.
paste Pastes the contents of the rio snarf buffer, just as paste in the rio menu.
snarf Copy selection to the rio snarf buffer.
plumb Send selection to the plumber.
scroll Make new lines visible as they appear at the bottom.
page When the page fills, pause and wait for a character to be typed before proceeding.

The down arrow key advances a page without sending the character to the host.

SOURCE
/sys/src/cmd/vt

BUGS
This program is used only for communicating with foreign systems, so it is not as rich an emula
tion as its equivalent in other environments.

Use care in setting raw and newline modes when connecting to Unix systems via con(1). It may also
be necessary to set the emulator into raw mode.

333

WALK(1) WALK(1)

NAME
walk � walk a path

SYNOPSIS
walk [−dftxu] [−n mind,maxd] [−e statfmt] [name ...]

DESCRIPTION
Walk recursively descends any directory arguments, printing the name of each file on a separate
line. When no arguments are given, the working directory is assumed. Non-directory arguments
are checked for existence, then printed, if so.

Options are:

−d Print only directories.

−f Print only non-directories.

−t Print a file only if it has the temporary flag set.

−x Print a file only if it has any executable bits set.

−u Unbuffered output.

−n min,max
Set the inclusive range of depths for filtering in results. Both min and max are optional.
An argument of n with no comma is equivalent to 0,n.

−e statfmt
Specify the output format. Each character in statfmt specifies a file attribute to display.
The printed attributes are separated by spaces.

The statfmt characters are as follows:

U owner name (uid)
G group name (gid)
M name of last user to modify (muid)
a last access time (atime)
m last modification time (mtime)
n final path element (name)
p path
q qid path.version.type (see stat(2))
s size in bytes
x permissions
D server device
T server type (kernel device rune)

The default statfmt is simply, p.

EXAMPLES
List files in a directory, sorted by modification time.

walk −femp catpics | sort −n | sed ’s/^[^]+ //’

Print the size and path of files (excluding dirs) in the working directory.

walk −fn1 −esp

SOURCE
/sys/src/cmd/walk.c

SEE ALSO
ls(1), du(1)

BUGS
Statfmt character �x� displays permissions as an integer.

Manipulating ifs is a nuisance.

File names are assumed to not contain newlines.

Correct invocation requires too much thought.

334

WALK(1) WALK(1)

HISTORY
Walk first appeared in 9front (March, 2019).

335

WC(1) WC(1)

NAME
wc � word count

SYNOPSIS
wc [−lwrbc] [file ...]

DESCRIPTION
Wc counts lines, words, runes, syntactically-invalid UTF codes and bytes in the named files, or in
the standard input if no file is named. A word is a maximal string of characters delimited by
spaces, tabs or newlines. The count of runes includes invalid codes.

If the optional argument is present, just the specified counts (lines, words, runes, broken UTF

codes or bytes) are selected by the letters l, w, r, b, or c. Otherwise, lines, words and bytes
(−lwc) are reported.

SOURCE
/sys/src/cmd/wc.c

BUGS
The Unicode Standard has many blank characters scattered through it, but wc looks for only ASCII

space, tab and newline.

Wc should have options to count suboptimal UTF codes and bytes that cannot occur in any UTF

code.

336

WEATHER(1) WEATHER(1)

NAME
weather � print weather report

SYNOPSIS
weather [air] [st]

DESCRIPTION
Weather prints the local conditions and seven-day forecast most recently reported at the US airport
with the three-letter location identifier air. Given a two-letter US state abbreviation st instead,
weather prints a table of air location identifiers known for st.

The arguments are mutually exclusive and case-insensitive. If neither is given, air defaults to the
value of the environment variable $weather, or if it is unset, to the location identifier ewr, des
ignating the Newark, NJ, airport near Bell Labs, Murray Hill.

SOURCE
/rc/bin/weather

BUGS
Weather is hopelessly provincial.

337

WHO(1) WHO(1)

NAME
who, whois � who is using the machine

SYNOPSIS
who

whois person

DESCRIPTION
Who prints the name of everyone with a non-Exiting process on the current machine.

Whois looks in /adm/whois and /adm/users to find out more information about person.

SOURCE
/rc/bin/who
/rc/bin/whois

338

WINWATCH(1) WINWATCH(1)

NAME
winwatch � monitor rio windows

SYNOPSIS
winwatch [−e exclude] [−f font]

DESCRIPTION
Winwatch displays the labels of all current rio(4) windows, refreshing the display every five sec
onds. Right clicking a window�s label unhides, raises and gives focus to that window. Right click
ing a window again hides the window. Middle clicking a window�s label prompts for a new label.
Typing q or DEL quits winwatch.

If the −e flag is given, windows matching the regular expression exclude are not shown.

EXAMPLE
Excluding winwatch, stats and faces from being showed.

% winwatch −e ’^(winwatch|stats|faces)’

FILES
/dev/wsys/*/label

SOURCE
/sys/src/cmd/winwatch.c

SEE ALSO
rio(1), rio(4), regexp(6).

339

XARGS(1) XARGS(1)

NAME
xargs � construct argument list and execute

SYNOPSIS
xargs [−n number] [−p maxprocs] cmd [arg ...]

DESCRIPTION
Xargs reads number (default 10) lines from standard input and runs the given cmd with those
lines as arguments. This is repeated until standard input is exhausted.

Options are as follows:

−n Set number as the maximum number of lines taken from standard input for each invoca
tion.

−p Parallel mode: run maxprocs invocations at once.

EXAMPLE
seq 1 9 | xargs −n 3 echo

SOURCE
/sys/src/cmd/xargs.c

HISTORY
Xargs was implemented from scratch for 9front (August, 2011).

340

XD(1) XD(1)

NAME
xd � hex, octal, decimal, or ASCII dump

SYNOPSIS
xd [option ...] [−format ...] [file ...]

DESCRIPTION
Xd concatenates and dumps the files (standard input by default) in one or more formats. Groups
of 16 bytes are printed in each of the named formats, one format per line. Each line of output is
prefixed by its address (byte offset) in the input file. The first line of output for each group is
zero-padded; subsequent are blank-padded.

Formats other than −c are specified by pairs of characters telling size and style, 4x by default.
The sizes are

1 or b 1-byte units.
2 or w 2-byte big-endian units.
4 or l 4-byte big-endian units.
8 or v 8-byte big-endian units.

The styles are

o Octal.
x Hexadecimal.
d Decimal.

Other options are

−c Format as 1x but print ASCII representations or C escape sequences where possible.

−astyle Print file addresses in the given style (and size 4).

−u (Unbuffered) Flush the output buffer after each 16-byte sequence.

−s Switch to little-endian units.

−r Print repeating groups of identical 16-byte sequences as the first group followed by an
asterisk.

SOURCE
/sys/src/cmd/xd.c

SEE ALSO
db(1)

BUGS
The various output formats don�t line up properly in the output of xd.

341

YACC(1) YACC(1)

NAME
yacc � yet another compiler-compiler

SYNOPSIS
yacc [option ...] grammar

DESCRIPTION
Yacc converts a context-free grammar and translation code into a set of tables for an LR(1) parser
and translator. The grammar may be ambiguous; specified precedence rules are used to break
ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program yyparse.
This program must be loaded with a lexical analyzer function, yylex(void) (often generated by
lex(1)), with a main(int argc, char *argv[]) program, and with an error handling rou
tine, yyerror(char*).

The options are

−o output Direct output to the specified file instead of y.tab.c.

−Dn Create file y.debug, containing diagnostic messages. To incorporate them in the
parser, compile it with preprocessor symbol yydebug defined. The amount of
diagnostic output from the parser is regulated by value n. The value 0 reports errors;
1 reports reductions; higher values (up to 4) include more information about state
transitions.

−v Create file y.output, containing a description of the parsing tables and of con
flicts arising from ambiguities in the grammar.

−d Create file y.tab.h, containing #define statements that associate yacc-assigned
�token codes� with user-declared �token names�. Include it in source files other than
y.tab.c to give access to the token codes.

−s stem Change the prefix y of the file names y.tab.c, y.tab.h, y.debug, and
y.output to stem.

−S Write a parser that uses Stdio instead of the print routines in libc.

The specification of yacc itself is essentially the same as the UNIX version described in the refer
ences mentioned below. Besides the −D option, the main relevant differences are:

The interface to the C environment is by default through <libc.h> rather than
<stdio.h>; the −S option reverses this.

The parser accepts UTF input text (see utf(6)), which has a couple of effects. First, the
return value of yylex() no longer fits in a short; second, the starting value for non-
terminals is now 0xE000 rather than 257.

The generated parser can be recursive: actions can call yyparse , for example to implement
a sort of #include statement in an interpreter.

Finally, some undocumented inner workings of the parser have been changed, which may
affect programs that know too much about its structure.

FILES
y.output
y.tab.c
y.tab.h
y.debug
y.tmp.* temporary file
y.acts.* temporary file
/sys/lib/yaccpar parser prototype
/sys/lib/yaccpars parser prototype using stdio

SOURCE
/sys/src/cmd/yacc.c

SEE ALSO
lex(1)

342

YACC(1) YACC(1)

S. C. Johnson and R. Sethi, ��Yacc: A parser generator��, Unix Research System Programmer’s Man
ual, Tenth Edition, Volume 2
B. W. Kernighan and Rob Pike, The UNIX Programming Environment, Prentice Hall, 1984

BUGS
The parser may not have full information when it writes to y.debug so that the names of the
tokens returned by yylex may be missing.

343

YESTERDAY(1) YESTERDAY(1)

NAME
yesterday, diffy � print file names from the dump

SYNOPSIS
yesterday [−abcCdDs] [−n daysago] [�date] files ...

diffy [−abcefmnrw] files ...

DESCRIPTION
Yesterday prints the names of the files from the most recent dump. Since dumps are done early in
the morning, yesterday�s files are really in today�s dump. For example, if today is March 17, 1992,

yesterday /adm/users

prints

/n/dump/1992/0317/adm/users

In fact, the implementation is to select the most recent dump in the current year, so the dump
selected may not be from today.

When presented with a path of the form /n/fs/path, yesterday will look for dump files of the
form /n/fsdump/yyyy/hhmm/path.

By default, yesterday prints the names of the dump files corresponding to the named files. The
first set of options changes this behavior.

−a Run acme(1)�s adiff to compare the dump files with the named files.

−b Bind the dump files over the named files.

−c Copy the dump files over the named files.

−C Copy the dump files over the named files only when they differ.

−d Run diff to compare the dump files with the named files.

−D Run diff −n to compare the dump files with the named files.

The date option selects other day�s dumps, with a format of 1, 2, 4, 6, or 8 digits of the form d,
dd, mmdd, yymmdd, or yyyymmdd .

The −n option selects the dump daysago prior to the current day.

The −s option selects the most recent snapshot instead of the most recent archived dump. Snap
shots may occur more frequently than dumps.

Yesterday does not guarantee that the string it prints represents an existing file.

Diffy runs diff(1) with the given options to compare yesterday�s version of each of the named files
with today�s.

EXAMPLES
Back up to yesterday�s MIPS binary of vc:

yesterday −c /mips/bin/vc

Temporarily back up to March 1�s MIPS C library to see if a program runs correctly when loaded
with it:

yesterday −b −0301 /mips/lib/libc.a
rm v.out
mk
v.out

Find what has changed in the C library since March 1:

yesterday −d −0301 /sys/src/libc/port/*.c

Find what has changed in the source tree today:

diffy −r /sys/src

FILES
/n/dump

344

YESTERDAY(1) YESTERDAY(1)

SOURCE
/rc/bin/yesterday
/rc/bin/diffy

SEE ALSO
history(1), bind(1), diff(1), fs(4).

BUGS
It�s hard to use this command without singing.

Doesn�t work on January 1st.

345

INTRO(2) INTRO(2)

NAME
intro � introduction to library functions

SYNOPSIS
#include <u.h>

#include <libc.h>

#include <auth.h>

#include <bio.h>

#include <draw.h>

#include <fcall.h>

#include <frame.h>

#include <mach.h>

#include <ndb.h>

#include <regexp.h>

#include <stdio.h>

#include <thread.h>

DESCRIPTION
This section describes functions in various libraries. For the most part, each library is defined by a
single C include file, such as those listed above, and a single archive file containing the library
proper. The name of the archive is /$objtype/lib/libx.a, where x is the base of the
include file name, stripped of a leading lib if present. For example, <draw.h> defines the con
tents of library /$objtype/lib/libdraw.a, which may be abbreviated when named to the
loader as −ldraw. In practice, each include file contains a #pragma that directs the loader to
pick up the associated archive automatically, so it is rarely necessary to tell the loader which
libraries a program needs.

The library to which a function belongs is defined by the header file that defines its interface. The
�C library�, libc, contains most of the basic subroutines such as strlen. Declarations for all of these
functions are in <libc.h>, which must be preceded by (needs) an include of <u.h>. The
graphics library, draw, is defined by <draw.h>, which needs <libc.h> and <u.h>. The Buf
fered I/O library, libbio, is defined by <bio.h>, which needs <libc.h> and <u.h>. The ANSI
C Standard I/O library, libstdio, is defined by <stdio.h>, which needs <u.h>. There are a few
other, less commonly used libraries defined on individual pages of this section.

The include file <u.h>, a prerequisite of several other include files, declares the architecture-
dependent and -independent types, including: uchar, ushort, uint, and ulong, the unsigned inte
ger types; schar, the signed char type; vlong and uvlong, the signed and unsigned very long inte
gral types; Rune, the Unicode character type; u8int, u16int, u32int, and u64int, the unsigned inte
gral types with specific widths; uintptr, the unsigned integral type with the same width as a
pointer; jmp_buf, the type of the argument to setjmp and longjmp, plus macros that define the lay
out of jmp_buf (see setjmp(2)); definitions of the bits in the floating-point control register as used
by getfcr(2); and the macros va_arg and friends for accessing arguments of variadic functions
(identical to the macros defined in <stdarg.h> in ANSI C).

Name space
Files are collected into a hierarchical organization called a file tree starting in a directory called the
root. File names, also called paths, consist of a number of /-separated path elements with the
slashes corresponding to directories. A path element must contain only printable characters (those
outside the control spaces of ASCII and Latin-1). A path element cannot contain a slash.

When a process presents a file name to Plan 9, it is evaluated by the following algorithm. Start
with a directory that depends on the first character of the path: / means the root of the main hier
archy, # means the separate root of a kernel device�s file tree (see Section 3), and anything else
means the process�s current working directory. Then for each path element, look up the element
in the directory, advance to that directory, do a possible translation (see below), and repeat. The
last step may yield a directory or regular file. The collection of files reachable from the root is

346

INTRO(2) INTRO(2)

called the name space of a process.

A program can use bind or mount (see bind(2)) to say that whenever a specified file is reached dur
ing evaluation, evaluation instead continues from a second specified file. Also, the same system
calls create union directories, which are concatenations of ordinary directories that are searched
sequentially until the desired element is found. Using bind and mount to do name space adjust
ment affects only the current process group (see below). Certain conventions about the layout of
the name space should be preserved; see namespace(4).

File I/O
Files are opened for input or output by open or create (see open(2)). These calls return an integer
called a file descriptor which identifies the file to subsequent I/O calls, notably read(2) and write.
The system allocates the numbers by selecting the lowest unused descriptor. They are allocated
dynamically; there is no visible limit to the number of file descriptors a process may have open.
They may be reassigned using dup(2). File descriptors are indices into a kernel resident file
descriptor table. Each process has an associated file descriptor table. In some cases (see rfork in
fork(2)) a file descriptor table may be shared by several processes.

By convention, file descriptor 0 is the standard input, 1 is the standard output, and 2 is the stan
dard error output. With one exception, the operating system is unaware of these conventions; it is
permissible to close file 0, or even to replace it by a file open only for writing, but many programs
will be confused by such chicanery. The exception is that the system prints messages about bro
ken processes to file descriptor 2.

Files are normally read or written in sequential order. The I/O position in the file is called the file
offset and may be set arbitrarily using the seek(2) system call.

Directories may be opened and read much like regular files. They contain an integral number of
records, called directory entries. Each entry is a machine-independent representation of the infor
mation about an existing file in the directory, including the name, ownership, permission, access
dates, and so on. The entry corresponding to an arbitrary file can be retrieved by stat(2) or fstat;
wstat and fwstat write back entries, thus changing the properties of a file. An entry may be trans
lated into a more convenient, addressable form called a Dir structure; dirstat, dirfstat, dirwstat,
and dirfwstat execute the appropriate translations (see stat(2)).

New files are made with create (see open(2)) and deleted with remove(2). Directories may not
directly be written; create, remove, wstat, and fwstat alter them.

The operating system kernel records the file name used to access each open file or directory. If
the file is opened by a local name (one that does not begin / or #), the system makes the stored
name absolute by prefixing the string associated with the current directory. Similar lexical adjust
ments are made for path names containing . (dot) or .. (dot-dot). By this process, the system
maintains a record of the route by which each file was accessed. Although there is a possibility for
error�the name is not maintained after the file is opened, so removals and renamings can con
found it�this simple method usually permits the system to return, via the fd2path(2) system call
and related calls such as getwd(2), a valid name that may be used to find a file again. This is also
the source of the names reported in the name space listing of ns(1) or /dev/ns (see proc(3)).

Pipe(2) creates a connected pair of file descriptors, useful for bidirectional local communication.

Process execution and control
A new process is created when an existing one calls rfork with the RFPROC bit set, usually just by
calling fork(2). The new (child) process starts out with copies of the address space and most other
attributes of the old (parent) process. In particular, the child starts out running the same program
as the parent; exec(2) will bring in a different one.

Each process has a unique integer process id; a set of open files, indexed by file descriptor; and a
current working directory (changed by chdir(2)).

Each process has a set of attributes � memory, open files, name space, etc. � that may be shared
or unique. Flags to rfork control the sharing of these attributes.

The memory of a process is divided into segments. Every program has at least a text (instruction)
and stack segment. Most also have an initialized data segment and a segment of zero-filled data
called bss. Processes may segattach(2) other segments for special purposes.

347

INTRO(2) INTRO(2)

A process terminates by calling exits(2). A parent process may call wait(2) to wait for some child to
terminate. A string of status information may be passed from exits to wait. A process can go to
sleep for a specified time by calling sleep(2).

There is a notification mechanism for telling a process about events such as address faults, float
ing point faults, and messages from other processes. A process uses notify(2) to register the func
tion to be called (the notification handler) when such events occur.

Multithreading
By calling rfork with the RFMEM bit set, a program may create several independently executing
processes sharing the same memory (except for the stack segment, which is unique to each pro
cess). Where possible according to the ANSI C standard, the main C library works properly in mul
tiprocess programs; malloc, print, and the other routines use locks (see lock(2)) to synchronize
access to their data structures. The graphics library defined in <draw.h> is also multi-process
capable; details are in graphics(2). In general, though, multiprocess programs should use some
form of synchronization to protect shared data.

The thread library, defined in <thread.h>, provides support for multiprocess programs. It
includes a data structure called a Channel that can be used to send messages between pro
cesses, and coroutine-like threads, which enable multiple threads of control within a single pro
cess. The threads within a process are scheduled by the library, but there is no pre-emptive
scheduling within a process; thread switching occurs only at communication or synchronization
points.

Most programs using the thread library comprise multiple processes communicating over chan
nels, and within some processes, multiple threads. Since Plan 9 I/O calls may block, a system call
may block all the threads in a process. Therefore, a program that shouldn�t block unexpectedly
will use a process to serve the I/O request, passing the result to the main processes over a channel
when the request completes. For examples of this design, see ioproc(2) or mouse(2).

SEE ALSO
nm(1), 2l(1), 2c(1)

DIAGNOSTICS
Math functions in libc return special values when the function is undefined for the given arguments
or when the value is not representable (see nan(2)).

Some of the functions in libc are system calls and many others employ system calls in their imple
mentation. All system calls return integers, with �1 indicating that an error occurred; errstr(2)
recovers a string describing the error. Some user-level library functions also use the errstr mecha
nism to report errors. Functions that may affect the value of the error string are said to ��set
errstr��; it is understood that the error string is altered only if an error occurs.

348

9P(2) 9P(2)

NAME
Srv, chatty9p, dirread9p, emalloc9p, erealloc9p, estrdup9p, listensrv, postmountsrv, postsharesrv,
readbuf, readstr, respond, responderror, srvacquire, srvrelease, threadlistensrv, threadpost
mountsrv, threadpostsharesrv, srv � 9P file service

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <fcall.h>
#include <thread.h>
#include <9p.h>

typedef struct Srv {
Tree* tree;

void (*attach)(Req *r);
void (*auth)(Req *r);
void (*open)(Req *r);
void (*create)(Req *r);
void (*read)(Req *r);
void (*write)(Req *r);
void (*remove)(Req *r);
void (*flush)(Req *r);
void (*stat)(Req *r);
void (*wstat)(Req *r);
void (*walk)(Req *r);

char* (*walk1)(Fid *fid, char *name, Qid *qid);
char* (*clone)(Fid *oldfid, Fid *newfid);

void (*destroyfid)(Fid *fid);
void (*destroyreq)(Req *r);
void (*start)(Srv *s);
void (*end)(Srv *s);
void* aux;

int infd;
int outfd;
int srvfd;

} Srv;

void srv(Srv *s)
void postmountsrv(Srv *s, char *name, char *mtpt, int flag)
void postsharesrv(Srv *s, char *name, char *mtpt, char *desc)
void threadpostmountsrv(Srv *s, char *name, char *mtpt, int flag)
void threadpostsharesrv(Srv *s, char *name, char *mtpt, char *desc)
void listensrv(Srv *s, char *addr)
void threadlistensrv(Srv *s, char *addr)
void respond(Req *r, char *error)
void responderror(Req*)
void readstr(Req *r, char *src)
void readbuf(Req *r, void *src, long nsrc)
typedef int Dirgen(int n, Dir *dir, void *aux)
void dirread9p(Req *r, Dirgen *gen, void *aux)
void walkandclone(Req *r, char *(*walk1)(Fid *old, char *name, void *v),

char *(*clone)(Fid *old, Fid *new, void *v), void *v)

void srvrelease(Srv *s)
void srvacquire(Srv *s)

349

9P(2) 9P(2)

void* emalloc9p(ulong n)
void* erealloc9p(void *v, ulong n)
char* estrdup9p(char *s)

extern int chatty9p;

DESCRIPTION
The function srv serves a 9P session by reading requests from s−>infd, dispatching them to the
function pointers kept in Srv, and writing the responses to s−>outfd. (Typically, postmountsrv
or threadpostmountsrv initializes the infd and outfd structure members. See the description
below.)

Req and Fid structures are allocated one-to-one with uncompleted requests and active fids, and
are described in 9pfid(2).

The behavior of srv depends on whether there is a file tree (see 9pfile(2)) associated with the
server, that is, whether the tree element is nonzero. The differences are made explicit in the dis
cussion of the service loop below. The aux element is the client�s, to do with as it pleases.

Srv does not return until the 9P conversation is finished. Since it is usually run in a separate pro
cess so that the caller can exit, the service loop has little chance to return gracefully on out of
memory errors. It calls emalloc9p, erealloc9p, and estrdup9p to obtain its memory. The default
implementations of these functions act as malloc, realloc, and strdup but abort the program if
they run out of memory. If alternate behavior is desired, clients can link against alternate imple
mentations of these functions.

Postmountsrv and threadpostmountsrv are wrappers that create a separate process in which to run
srv. They do the following:

Initialize s−>infd and s−>outfd to be one end of a freshly allocated pipe, with s−>srvfd
initialized as the other end.

If name is non-nil, post the file descriptor s−>srvfd under the name /srv/name.

Fork a child process via rfork (see fork(2)) or procrfork (see thread(2)), using the RFPROC,
RFNOWAIT, RFNAMEG, RFNOTEG and RFMEM flags. This isolates the service loop from
the callers namespace and from notes posted to the callers note group but shares data and
bss segments.

The child process then waits for the parent to copy its file descriptor table via rfork using
RFFDG flag. This way, the service loop will share the original file descriptor table with pre
viously created child processes of the caller.

The child process then calls close(s−>srvfd) and then srv(s); it will exit once srv
returns.

If mtpt is non-nil, call amount(s−>srvfd, mtpt, flag, ""); otherwise, close s−>srvfd.

The parent returns to the caller.

If any error occurs during this process, the entire process is terminated by calling sysfatal (see
perror(2)).

Postsharesrv is similar to Postmountsrv but instead of mounting the service on a directory, it is put
in a share (see shr(3)) where mtpt is the name of the share and desc is the name of the service
channel.

Listensrv and threadlistensrv create a separate process to announce as addr. The process listens
for incoming connections, creating a new process to serve each. Using these functions results in
srv and the service functions being run in multiple processes simultaneously. The library locks its
own data structures as necessary; the client may need to lock data it shares between the multiple
connections.

Service functions
The functions in a Srv structure named after 9P transactions are called to satisfy requests as they
arrive. If a function is provided, it must arrange for respond to be called when the request is satis
fied. The only parameter of each service function is a Req* parameter (say r). The incoming
request parameters are stored in r−>ifcall; r−>fid and r−>newfid are pointers to Fid structures
corresponding to the numeric fids in r−>ifcall; similarly, r−>oldreq is the Req structure corre
sponding to r−>ifcall.oldtag. The outgoing response data should be stored in r−>ofcall. The

350

9P(2) 9P(2)

one exception to this rule is that stat should fill in r−>d rather than r−>ofcall.stat: the library will
convert the structure into the machine-independent wire representation. Similarly, wstat may con
sult r−>d rather than decoding r−>ifcall.stat itself. When a request has been handled, respond
should be called with r and an error string. If the request was satisfied successfully, the error
string should be a nil pointer. Note that it is permissible for a function to return without itself call
ing respond, as long as it has arranged for respond to be called at some point in the future by
another proc sharing its address space, but see the discussion of flush below. Once respond has
been called, the Req* as well as any pointers it once contained must be considered freed and not
referenced.

Responderror calls respond with the system error string (see errstr(2)).

If the service loop detects an error in a request (e.g., an attempt to reuse an extant fid, an open of
an already open fid, a read from a fid opened for write, etc.) it will reply with an error without con
sulting the service functions.

The service loop provided by srv (and indirectly by postmountsrv and threadpostmountsrv) is
single-threaded. If it is expected that some requests might block, arranging for alternate pro
cesses to handle them is suggested (see 9pqueue(2)).

Srvrelease temporarily releases the calling process from the server loop and if neccesary spawns a
new process to handle 9p requests. When released, the process can do blocking work that would
otherwise halt processing of 9p requests. Srvacquire rejoins the calling process with the server
loop after a srvrelease.

The constraints on the service functions are as follows. These constraints are checked while the
server executes. If a service function fails to do something it ought to have, srv will call endsrv
and then abort.

Auth If authentication is desired, the auth function should record that r−>afid is the new
authentication fid and set r−>afid−>qid and ofcall.qid. Auth may be nil, in which case it
will be treated as having responded with the error ��argv0: authentication not required,��
where argv0 is the program name variable as set by ARGBEGIN (see arg(2)).

Attach The attach function should check the authentication state of afid if desired, and set
r−>fid−>qid and ofcall.qid to the qid of the file system root. Attach may be nil only if file
trees are in use; in this case, the qid will be filled from the root of the tree, and no authenti
cation will be done.

Walk If file trees are in use, walk is handled internally, and srv−>walk is never called.

If file trees are not in use, walk should consult r−>ifcall.wname and r−>ifcall.nwname,
filling in ofcall.qid and ofcall.nqid, and also copying any necessary aux state from r−>fid
to r−>newfid when the two are different. As long as walk sets ofcall.nqid appropriately, it
can respond with a nil error string even when 9P demands an error (e.g. , in the case of a
short walk); the library detects error conditions and handles them appropriately.

Because implementing the full walk message is intricate and prone to error, the helper rou
tine walkandclone will handle the request given pointers to two functions walk1 and
(optionally) clone . Clone, if non-nil, is called to signal the creation of newfid from oldfid.
Typically a clone routine will copy or increment a reference count in oldfid�s aux element.
Walk1 should walk fid to name, initializing fid−>qid to the new path�s qid. Both should
return nil on success or an error message on error. Walkandclone will call respond after
handling the request.

Walk1, Clone
If the client provides functions srv−>walk1 and (optionally) srv−>clone, the 9P service
loop will call walkandclone with these functions to handle the request. Unlike the walk1
above, srv−>walk1 must fill in both fid−>qid and *qid with the new qid on a successful
walk.

Open If file trees are in use, the file metadata will be consulted on open, create, remove, and
wstat to see if the requester has the appropriate permissions. If not, an error will be sent
back without consulting a service function.

If not using file trees or the user has the appropriate permissions, open is called with
r−>ofcall.qid already initialized to the one stored in the Fid structure (that is, the one

351

9P(2) 9P(2)

returned in the previous walk). If the qid changes, both should be updated.

Create The create function must fill in both r−>fid−>qid and r−>ofcall.qid on success. When
using file trees, create should allocate a new File with createfile; note that createfile may
return nil (because, say, the file already exists). If the create function is nil, srv behaves as
though it were a function that always responded with the error ��create prohibited��.

Remove
Remove should mark the file as removed, whether by calling removefile when using file
trees, or by updating an internal data structure. In general it is not a good idea to clean up
the aux information associated with the corresponding File at this time, to avoid memory
errors if other fids have references to that file. Instead, it is suggested that remove simply
mark the file as removed (so that further operations on it know to fail) and wait until the file
tree�s destroy function is called to reclaim the aux pointer. If not using file trees, it is pru
dent to take the analogous measures. If remove is not provided, all remove requests will
draw ��remove prohibited�� errors.

Read The read function must be provided; it fills r−>ofcall.data with at most r−>ifcall.count
bytes of data from offset r−>ifcall.offset of the file. It also sets r−>ofcall.count to the
number of bytes being returned. If using file trees, srv will handle reads of directories
internally, only calling read for requests on files. Readstr and readbuf are useful for satis
fying read requests on a string or buffer. Consulting the request in r−>ifcall, they fill
r−>ofcall.data and set r−>ofcall.count; they do not call respond. Similarly, dirread9p
can be used to handle directory reads in servers not using file trees. The passed gen func
tion will be called as necessary to fill dir with information for the nth entry in the directory.
The string pointers placed in dir should be fresh copies made with estrdup9p; they will be
freed by dirread9p after each successful call to gen. Gen should return zero if it success
fully filled dir, minus one on end of directory.

Write The write function is similar but need not be provided. If it is not, all writes will draw
��write prohibited�� errors. Otherwise, write should attempt to write the r−>ifcall.count
bytes of r−>ifcall.data to offset r−>ifcall.offset of the file, setting r−>ofcall.count to
the number of bytes actually written. Most programs consider it an error to write less than
the requested amount.

Stat Stat should fill r−>d with the stat information for r−>fid. If using file trees, r−>d will
have been initialized with the stat info from the tree, and stat itself may be nil.

Wstat The wstat function consults r−>d in changing the metadata for r−>fid as described in
stat(5). When using file trees, srv will take care to check that the request satisfies the per
missions outlined in stat(5). Otherwise wstat should take care to enforce permissions
where appropriate.

Flush Servers that always call respond before returning from the service functions need not pro
vide a flush implementation: flush is only necessary in programs that arrange for respond
to be called asynchronously. Flush should cause the request r−>oldreq to be cancelled or
hurried along. If oldreq is cancelled, this should be signalled by calling respond on oldreq
with error string �interrupted�. Flush must respond to r with a nil error string. Flush
may respond to r before forcing a response to r−>oldreq. In this case, the library will
delay sending the Rflush message until the response to r−>oldreq has been sent.

Destroyfid, destroyreq, start, and end are auxiliary functions, not called in direct response to 9P
requests.

Destroyfid
When a Fid�s reference count drops to zero (i.e., it has been clunked and there are no out
standing requests referring to it), destroyfid is called to allow the program to dispose of the
fid−>aux pointer.

Destroyreq
Similarly, when a Req�s reference count drops to zero (i.e., it has been handled via respond
and other outstanding pointers to it have been closed), destroyreq is called to allow the
program to dispose of the r−>aux pointer.

Start This gets called (from the forked service process) prior entering the 9P service loop.

352

9P(2) 9P(2)

End Once the 9P service loop has finished (end of file been reached on the service pipe or a bad
message has been read), end is called (if provided) to allow any final cleanup. For example,
it was used by the Palm Pilot synchronization file system (never finished) to gracefully ter
minate the serial conversation once the file system had been unmounted. After calling end,
the service loop (which runs in a separate process from its caller) terminates using _exits
(see exits(2)).

If the chatty9p flag is at least one, a transcript of the 9P session is printed on standard error. If
the chatty9p flag is greater than one, additional unspecified debugging output is generated. By
convention, servers written using this library accept the −D option to increment chatty9p.

EXAMPLES
Archfs(4), cdfs(4), nntpfs(4), snap(4), and /sys/src/lib9p/ramfs.c are good examples of
simple single-threaded file servers.

In general, the File interface is appropriate for maintaining arbitrary file trees (as in ramfs). The
File interface is best avoided when the tree structure is easily generated as necessary; this is
true when the tree is highly structured (as in cdfs and nntpfs) or is maintained elsewhere.

SOURCE
/sys/src/lib9p

SEE ALSO
9pfid(2), 9pfile(2), 9pqueue(2), srv(3), shr(3), intro(5)

BUGS
The switch to 9P2000 was taken as an opportunity to tidy much of the interface; we promise to
avoid such gratuitous change in the future.

353

9PCMDBUF(2) 9PCMDBUF(2)

NAME
Cmdbuf, parsecmd, respondcmderror, lookupcmd � control message parsing

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <fcall.h>
#include <thread.h>
#include <9p.h>

typedef struct Cmdbuf
{

char *buf;
char **f;
int nf;

} Cmdbuf;

typedef struct Cmdtab
{

int index;
char *cmd;
int narg;

};

Cmdbuf *parsecmd(char *p, int n)
Cmdtab *lookupcmd(Cmdbuf *cb, Cmdtab *tab, int ntab)
void respondcmderror(Req *r, Cmdbuf *cb, char *fmt, ...)

DESCRIPTION
These data structures and functions provide parsing of textual control messages.

Parsecmd treats the n bytes at p (which need not be NUL-terminated) as a UTF string and splits it
using tokenize (see getfields(2)). It returns a Cmdbuf structure holding pointers to each field in
the message. It is the caller�s responsibility to free this structure when it is no longer needed.

Lookupcmd walks through the array ctab, which has ntab entries, looking for the first Cmdtab
that matches the parsed command. (If the parsed command is empty, lookupcmd returns nil
immediately.) A Cmdtab matches the command if cmd is equal to cb−>f[0] or if cmd is *.
Once a matching Cmdtab has been found, if narg is not zero, then the parsed command must
have exactly narg fields (including the command string itself). If the command has the wrong
number of arguments, lookupcmd returns nil. Otherwise, it returns a pointer to the Cmdtab
entry. If lookupcmd does not find a matching command at all, it returns nil. Whenever lookupcmd
returns nil, it sets the system error string.

Respondcmderror responds to request r with an error of the form �fmt: cmd,� where fmt is the for
matted string and cmd is a reconstruction of the parsed command. Fmt is often simply %r .

EXAMPLES
This interface is not used in any distributed 9P servers. It was lifted from the Plan 9 kernel.
Almost any kernel driver (/sys/src/9/*/dev*.c) is a good example.

SOURCE
/sys/src/lib9p/parse.c

SEE ALSO
9p(2)

354

9PFID(2) 9PFID(2)

NAME
Fid, Fidpool, allocfidpool, freefidpool, allocfid, closefid, lookupfid, removefid, Req, Reqpool,
allocreqpool, freereqpool, allocreq, closereq, lookupreq, removereq � 9P fid, request tracking

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <fcall.h>
#include <thread.h>
#include <9p.h>

typedef struct Qid
{

uvlong path;
ulong vers;
uchar type;

} Qid;

typedef struct Fid
{

ulong fid;
char omode; /* −1 if not open */
char *uid;
Qid qid;
File *file;
void *aux;
...

} Fid;

typedef struct Req
{

ulong tag;
Fcall ifcall;
Fcall ofcall;
Req *oldreq;
void *aux;
Fid *fid;
Fid *afid;
Fid *newfid;
...

} Req;

Fidpool* allocfidpool(void (*destroy)(Fid*))
void freefidpool(Fidpool *p)
Fid* allocfid(Fidpool *p, ulong fid)
Fid* lookupfid(Fidpool *p, ulong fid)
Fid* removefid(Fidpool *p, ulong fid);
void closefid(Fid *f)

Reqpool* allocreqpool(void (*destroy)(Req*))
void freereqpool(Reqpool *p)
Req* allocreq(Reqpool *p, ulong tag)
Req* lookupreq(Reqpool *p, ulong tag)
Req* removereq(Reqpool *p, ulong tag);
void closereq(Req *f)

DESCRIPTION
These routines provide management of Fid and Req structures from Fidpools and Reqpools.
They are primarily used by the 9P server loop described in 9p(2).

Fid structures are intended to represent active fids in a 9P connection, as Chan structures do in
the Plan 9 kernel. The fid element is the integer fid used in the 9P connection. Omode is the
mode under which the fid was opened, or −1 if this fid has not been opened yet. Note that in

355

9PFID(2) 9PFID(2)

addition to the values OREAD, OWRITE, and ORDWR, omode can contain the various flags permis
sible in an open call. To ignore the flags, use omode&OMASK. Omode should not be changed by
the client. The fid derives from a successful authentication by uid. Qid contains the qid
returned in the last successful walk or create transaction involving the fid. In a file tree-based
server, the Fid�s file element points at a File structure (see 9pfile(2)) corresponding to the
fid. The aux member is intended for use by the client to hold information specific to a particular
Fid. With the exception of aux, these elements should be treated as read-only by the client.

Allocfidpool creates a new Fidpool. Freefidpool destroys such a pool. Allocfid returns a new
Fid whose fid number is fid. There must not already be an extant Fid with that number in the
pool. Once a Fid has been allocated, it can be looked up by fid number using lookupfid. Fids
are reference counted: both allocfid and lookupfid increment the reference count on the Fid struc
ture before returning. When a reference to a Fid is no longer needed, closefid should be called to
note the destruction of the reference. When the last reference to a Fid is removed, if destroy
(supplied when creating the fid pool) is not zero, it is called with the Fid as a parameter. It
should perform whatever cleanup is necessary regarding the aux element. Removefid is equiva
lent to lookupfid but also removes the Fid from the pool. Note that due to lingering references,
the return of removefid may not mean that destroy has been called.

Allocreqpool, freereqpool, allocreq, lookupreq, closereq, and removereq are analogous but operate
on Reqpools and Req structures.

SOURCE
/sys/src/lib9p

SEE ALSO
9p(2), 9pfile(2)

356

9PFILE(2) 9PFILE(2)

NAME
Tree, alloctree, freetree, File, createfile, closefile, removefile, walkfile, opendirfile, readdirfile,
closedirfile, hasperm � in-memory file hierarchy

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <fcall.h>
#include <thread.h>
#include <9p.h>

typedef struct File
{

Ref;
Dir;
void*aux;
...

} File;

typedef struct Tree
{

File *root;
...

} Tree;

Tree* alloctree(char *uid, char *gid, ulong mode,
void (*destroy)(File*))

void freetree(Tree *tree)
File* createfile(File *dir, char *name, char *uid,

ulong mode, void *aux)
int removefile(File *file)
void closefile(File *file)
File* walkfile(File *dir, char *path)
Readdir* opendirfile(File *dir)
long readdirfile(Readdir *rdir, uchar *buf, long n, long o)
void closedirfile(Readdir *rdir)
int hasperm(File *file, char *uid, int p)

DESCRIPTION
Files and Trees provide an in-memory file hierarchy intended for use in 9P file servers.

Alloctree creates a new tree of files, and freetree destroys it. The root of the tree (also the root
element in the structure) will have mode mode and be owned by user uid and group gid. Destroy is
used when freeing File structures and is described later.

Files (including directories) other than the root are created using createfile, which attempts to
create a file named name in the directory dir. If created, the file will have owner uid and have a
group inherited from the directory. Mode and the permissions of dir are used to calculate the per
mission bits for the file as described in open(5). It is permissible for name to be a slash-separated
path rather than a single element.

Removefile removes a file from the file tree. The file will not be freed until the last reference to it
has been removed. Directories may only be removed when empty. Removefile returns zero on
success, �1 on error. It is correct to consider removefile to be closefile with the side effect of
removing the file when possible.

Walkfile evaluates path relative to the directory dir, returning the resulting file, or zero if the
named file or any intermediate element does not exist.

The File structure�s aux pointer may be used by the client for per-File storage. Files are
reference-counted: if not zero, destroy (specified in the call to alloctree) will be called for each file
when its last reference is removed or when the tree is freed. Destroy should take care of any nec
essary cleanup related to aux. When creating new file references by copying pointers, call incref
(see lock(2)) to update the reference count. To note the removal of a reference to a file, call

357

9PFILE(2) 9PFILE(2)

closefile. Createfile and walkfile return new references. Removefile, closefile, and walkfile (but not
createfile) consume the passed reference.

Directories may be read, yielding a directory entry structure (see stat(5)) for each file in the direc
tory. In order to allow concurrent reading of directories, clients must obtain a Readdir structure
by calling opendirfile on a directory. Subsequent calls to readdirfile will each yield an integral
number of machine-independent stat buffers, until end of directory. When finished, call
closedirfile to free the Readdir.

Hasperm does simplistic permission checking; it assumes only one-user groups named by uid and
returns non-zero if uid has permission p (a bitwise-or of AREAD, AWRITE and AEXEC) according
to file−>mode. 9P servers written using File trees will do standard permission checks automati
cally; hasperm may be called explicitly to do additional checks. A 9P server may link against a dif
ferent hasperm implementation to provide more complex groups.

EXAMPLE
The following code correctly handles references when elementwise walking a path and creating a
file.

f = tree−>root;
incref(f);
for(i=0; i<n && f!=nil; i++)

f = walkfile(f, elem[i]);
if(f == nil)

return nil;
nf = createfile(f, "foo", "nls", 0666, nil);
closefile(f);
return nf;

SOURCE
/sys/src/lib9p/file.c

SEE ALSO
9p(2)

BUGS
The reference counting is cumbersome.

358

9PQUEUE(2) 9PQUEUE(2)

NAME
Reqqueue, reqqueuecreate, reqqueuepush, reqqueueflush � deferred processing of 9P requests

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <fcall.h>
#include <thread.h>
#include <9p.h>

struct Reqqueue
{

...
};

Reqqueue* reqqueuecreate(void);
void reqqueuepush(Reqqueue *q, Req *r, void (*f)(Req *));
void reqqueueflush(Reqqueue *q, Req *r);
void reqqueuefree(Reqqueue *q);

DESCRIPTION
Reqqueue provides routines for deferred processing of 9p request in multithreaded 9p servers.

The reqqueuecreate function spawns a process for handling requests returning a pointer to the
Reqqueue structure allocated.

To schedule a request to be processed on a queue, reqqueuepush is called with request r and its
handler function f.

A previously submitted request can be flushed from a queue by reqqueueflush which will remove
the request immediately if processing has not started. If processing has been started, the process
will be interrupted.

Reqqueuefree frees a queue. No new requests should be send to the queue and it will be freed
once all requests in it have been processed.

SOURCE
/sys/src/lib9p/queue.c

SEE ALSO
9p(2)

359

ABORT(2) ABORT(2)

NAME
abort � generate a fault

SYNOPSIS
#include <u.h>
#include <libc.h>

void abort(void)

DESCRIPTION
Abort causes an access fault, causing the current process to enter the �Broken� state. The process
can then be inspected by a debugger.

SOURCE
/sys/src/libc/9sys/abort.c

360

ABS(2) ABS(2)

NAME
abs, labs � integer absolute values

SYNOPSIS
#include <u.h>
#include <libc.h>

int abs(int a)

long labs(long a)

DESCRIPTION
Abs returns the absolute value of integer a, and labs does the same for a long.

SOURCE
/sys/src/libc/port/abs.c

SEE ALSO
floor(2) for fabs

DIAGNOSTICS
Abs and labs return the most negative integer or long when the true result is unrepresentable.

361

ACCESS(2) ACCESS(2)

NAME
access � determine accessibility of file

SYNOPSIS
#include <u.h>
#include <libc.h>

int access(char *name, int mode)

DESCRIPTION
Access evaluates the given file name for accessibility. If mode&4 is nonzero, read permission is
expected; if mode&2, write permission; if mode&1, execute permission. If mode==0, the file
merely need exist. In any case all directories leading to the file must permit searches. Zero is
returned if the desired access is permitted, �1 if not.

Only access for open is checked. A file may look executable, but exec(2) will fail unless it is in
proper format.

The include file defines AEXIST=0, AEXEC=1, AWRITE=2, and AREAD=4.

SOURCE
/sys/src/libc/9sys/access.c

SEE ALSO
stat(2)

DIAGNOSTICS
Sets errstr.

BUGS
Since file permissions are checked by the server and group information is not known to the client,
access must open the file to check permissions. (It calls stat(2) to check simple existence.)

362

ADDPT(2) ADDPT(2)

NAME
addpt, subpt, mulpt, divpt, rectaddpt, rectsubpt, insetrect, canonrect, eqpt, eqrect, ptinrect, rectin
rect, rectXrect, rectclip, combinerect, badrect, Dx, Dy, Pt, Rect, Rpt � arithmetic on points and rect
angles

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>

Point addpt(Point p, Point q)

Point subpt(Point p, Point q)

Point mulpt(Point p, int a)

Point divpt(Point p, int a)

Rectangle rectaddpt(Rectangle r, Point p)

Rectangle rectsubpt(Rectangle r, Point p)

Rectangle insetrect(Rectangle r, int n)

Rectangle canonrect(Rectangle r)

int eqpt(Point p, Point q)

int eqrect(Rectangle r, Rectangle s)

int ptinrect(Point p, Rectangle r)

int rectinrect(Rectangle r, Rectangle s)

int rectXrect(Rectangle r, Rectangle s)

int rectclip(Rectangle *rp, Rectangle b)

void combinerect(Rectangle *rp, Rectangle b)

int badrect(Rectangle r)

int Dx(Rectangle r)

int Dy(Rectangle r)

Point Pt(int x, int y)

Rectangle Rect(int x0, int y0, int x1, int y1)

Rectangle Rpt(Point p, Point q)

DESCRIPTION
The functions Pt, Rect and Rpt construct geometrical data types from their components.

Addpt returns the Point sum of its arguments: Pt(p.x+q.x, p.y+q.y). Subpt returns the
Point difference of its arguments: Pt(p.x−q.x, p.y−q.y). Mulpt returns the Point
Pt(p.x*a, p.y*a). Divpt returns the Point Pt(p.x/a, p.y/a).

Rectaddpt returns the Rectangle Rect(add(r.min, p), add(r.max, p)); rectsubpt returns
the Rectangle Rpt(sub(r.min, p), sub(r.max, p)).

Insetrect returns the Rectangle Rect(r.min.x+n, r.min.y+n, r.max.x−n, r.max.y−n).

Canonrect returns a rectangle with the same extent as r, canonicalized so that min.x d max.x,
and min.y d max.y.

Eqpt compares its argument Points and returns 0 if unequal, 1 if equal. Eqrect does the same for
its argument Rectangles.

Ptinrect returns 1 if p is a point within r, and 0 otherwise.

Rectinrect returns 1 if all the pixels in r are also in s, and 0 otherwise.

RectXrect returns 1 if r and s share any point, and 0 otherwise.

363

ADDPT(2) ADDPT(2)

Rectclip clips in place the Rectangle pointed to by rp so that it is completely contained within b.
The return value is 1 if any part of *rp is within b. Otherwise, the return value is 0 and *rp is
unchanged.

Combinerect overwrites *rp with the smallest rectangle sufficient to cover all the pixels of *rp
and b.

Badrect returns 1 if r is zero, negative size or insanely huge rectangle. It returns 0 otherwise.

The functions Dx and Dy give the width (�x) and height (�y) of a Rectangle. They are implemented
as macros.

SOURCE
/sys/src/libdraw

SEE ALSO
graphics(2)

364

AES(2) AES(2)

NAME
setupAESstate, aesCBCencrypt, aesCBCdecrypt, aesCFBencrypt, aesCFBdecrypt, aesOFBencrypt,
aes_xts_encrypt, aes_xts_decrypt, setupAESGCMstate, aesgcm_setiv, aesgcm_encrypt,
aesgcm_decrypt - advanced encryption standard (rijndael)

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>

void aes_encrypt(ulong rk[], int Nr, uchar pt[16], uchar ct[16])

void aes_decrypt(ulong rk[], int Nr, uchar ct[16], uchar pt[16])

void setupAESstate(AESstate *s, uchar key[], int nkey, uchar *ivec)

void aesCBCencrypt(uchar *p, int len, AESstate *s)

void aesCBCdecrypt(uchar *p, int len, AESstate *s)

void aesCFBencrypt(uchar *p, int len, AESstate *s)

void aesCFBdecrypt(uchar *p, int len, AESstate *s)

void aesOFBencrypt(uchar *p, int len, AESstate *s)

void aes_xts_encrypt(AESstate *tweak, AESstate *ecb, uvlong sector
Number, uchar *input, uchar *output, ulong len)

void aes_xts_decrypt(AESstate *tweak, AESstate *ecb, uvlong sector
Number, uchar *input, uchar *output, ulong len)

void setupAESGCMstate(AESGCMstate *s, uchar *key, int keylen, uchar
*iv, int ivlen)

void aesgcm_setiv(AESGCMstate *s, uchar *iv, int ivlen)

void aesgcm_encrypt(uchar *dat, ulong ndat, uchar *aad, ulong naad,
uchar tag[16], AESGCMstate *s)

int aesgcm_decrypt(uchar *dat, ulong ndat, uchar *aad, ulong naad,
uchar tag[16], AESGCMstate *s)

DESCRIPTION
AES (a.k.a. Rijndael) has replaced DES as the preferred block cipher. Aes_encrypt and aes_decrypt
are the block ciphers, corresponding to des(2)�s block_cipher. AesCBCencrypt and aesCBCdecrypt
implement cipher-block-chaining encryption. AesCFBencrypt, aesCFBdecrypt and aesOFBencrypt
implement cipher-feedback- and output-feedback-mode stream cipher encryption.
Aes_xts_encrypt and aes_xts_decrypt implement the XTS-AES tweakable block cipher, per IEEE
1619-2017 (see bugs below). SetupAESstate is used to initialize the state of the above encryption
modes. The expanded roundkey parameters rk and Nr of aes_encrypt and aes_decrypt are
returned in AESstate.ekey and AESstate.dkey with the corresponding number of rounds in
AESstate.rounds . SetupAESGCMstate , aesgcm_setiv, aesgcm_encrypt and aesgcm_decrypt imple
ment Galois/Counter Mode (GCM) authenticated encryption with associated data (AEAD). Before
encryption or decryption, a new initialization vector (nonce) has to be set with aesgcm_setiv or by
calling setupAESGCMstate with non-zero iv and ivlen arguments. Aesgcm_decrypt returns zero
when authentication and decryption where successfull and non-zero otherwise. All ciphering is
performed in place. The byte keysize nkey should be 16, 24, or 32. The initialization vector ivec
of AESbsize bytes should be random enough to be unlikely to be reused but does not need to be
cryptographically strongly unpredictable.

SOURCE
/sys/src/libsec

SEE ALSO
aescbc in secstore(1), mp(2), blowfish(2), des(2), dsa(2), elgamal(2), rc4(2), rsa(2), sechash(2),
prime(2), rand(2)
http://csrc.nist.gov/publications/fips/fips197/fips−197.pdf

365

AES(2) AES(2)

BUGS
Because of the way that non-multiple-of-16 buffers are handled, aesCBCdecrypt must be fed
buffers of the same size as the aesCBCencrypt calls that encrypted it.

The functions aes_xts_encrypt an aes_xts_decrypt abort on a non-multiple-of-16 length as cipher
text stealing is not implemented.

366

ALLOCIMAGE(2) ALLOCIMAGE(2)

NAME
allocimage, allocimagemix, freeimage, nameimage, namedimage, setalpha, loadimage, cloadim
age, unloadimage, readimage, writeimage, bytesperline, wordsperline � allocating, freeing, read
ing, writing images

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>

Image *allocimage(Display *d, Rectangle r,
ulong chan, int repl, ulong col)

Image *allocimagemix(Display *d, ulong one, ulong three)

int freeimage(Image *i)

int nameimage(Image *i, char *name, int in)

Image *namedimage(Display *d, char *name)

ulong setalpha(ulong color, uchar alpha)

int loadimage(Image *i, Rectangle r, uchar *data, int ndata)

int cloadimage(Image *i, Rectangle r, uchar *data, int ndata)

int unloadimage(Image *i, Rectangle r, uchar *data, int ndata)

Image *readimage(Display *d, int fd, int dolock)

int writeimage(int fd, Image *i, int dolock)

int bytesperline(Rectangle r, int d)

int wordsperline(Rectangle r, int d)

enum
{

DOpaque = 0xFFFFFFFF,
DTransparent = 0x00000000,
DBlack = 0x000000FF,
DWhite = 0xFFFFFFFF,
DRed = 0xFF0000FF,
DGreen = 0x00FF00FF,
DBlue = 0x0000FFFF,
DCyan = 0x00FFFFFF,
DMagenta = 0xFF00FFFF,
DYellow = 0xFFFF00FF,
DPaleyellow = 0xFFFFAAFF,
DDarkyellow = 0xEEEE9EFF,
DDarkgreen = 0x448844FF,
DPalegreen = 0xAAFFAAFF,
DMedgreen = 0x88CC88FF,
DDarkblue = 0x000055FF,
DPalebluegreen = 0xAAFFFFFF,
DPaleblue = 0x0000BBFF,
DBluegreen = 0x008888FF,
DGreygreen = 0x55AAAAFF,
DPalegreygreen = 0x9EEEEEFF,
DYellowgreen = 0x99994CFF,
DMedblue = 0x000099FF,
DGreyblue = 0x005DBBFF,
DPalegreyblue = 0x4993DDFF,
DPurpleblue = 0x8888CCFF,

DNotacolor = 0xFFFFFF00,

367

ALLOCIMAGE(2) ALLOCIMAGE(2)

DNofill = DNotacolor,

};

DESCRIPTION
A new Image on Display d is allocated with allocimage; it will have the rectangle, pixel
channel format, replication flag, and initial fill color given by its arguments. Convenient pixel
channels like GREY1, GREY2, CMAP8, RGB16, RGB24, and RGBA32 are predefined. All the new
image�s pixels will have initial value col. If col is DNofill, no initialization is done. Representa
tive useful values of color are predefined: DBlack, DWhite, DRed, and so on. Colors are speci
fied by 32-bit numbers comprising, from most to least significant byte, 8-bit values for red,
green, blue, and alpha. The values correspond to illumination, so 0 is black and 255 is white.
Similarly, for alpha 0 is transparent and 255 is opaque. The id field will have been set to the iden
tifying number used by /dev/draw (see draw(3)), and the cache field will be zero. If repl is true,
the clip rectangle is set to a very large region; if false, it is set to r. The depth field will be set to
the number of bits per pixel specified by the channel descriptor (see image(6)). Allocimage returns
0 if the server has run out of image memory.

Allocimagemix is used to allocate background colors. On 8-bit color-mapped displays, it returns a
2×2 replicated image with one pixel colored the color one and the other three with three. (This
simulates a wider range of tones than can be represented by a single pixel value on a color-
mapped display.) On true color displays, it returns a 1×1 replicated image whose pixel is the
result of mixing the two colors in a one to three ratio.

Freeimage frees the resources used by its argument image.

Nameimage publishes in the server the image i under the given name. If in is non-zero, the image
is published; otherwise i must be already named name and it is withdrawn from publication.
Namedimage returns a reference to the image published under the given name on Display d.
These routines permit unrelated applications sharing a display to share an image; for example they
provide the mechanism behind getwindow (see graphics(2)).

The RGB values in a color are premultiplied by the alpha value; for example, a 50% red is
0x7F00007F not 0xFF00007F. The function setalpha performs the alpha computation on a
given color, ignoring its initial alpha value, multiplying the components by the supplied alpha.
For example, to make a 50% red color value, one could execute setalpha(DRed, 0x7F).

The remaining functions deal with moving groups of pixel values between image and user space or
external files. There is a fixed format for the exchange and storage of image data (see image(6)).

Unloadimage reads a rectangle of pixels from image i into data, whose length is specified by
ndata. It is an error if ndata is too small to accommodate the pixels.

Loadimage replaces the specified rectangle in image i with the ndata bytes of data.

The pixels are presented one horizontal line at a time, starting with the top-left pixel of r. In the
data processed by these routines, each scan line starts with a new byte in the array, leaving the
last byte of the previous line partially empty, if necessary. Pixels are packed as tightly as possible
within data, regardless of the rectangle being extracted. Bytes are filled from most to least signifi
cant bit order, as the x coordinate increases, aligned so x=0 would appear as the leftmost pixel of
its byte. Thus, for depth 1, the pixel at x offset 165 within the rectangle will be in a data byte at
bit-position 0x04 regardless of the overall rectangle: 165 mod 8 equals 5, and 0x80 >> 5
equals 0x04.

Cloadimage does the same as loadimage, but for ndata bytes of compressed image data (see
image(6)). On each call to cloadimage, the data must be at the beginning of a compressed data
block, in particular, it should start with the y coordinate and data length for the block.

Loadimage , cloadimage, and unloadimage return the number of bytes copied.

Readimage creates an image from data contained in an external file (see image(6) for the file for
mat); fd is a file descriptor obtained by opening such a file for reading. The returned image is allo
cated using allocimage. The dolock flag specifies whether the Display should be synchronized
for multithreaded access; single-threaded programs can leave it zero.

Writeimage writes image i onto file descriptor fd, which should be open for writing. The format is
as described for readimage .

368

ALLOCIMAGE(2) ALLOCIMAGE(2)

Readimage and writeimage do not close fd.

Bytesperline and wordsperline return the number of bytes or words occupied in memory by one
scan line of rectangle r in an image with d bits per pixel.

EXAMPLE
To allocate a single-pixel replicated image that may be used to paint a region red,

red = allocimage(display, Rect(0, 0, 1, 1), RGB24, 1, DRed);

SOURCE
/sys/src/libdraw

SEE ALSO
graphics(2), draw(2), draw(3), image(6)

DIAGNOSTICS
These functions return pointer 0 or integer �1 on failure, usually due to insufficient memory.

May set errstr.

BUGS
Depth must be a divisor or multiple of 8.

369

AML(2) AML(2)

NAME
amltag, amlval, amlint, amllen, amlnew, amlinit, amlexit, amlload, amlwalk, amleval, amlenum,
amltake, amldrop - ACPI machine language interpreter

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <aml.h>

int amltag(void *);
void* amlval(void *);
uvlong amlint(void *);
int amllen(void *);

void* amlnew(char tag, int len);

void amlinit(void);
void amlexit(void);

int amlload(uchar *data, int len);
void* amlwalk(void *dot, char *name);
int amleval(void *dot, char *fmt, ...);
void amlenum(void *dot, char *seg, int (*proc)(void *, void *), void *arg);

void amltake(void *);
void amldrop(void *);

void* amlroot;
int amldebug;
uvlong amlintmask;

DESCRIPTION
The aml library implements an interpreter for the ACPI machine language byte code.

amlinit() amlexit()
The interpreter runtime state is initialized by calling amlinit and frees all the resources
when amlexit is called. The runtime state consists of objects organized in a global names
pace. The name object referred to by amlroot is the root of that namespace.

The width of integers is defined by the global variable amlintmask, which should be initialized to
0xFFFFFFFF for DSDT revision <= 1 or 0xFFFFFFFFFFFFFFFF for revision >= 2.

amlload(data,len)
Amlload populates the namespace with objects parsed from the definition block of len byte
size read from data. The pc kernel provides access to the ACPI tables through the
/dev/acpitbls file (see arch(3) for further details).

amltag(p)
Objects are dynamically allocated and typed and are passed as void* pointers. The type
tag of an object can be determined with the amltag function. The following table shows the
defined tags and ther underlying type:
/*
* b uchar* buffer amllen() returns number of bytes
* s char* string amllen() is strlen()
* n char* undefined name amllen() is strlen()
* i uvlong* integer
* p void** package amllen() is # of elements
* r void* region
* f void* field
* u void* bufferfield
* N void* name
* R void* reference

370

AML(2) AML(2)

*/

amlwalk(dot,name)
Amlwalk takes a path string (relative to dot) in name and returns the final name object of
the walk; or nil if not found.

amlenum(dot,seg,proc,arg)
Amlenum recursively enumerates all child name objects of dot that have seg as name; or
any name if seg is nil; calling proc for each one passing dot. When proc returns zero, enu
meration will continue recursively down for the current dot.

amlval(p)
Amlval returns the value of a name, reference or field object. Calling amlval on any other
object yields the same object.

amllen(p)
Amllen is defined for variable length objects like buffers, strings and packages. For strings,
the number of characters (not including the terminating null byte) is returned. For buffers,
the size of the buffer in bytes is returned. For packages (arrays), the number of elements is
returned. For any other object types, the return value is undefined.

amlint(p)
Amlint returns the integer value of an object. For strings, the string is interpreted as an
hexadecimal number. For buffers and buffer fields, the binary value is returned. Integers
just return their value. Any other object types yield zero.

amlnew(tag,len)
Integer, buffer, string and package objects can be created with the amlnew function. The
tag specific definition of the len parameter is the same as in amllen (see above).

amleval(dot,fmt,...)
Amleval evaluates the name object dot. For method evaluation, the fmt string parameter
describes the arguments passed to the evaluated method. Each character in fmt represents
a tag for an method argument taken from the variable argument list of amleval and passed
to the method. The fmt tags I, i and s take uvlong, int and char* from the variable
argument list and create object copies to be passed. The tags b, p and * take void*
from the variable argument list and pass them as objects by reference (without conversion
or copies). The last variable argument is a pointer to the result object location. When the
last parameter is nil the result is discarded.

amltake(p) amldrop(p)
Objects returned by amlval, amleval and amlnew are subject to garbage collection during
method evaluation unless previously maked to be excluded from collection with amltake.
To remark an object for collection, amldrop needs be called. Objects stay valid as long as
they are reachable from amlroot.

371

AML(2) AML(2)

The aml library can be linked into userspace programs and the kernel which have different means
of hardware access and memory constraints.

The Amlio data structure defines access to a hardware space.

enum {
MemSpace = 0x00,
IoSpace = 0x01,
PcicfgSpace = 0x02,
EbctlSpace = 0x03,
SmbusSpace = 0x04,
CmosSpace = 0x05,
PcibarSpace = 0x06,
IpmiSpace = 0x07,

};

typedef struct Amlio Amlio;
struct Amlio
{

int space;
uvlong off;
uvlong len;
void *name;
uchar *va;

void *aux;
int (*read)(Amlio *io, void *data, int len, int off);
int (*write)(Amlio *io, void *data, int len, int off);

};

The members space, off, len and name are initialized by the interpreter and describe the I/O
region it needs access to. For memory regions, va can to be set to the virtual address mapping
base by the mapping function. The interpreter will call the read and write function pointers with a
relative offset to the regions base offset. The aux pointer can be used freely by the map function
to attach its own resources to the I/O region and allows it to free these resources on amlunmapio.

amlmapio(io) amlunmapio(io)
The interpreter calls amlmapio with a Amlio data structure that is to be filled out. When fin
ished, the interpreter calls amlunmapio with the same data structure to allow freeing
resources.

amldelay(µs)
Amldelay is called by the interpreter with the number of microseconds to sleep.

amlalloc(n) amlfree(p)
Amlalloc and amlfree can be optionally defined to control dynamic memory allocation pro
viding a way to limit or pool the memory allocated by acpi. If not provided, the library will
use the functions defined in malloc(2) for dynamic allocation.

SOURCE
/sys/src/libaml

SEE ALSO
arch(3)

372

ARG(2) ARG(2)

NAME
ARGBEGIN, ARGEND, ARGC, ARGF, EARGF � process option letters from argv

SYNOPSIS
#include <u.h>
#include <libc.h>

ARGBEGIN {
char *ARGF();
char *EARGF(code);
Rune ARGC();
} ARGEND

extern char *argv0;

DESCRIPTION
These macros assume the names argc and argv are in scope; see exec(2). ARGBEGIN and ARGEND
surround code for processing program options. The code should be the cases of a C switch on
option characters; it is executed once for each option character. Options end after an argument
−−, before an argument −, or before an argument that doesn�t begin with −.

The function macro ARGC returns the current option character, as an integer.

The function macro ARGF returns the current option argument: a pointer to the rest of the option
string if not empty, or the next argument in argv if any, or 0. ARGF must be called just once for
each option argument. The macro EARGF is like ARGF but instead of returning zero runs code and,
if that returns, calls abort(2). A typical value for code is usage(), as in EARGF(usage()).

After ARGBEGIN, argv0 is a copy of argv[0] (conventionally the name of the program).

After ARGEND, argv points at a zero-terminated list of the remaining argc arguments.

EXAMPLE
This C program can take option b and option f, which requires an argument.

#include <u.h>
#include <libc.h>
void
main(int argc, char *argv[])
{

char *f;
print("%s", argv[0]);
ARGBEGIN {
case ’b’:

print(" −b");
break;

case ’f’:
print(" −f(%s)", (f=ARGF())? f: "no arg");
break;

default:
print(" badflag(’%c’)", ARGC());

} ARGEND
print(" %d args:", argc);
while(*argv)

print(" ’%s’", *argv++);
print("\n");
exits(nil);

}

Here is the output from running the command prog −bffile1 −r −f file2 arg1
arg2

prog −b −f(file1) badflag(’r’) −f(file2) 2 args: ’arg1’ ’arg2’

SOURCE
/sys/include/libc.h

373

ARG(2) ARG(2)

SEE ALSO
getflags(8)

374

ARITH3(2) ARITH3(2)

NAME
add3, sub3, neg3, div3, mul3, eqpt3, closept3, dot3, cross3, len3, dist3, unit3, midpt3, lerp3,
reflect3, nearseg3, pldist3, vdiv3, vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, add4, sub4 � operations
on 3-d points and planes

SYNOPSIS
#include <draw.h>
#include <geometry.h>

Point3 add3(Point3 a, Point3 b)

Point3 sub3(Point3 a, Point3 b)

Point3 neg3(Point3 a)

Point3 div3(Point3 a, double b)

Point3 mul3(Point3 a, double b)

int eqpt3(Point3 p, Point3 q)

int closept3(Point3 p, Point3 q, double eps)

double dot3(Point3 p, Point3 q)

Point3 cross3(Point3 p, Point3 q)

double len3(Point3 p)

double dist3(Point3 p, Point3 q)

Point3 unit3(Point3 p)

Point3 midpt3(Point3 p, Point3 q)

Point3 lerp3(Point3 p, Point3 q, double alpha)

Point3 reflect3(Point3 p, Point3 p0, Point3 p1)

Point3 nearseg3(Point3 p0, Point3 p1, Point3 testp)

double pldist3(Point3 p, Point3 p0, Point3 p1)

double vdiv3(Point3 a, Point3 b)

Point3 vrem3(Point3 a, Point3 b)

Point3 pn2f3(Point3 p, Point3 n)

Point3 ppp2f3(Point3 p0, Point3 p1, Point3 p2)

Point3 fff2p3(Point3 f0, Point3 f1, Point3 f2)

Point3 pdiv4(Point3 a)

Point3 add4(Point3 a, Point3 b)

Point3 sub4(Point3 a, Point3 b)

DESCRIPTION
These routines do arithmetic on points and planes in affine or projective 3-space. Type Point3
is

typedef struct Point3 Point3;
struct Point3{

double x, y, z, w;
};

Routines whose names end in 3 operate on vectors or ordinary points in affine 3-space, repre
sented by their Euclidean (x,y,z) coordinates. (They assume w=1 in their arguments, and set
w=1 in their results.)

Name Description
add3 Add the coordinates of two points.
sub3 Subtract coordinates of two points.

375

ARITH3(2) ARITH3(2)

neg3 Negate the coordinates of a point.
mul3 Multiply coordinates by a scalar.
div3 Divide coordinates by a scalar.
eqpt3 Test two points for exact equality.
closept3 Is the distance between two points smaller than eps?
dot3 Dot product.
cross3 Cross product.
len3 Distance to the origin.
dist3 Distance between two points.
unit3 A unit vector parallel to p.
midpt3 The midpoint of line segment pq.
lerp3 Linear interpolation between p and q.
reflect3 The reflection of point p in the segment joining p0 and p1.
nearseg3 The closest point to testp on segment p0 p1.
pldist3 The distance from p to segment p0 p1.
vdiv3 Vector divide � the length of the component of a parallel to b, in units of the

length of b.
vrem3 Vector remainder � the component of a perpendicular to b. Ignoring roundoff, we

have eqpt3(add3(mul3(b, vdiv3(a, b)), vrem3(a, b)), a).

The following routines convert amongst various representations of points and planes. Planes are
represented identically to points, by duality; a point p is on a plane q whenever
p.x*q.x+p.y*q.y+p.z*q.z+p.w*q.w=0. Although when dealing with affine points we
assume p.w=1, we can�t make the same assumption for planes. The names of these routines are
extra-cryptic. They contain an f (for �face�) to indicate a plane, p for a point and n for a normal
vector. The number 2 abbreviates the word �to.� The number 3 reminds us, as before, that we�re
dealing with affine points. Thus pn2f3 takes a point and a normal vector and returns the corre
sponding plane.

Name Description
pn2f3 Compute the plane passing through p with normal n.
ppp2f3 Compute the plane passing through three points.
fff2p3 Compute the intersection point of three planes.

The names of the following routines end in 4 because they operate on points in projective 4-
space, represented by their homogeneous coordinates.

pdiv4 Perspective division. Divide p.w into p�s coordinates, converting to affine coordinates. If
p.w is zero, the result is the same as the argument.

add4 Add the coordinates of two points.

sub4 Subtract the coordinates of two points.

SOURCE
/sys/src/libgeometry

SEE ALSO
matrix(2)

376

ASSERT(2) ASSERT(2)

NAME
assert � check program invariants

SYNOPSIS
#include <u.h>
#include <libc.h>

#define assert(cond) if(cond);else _assert("cond")

void _assert(char* cond)

DESCRIPTION
Assert is a preprocessor macro that (via _assert) prints a message and calls abort when cond is
false.

SOURCE
/sys/src/libc/port/_assert.c

377

ATOF(2) ATOF(2)

NAME
atof, atoi, atol, atoll, charstod, strtod, strtol, strtoll, strtoul, strtoull � convert text to numbers

SYNOPSIS
#include <u.h>
#include <libc.h>

double atof(char *nptr)

int atoi(char *nptr)

long atol(char *nptr)

vlong atoll(char *nptr)

double charstod(int (*f)(void *), void *a)

double strtod(char *nptr, char **rptr)

long strtol(char *nptr, char **rptr, int base)

vlong strtoll(char *nptr, char **rptr, int base)

ulong strtoul(char *nptr, char **rptr, int base)

uvlong strtoull(char *nptr, char **rptr, int base)

DESCRIPTION
Atof, atoi, atol, and atoll convert a string pointed to by nptr to floating, integer, long integer, and
long long integer (vlong) representation respectively. The first unrecognized character ends the
string. Leading C escapes are understood, as in strtol with base zero (described below).

Atof recognizes an optional string of tabs and spaces, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional e or E followed by an optionally signed
integer.

Atoi and atol recognize an optional string of tabs and spaces, then an optional sign, then a string
of decimal digits.

Strtod, strtol, strtoll, strtoul, and strtoull behave similarly to atof and atol and, if rptr is not zero,
set *rptr to point to the input character immediately after the string converted.

Strtol, strtoll, strtoul, and strtoull interpret the digit string in the specified base, from 2 to 36,
each digit being less than the base. Digits with value over 9 are represented by letters, a-z or A-Z.
If base is 0, the input is interpreted as an integral constant in the style of C (with no suffixed type
indicators): numbers are octal if they begin with 0, hexadecimal if they begin with 0x or 0X, other
wise decimal.

Charstod interprets floating point numbers in the manner of atof, but gets successive characters
by calling (*f)(a). The last call to f terminates the scan, so it must have returned a character
that is not a legal continuation of a number. Therefore, it may be necessary to back up the input
stream one character after calling charstod.

SOURCE
/sys/src/libc/port

SEE ALSO
fscanf(2)

DIAGNOSTICS
Zero is returned if the beginning of the input string is not interpretable as a number; even in this
case, rptr will be updated.

378

AUTH(2) AUTH(2)

NAME
amount, newns, addns, login, noworld, procsetuser, auth_proxy, fauth_proxy, auth_allocrpc,
auth_freerpc, auth_rpc, auth_getkey, amount_getkey, auth_freeAI, auth_chuid, auth_challenge,
auth_response, auth_freechal, auth_respond, auth_respondAI, auth_userpasswd,
auth_getuserpasswd, auth_getinfo � routines for authenticating users

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <auth.h>

int newns(char *user, char *nsfile);

int addns(char *user, char *nsfile);

int amount(int fd, char *old, int flag, char *aname);

int login(char *user, char *password, char *namespace);

int noworld(char *user);

int procsetuser(char *user);

AuthInfo* auth_proxy(int fd, AuthGetkey *getkey, char *fmt, ...);

AuthInfo* fauth_proxy(int fd, AuthRpc *rpc, AuthGetkey *getkey,
char *params);

AuthRpc* auth_allocrpc(int afd);

void auth_freerpc(AuthRpc *rpc);

uint auth_rpc(AuthRpc *rpc, char *verb, void *a, int n);

int auth_getkey(char *params);

int (*amount_getkey)(char*);

void auth_freeAI(AuthInfo *ai);

int auth_chuid(AuthInfo *ai, char *ns);

Chalstate* auth_challenge(char *fmt, ...);

AuthInfo* auth_response(Chalstate*);

void auth_freechal(Chalstate*);

int auth_respond(void *chal, uint nchal, char *user, uint
nuser, void *resp, uint nresp, AuthGetkey *getkey, char *fmt, ...);

int auth_respondAI(void *chal, uint nchal, char *user,
uint nuser, void *resp, uint nresp, AuthInfo **ai, AuthGetkey *get
key, char *fmt, ...);

AuthInfo* auth_userpasswd(char*user, char*password);

UserPasswd* auth_getuserpasswd(AuthGetkey *getkey, char*fmt,
...);

AuthInfo* auth_getinfo(AuthRpc*);

DESCRIPTION
This library, in concert with factotum(4), is used to authenticate users. It provides the primary
interface to factotum.

Newns builds a name space for user. It opens the file nsfile (/lib/namespace is used if nsfile is
null), copies the old environment, erases the current name space, sets the environment variables
user and home, and interprets the commands in nsfile. The format of nsfile is described in
namespace(6).

Addns also interprets and executes the commands in nsfile. Unlike newns it applies the command
to the current name space rather than starting from scratch.

379

AUTH(2) AUTH(2)

Amount is like mount but performs any authentication required. It should be used instead of
mount whenever the file server being mounted requires authentication. See bind(2) for a definition
of the arguments to mount and amount.

Login changes the user id of the process to user and recreates the namespace using the file
namespace (default /lib/namespace). It uses auth_userpasswd and auth_chuid.

Noworld returns 1 if the user is in the group noworld in /adm/users. Otherwise, it returns 0.
Noworld is used by telnetd and ftpd to provide sandboxed access for some users.

Procsetuser changes the user id of the process to user but keeps the namespace unchanged. Only
hostowner can change the user to anything other than the none user.

The following routines use the AuthInfo structure returned after a successful authentication by
factotum(4).

typedef struct
{

char *cuid; /* caller id */
char *suid; /* server id */
char *cap; /* capability */
int nsecret; /* length of secret */
uchar *secret; /* secret */

} AuthInfo;

The fields cuid and suid point to the authenticated ids of the client and server. Cap is a capa
bility returned only to the server. It can be passed to the cap(3) device to change the user id of the
process. Secret is an nsecret-byte shared secret that can be used by the client and server to
create encryption and hashing keys for the rest of the conversation.

Auth_proxy proxies an authentication conversation between a remote server reading and writing fd
and a factotum file. The factotum file used is /mnt/factotum/rpc. An sprint (see
print(2)) of fmt and the variable arg list yields a key template (see factotum(4)) specifying the key
to use. The template must specify at least the protocol (proto=xxx) and the role (either
role=client or role=server). Auth_proxy either returns an allocated AuthInfo struc
ture, or sets the error string and returns nil.

Fauth_proxy can be used instead of auth_proxy if a single connection to factotum will be used for
multiple authentications. This is necessary, for example, for newns which must open the factotum
file before wiping out the namespace. Fauth_proxy takes as an argument a pointer to an
AuthRPC structure which contains an fd for an open connection to factotum in addition to stor
age and state information for the protocol. An AuthRPC structure is obtained by calling
auth_allocrpc with the fd of an open factotum connection. It is freed using auth_freerpc. Individ
ual commands can be sent to factotum(4) by invoking auth_rpc.

Both auth_proxy and fauth_proxy take a pointer to a routine, getkey, to invoke should factotum
not posess a key for the authentication. If getkey is nil, the authentication fails. Getkey is called
with a key template for the desired key. We have provided a generic routine, auth_getkey, which
queries the user for the key information and passes it to factotum. This is the default for the glo
bal variable, amount_getkey, which holds a pointer to the key prompting routine used by amount.

Auth_chuid uses the cuid and cap fields of an AuthInfo structure to change the user id of the
current process and uses ns, default /lib/namespace, to build it a new name space.

Auth_challenge and auth_response perform challenge/response protocols with factotum. State
between the challenge and response phase are kept in the Chalstate structure:

struct Chalstate
{

char *user;
char chal[MAXCHLEN];
int nchal;
void *resp;
int nresp;

/* for implementation only */
int afd;

380

AUTH(2) AUTH(2)

AuthRpc *rpc;
char userbuf[MAXNAMELEN];
int userinchal;

};

Auth_challenge requires a key template generated by an sprint of fmt and the variable argu
ments. It must contain the protocol (proto=xxx) and depending on the protocol, the user name
(user=xxx). P9cr and vnc expect the user specified as an attribute in the key template and
apop, cram, and chap expect it in the user field of the arg to auth_response. For all protocols,
the response is returned to auth_response in the resp field of the Chalstate. Chalstate.nresp
must be the length of the response.

Supply to auth_respond a challenge string and the fmt and args specifying a key, and it will use
factotum to return the proper user and response.

Auth_respondAI is like auth_respond but has an additional ai output parameter to return an
AuthInfo structure on success that holds protocol specific secret keys derived from the exchange.
The returned AuthInfo structure should be freed with auth_freeAI by the caller.

Auth_userpasswd verifies a simple user/password pair. Auth_getuserpasswd retrieves a
user/password pair from factotum if permitted:

typedef struct UserPasswd {
char *user;
char *passwd;

} UserPasswd;

Auth_getinfo reads an AuthInfo message from rpc and converts it into a structure. It is only
used by the other routines in this library when communicating with factotum.

Auth_freeAI is used to free an AuthInfo structure returned by one of these routines. Similary
auth_freechal frees a challenge/response state.

SOURCE
/sys/src/libauth

SEE ALSO
factotum(4), authsrv(2), bind(2)

DIAGNOSTICS
These routines set errstr.

381

AUTHSRV(2) AUTHSRV(2)

NAME
authdial, passtokey, nvcsum, readnvram, convT2M, convM2T, convTR2M, convM2TR, convA2M,
convM2A, convPR2M, convM2PR, _asgetticket, _asrequest, _asgetresp, _asrdresp, _asgetpakkey,
authpak_hash, authpak_new, authpak_finish � routines for communicating with authentication
servers

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <authsrv.h>

int authdial(char *netroot, char *ad);

void passtokey(Authkey *key, char *password)

uchar nvcsum(void *mem, int len)

int readnvram(Nvrsafe *nv, int flag);

int convT2M(Ticket *t, char *msg, int len, Authkey *key)

int convM2T(char *msg, int len, Ticket *t, Authkey *key)

int convA2M(Authenticator *a, char *msg, int len, Ticket *t)

int convM2A(char *msg, int len, Authenticator *a, Ticket *t)

int convTR2M(Ticketreq *tr, char *msg, int len)

int convM2TR(char *msg, int len, Ticketreq *tr)

int convPR2M(Passwordreq *pr, char *msg, int len, Ticket *t)

int convM2PR(char *msg, int len, Passwordreq *pr, Ticket *t)

int _asgetticket(int fd, Ticketreq *tr, char *buf, int len)

int _asrequest(int fd, Ticketreq *tr)

int _asgetresp(int fd, Ticket *t, Authenticator *a, Authkey *key)

int _asrdresp(int fd, char *buf, int len)

int _asgetpakkey(int fd, Ticketreq *tr, Authkey *a)

void authpak_hash(Authkey *k, char *u)

void authpak_new(PAKpriv *p, Authkey *k, uchar y[PAKYLEN], int
isclient)

int authpak_finish(PAKpriv *p, Authkey *k, uchar y[PAKYLEN])

DESCRIPTION
Authdial dials an authentication server over the network rooted at net, default /net. The authen
tication domain, ad, specifies which server to call. If ad is non-nil, the connection server cs (see
ndb(8)) is queried for an entry which contains authdom=ad or dom=ad, the former having prece
dence, and which also contains an auth attribute. If it finds neither, it tries p9auth.ad in DNS
as the authentication server. The string dialed is then netroot!server!ticket where server is the
value of the auth attribute. If no entry is found, the error string is set to ��no authentication
server found�� and -1 is returned. If authdom is nil, the string netroot!$auth!ticket is used to
make the call.

Passtokey converts password into a set of cryptographic keys and stores them in the Authkey
structure key.

Readnvram reads authentication information into the structure:

struct Nvrsafe
{

char machkey[DESKEYLEN];/* was file server’s authid’s des key */
uchar machsum;
char authkey[DESKEYLEN];/* authid’s des key from password */
uchar authsum;

382

AUTHSRV(2) AUTHSRV(2)

/*
* file server config string of device holding full configuration;
* secstore key on non−file−servers.
*/
char config[CONFIGLEN];
uchar configsum;
char authid[ANAMELEN];/* auth userid, e.g., bootes */
uchar authidsum;
char authdom[DOMLEN]; /* auth domain, e.g., cs.bell−labs.com */
uchar authdomsum;

uchar aesmachkey[AESKEYLEN];
uchar aesmachsum;

};

On Sparc, MIPS, and SGI machines this information is in non-volatile ram, accessible in the file
#r/nvram. On x86s and Alphas readnvram successively opens the following areas stopping with
the first to succeed:

� the partition named by the $nvram environment variable (commonly set via plan9.ini(8))
� the partition #S/sdC0/nvram
� a file called plan9.nvr in the partition #S/sdC0/9fat
� the partition #S/sd00/nvram
� a file called plan9.nvr in the partition #S/sd00/9fat
� a file called plan9.nvr on a DOS floppy in drive 0
� a file called plan9.nvr on a DOS floppy in drive 1

The nvcsums of the fields machkey, authid, and authdom must match their respective check
sum or that field is zeroed. If flag is NVwrite or at least one checksum fails and flag is
NVwriteonerr, readnvram will prompt for new values on #c/cons and then write them back
to the storage area. If flag is NVwritemem, readnvram will write the values in *nv back to the
storage area.

ConvT2M, convA2M, convTR2M, and convPR2M convert tickets, authenticators, ticket requests, and
password change request structures into transmittable messages. ConvM2T, convM2A, convM2TR,
and convM2PR are used to convert them back. Key is used for encrypting the message before
transmission and decrypting after reception. ConvA2M, convM2A, convPR2M and convM2PR
encrypt/decrypt the message with the random ticket key.

The routine _asgetticket sends a ticket request tr returning the two encrypted tickets in buf. The
routine _asrequest encodes the ticket request tr and sends it not waiting for a response. After
sending a request, _asgetresp can be used to receive the response containing a ticket and an
optional authenticator and decrypts the ticket and authenticator using key. The routine _asrdresp
receives either a character array or an error string. On error, it sets errstr and returns -1. If suc
cessful, it returns the number of bytes received.

Authpak_hash prepares a Authkey structure for a password authenticated key exchange (see
authsrv(6)) by calculating the pakhash from a user�s aeskey and id u. The fuction hashes the pass
word derived aeskey and user id together using hmac_sha256 and maps the result into two elliptic
curve points PN/PM on the Ed448-goldielocks curve using elligator2.

Authpak_new generates a new elliptic curve diffie-hellman key pair for a password authenticated
key exchange from a previously hashed Authkey structure k. The randomly generated private key
is returned in the PAKpriv structure passed in p, while the pakhash encrytped public key is
returned in y.

Authpak_finish completes a password authenticated key exchange, taking the other sides pakhash
encrypted public key y and our private key p returning the shared secret pakkey in the Authkey
structure k. The function returns zero on success or non-zero on failure (malformed public key).

The function _asgetpakkey establishes a new shared pakkey between the us and the authentication
server for ticket encryption; using the functions above; taking a previously hashed Authkey a and
Ticketreq tr and returns the shared pakkey in the Authkey structure. It is usually called before
_asrequest right after authdial to negotiate bruteforce resistant ticket encryption for the ticket
request that follows (see authsrv(6)). Returns zero on success, or non-zero on error

383

AUTHSRV(2) AUTHSRV(2)

(authenticatoin server does not support the AuthPAK request or when we got a malformed public
key).

SOURCE
/sys/src/libauthsrv

SEE ALSO
passwd(1), cons(3), dial(2), authsrv(6),

DIAGNOSTICS
These routines set errstr. Integer-valued functions return -1 on error.

384

AVL(2) AVL(2)

NAME
avlcreate, avlinsert, avldelete, avllookup, avlnext, avlprev � Balanced binary search tree routines

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <avl.h>

typedef struct Avl Avl;
typedef struct Avltree Avltree;

struct Avl {
Avl *c[2]; /* children */
Avl *p; /* parent */
schar balance; /* balance factor */

};
struct Avltree {

int (*cmp)(Avl*, Avl*);
Avl *root;

};

Avltree *avlcreate(int(*cmp)(Avl*, Avl*));
Avl *avlinsert(Avltree *tree, Avl *new);
Avl *avldelete(Avltree *tree, Avl *key);
Avl *avllookup(Avltree *tree, Avl *key, int dir);
Avl *avlmin(Avltree *tree);
Avl *avlmax(Avltree *tree);
Avl *avlnext(Avl *n);
Avl *avlprev(Avl *n);

DESCRIPTION
These routines allow creation and maintenance of in-memory balanced binary search trees.

An empty tree is created by calling avlcreate with a comparison function as an argument. The
comparison function must take two pointers to Avl structures and return an integer less than,
equal to, or greater than 0 as the first is respectively less than, equal to, or greater than the sec
ond.

Avlinsert adds a new node into the tree and returns an existing node with the same key that has
been removed from the tree and may be freed. Avllookup searches for a given key and returns the
closest node less than the given key, equal to, or the closest node greater than the key depending
on whether dir is less than, equal to, or greater than zero, respectively. If dir is zero and there is
no matching key, it returns nil. Avldelete removes the node matching the key from the tree and
returns it. It returns nil if no matching key is found.

Avlmin returns the minimum Avl node in the tree and avlmax returns the maximum node.
Avlnext returns the next Avl node in an in-order walk of the AVL tree and avlprev returns the pre
vious node.

EXAMPLES
Intended usage is to embed the Avl structure anonymously. For example, the following will cre
ate a key-value store with strings as keys and integers as values.

typedef struct Node {
Avl;
char *key;
int val;

} Node;

int
nodecmp(Avl *la, Avl *lb)

385

AVL(2) AVL(2)

{
Node *a, *b;

a = (Node*)la;
b = (Node*)lb;
return strcmp(a−>key, b−>key);

}

int
get(Avltree *t, char *key)
{

Node *h, n;

n.key = key;
h = (Node*)avllookup(t, &n);
return h ? h−>val : −1;

}
...

Avltree *t = avlcreate(nodecmp);

SOURCE
/sys/src/libavl

SEE ALSO
Donald Knuth, ��The Art of Computer Programming��, Volume 3. Section 6.2.3

DIAGNOSTICS
Avlcreate returns nil on error.

HISTORY
This implementation was written for 9front (Dec, 2016).

386

BIN(2) BIN(2)

NAME
binalloc, bingrow, binfree � grouped memory allocation

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <bin.h>

typedef struct Bin Bin;

void *binalloc(Bin **bp, ulong size, int clr);

void *bingrow(Bin **bp, void *op, ulong osize,
ulong size, int clr);

void binfree(Bin **bp);

DESCRIPTION
These routines provide simple grouped memory allocation and deallocation. Items allocated with
binalloc are added to the Bin pointed to by bp. All items in a bin may be freed with one call to
binfree; there is no way to free a single item.

Binalloc returns a pointer to a new block of at least size bytes. The block is suitably aligned for
storage of any type of object. No two active pointers from binalloc will have the same value. The
call binalloc(0) returns a valid pointer rather than null. If clr is non-zero, the allocated mem
ory is set to 0; otherwise, the contents are undefined.

Bingrow is used to extend the size of a block of memory returned by binalloc. Bp must point to the
same bin group used to allocate the original block, and osize must be the last size used to allocate
or grow the block. A pointer to a block of at least size bytes is returned, with the same contents in
the first osize locations. If clr is non-zero, the remaining bytes are set to 0, and are undefined
otherwise. If op is nil, it and osize are ignored, and the result is the same as calling binalloc.

Binalloc and bingrow allocate large chunks of memory using malloc(2) and return pieces of these
chunks. The chunks are free�d upon a call to binfree.

SOURCE
/sys/src/libbin

SEE ALSO
malloc(2)

DIAGNOSTICS
binalloc and bingrow return 0 if there is no available memory.

387

BIND(2) BIND(2)

NAME
bind, mount, unmount � change name space

SYNOPSIS
#include <u.h>
#include <libc.h>

int bind(char *name, char *old, int flag)

int mount(int fd, int afd, char *old, int flag, char *aname)

int unmount(char *name, char *old)

DESCRIPTION
Bind and mount modify the file name space of the current process and other processes in its name
space group (see fork(2)). For both calls, old is the name of an existing file or directory in the cur
rent name space where the modification is to be made. The name old is evaluated as described in
intro(2), except that no translation of the final path element is done.

For bind, name is the name of another (or possibly the same) existing file or directory in the cur
rent name space. After a successful bind call, the file name old is an alias for the object originally
named by name; if the modification doesn�t hide it, name will also still refer to its original file.
The evaluation of new happens at the time of the bind, not when the binding is later used.

The fd argument to mount is a file descriptor of an open network connection or pipe to a file
server, while afd is a authentication file descriptor as created by fauth(2) and subsequently authen
ticated. If authentication is not required, afd should be -1. The old file must be a directory. After
a successful mount the file tree served (see below) by fd will be visible with its root directory hav
ing name old.

The flag controls details of the modification made to the name space. In the following, new refers
to the file as defined by name or the root directory served by fd. Either both old and new files must
be directories, or both must not be directories. Flag can be one of:

MREPL Replace the old file by the new one. Henceforth, an evaluation of old will be trans
lated to the new file. If they are directories (for mount, this condition is true by defi
nition), old becomes a union directory consisting of one directory (the new file).

MBEFORE Both the old and new files must be directories. Add the constituent files of the new
directory to the union directory at old so its contents appear first in the union. After
an MBEFORE bind or mount, the new directory will be searched first when evaluating
file names in the union directory.

MAFTER Like MBEFORE but the new directory goes at the end of the union.

The flags are defined in <libc.h>. In addition, there is an MCREATE flag that can be OR�d with
any of the above. When a create system call (see open(2)) attempts to create in a union directory,
and the file does not exist, the elements of the union are searched in order until one is found with
MCREATE set. The file is created in that directory; if that attempt fails, the create fails.

Finally, the MCACHE flag, valid for mount only, turns on caching for files made available by the
mount. By default, file contents are always retrieved from the server. With caching enabled, the
kernel may instead use a local cache to satisfy read(5) requests for files accessible through this
mount point. The currency of cached data for a file is verified at each open(5) of the file from this
client machine.

With mount, the file descriptor fd must be open for reading and writing and prepared to respond
to 9P messages (see Section 5). After the mount, the file tree starting at old is served by a kernel
mnt(3) device. That device will turn operations in the tree into messages on fd. Aname selects
among different file trees on the server; the null string chooses the default tree.

The file descriptor fd is automatically closed by a successful mount call.

The effects of bind and mount can be undone by unmount. If name is zero, everything bound to or
mounted upon old is unbound or unmounted. If name is not zero, it is evaluated as described
above for bind, and the effect of binding or mounting that particular result on old is undone.

SOURCE
/sys/src/libc/9syscall

388

BIND(2) BIND(2)

SEE ALSO
bind(1), intro(2), fcall(2), auth(2) (particularly amount), intro(5), mnt(3), srv(3)

DIAGNOSTICS
The return value is a positive integer (a unique sequence number) for success, -1 for failure.
These routines set errstr.

BUGS
Mount will not return until it has successfully attached to the file server, so the process doing a
mount cannot be the one serving.

389

BIO(2) BIO(2)

NAME
Bopen, Bfdopen, Binit, Binits, Brdline, Brdstr, Bgetc, Bgetrune, Bgetd, Bungetc, Bungetrune, Bread,
Bseek, Boffset, Bfildes, Blinelen, Bputc, Bputrune, Bprint, Bvprint, Bwrite, Bflush, Bterm, Bbuffered,
Blethal, Biofn � buffered input/output

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <bio.h>

typedef struct BiobufhdrBiobufhdr;
struct Biobufhdr {

void *aux; /* user data */
... /* internals */

};

Biobuf* Bopen(char *file, int mode)

Biobuf* Bfdopen(int fd, int mode)

int Binit(Biobuf *bp, int fd, int mode)

int Binits(Biobufhdr *bp, int fd, int mode, uchar *buf, int size)

int Bterm(Biobufhdr *bp)

int Bprint(Biobufhdr *bp, char *format, ...)

int Bvprint(Biobufhdr *bp, char *format, va_list arglist);

void* Brdline(Biobufhdr *bp, int delim)

char* Brdstr(Biobufhdr *bp, int delim, int nulldelim)

int Blinelen(Biobufhdr *bp)

vlong Boffset(Biobufhdr *bp)

int Bfildes(Biobufhdr *bp)

int Bgetc(Biobufhdr *bp)

long Bgetrune(Biobufhdr *bp)

int Bgetd(Biobufhdr *bp, double *d)

int Bungetc(Biobufhdr *bp)

int Bungetrune(Biobufhdr *bp)

vlong Bseek(Biobufhdr *bp, vlong n, int type)

int Bputc(Biobufhdr *bp, int c)

int Bputrune(Biobufhdr *bp, long c)

long Bread(Biobufhdr *bp, void *addr, long nbytes)

long Bwrite(Biobufhdr *bp, void *addr, long nbytes)

int Bflush(Biobufhdr *bp)

int Bbuffered(Biobufhdr *bp)

void Blethal(Biobufhdr *bp, void (*errorf)(char *))

void Biofn(Biobufhdr *bp, int (*iof)(Biobufhdr *, void *, long))

DESCRIPTION
These routines implement fast buffered I/O. I/O on different file descriptors is independent.

Bopen opens file for mode OREAD or creates for mode OWRITE. It calls malloc(2) to allocate a
buffer.

Bfdopen allocates a buffer for the already-open file descriptor fd for mode OREAD or OWRITE. It
calls malloc(2) to allocate a buffer.

390

BIO(2) BIO(2)

Binit initializes a standard size buffer, type Biobuf, with the open file descriptor passed in by the
user. Binits initializes a non-standard size buffer, type Biobufhdr, with the open file descriptor,
buffer area, and buffer size passed in by the user. Biobuf and Biobufhdr are related by the declara
tion:

typedef struct Biobuf Biobuf;
struct Biobuf
{

Biobufhdr;
uchar b[Bungetsize+Bsize];

};

Arguments of types pointer to Biobuf and pointer to Biobufhdr can be used interchangeably in the
following routines.

Bopen, Binit, or Binits should be called before any of the other routines on that buffer. Bfildes
returns the integer file descriptor of the associated open file.

Bterm flushes the buffer for bp and returns Bflush�s return value. If the buffer was allocated by
Bopen or Bfdopen, the buffer is freed and the file is closed.

Brdline reads a string from the file associated with bp up to and including the first delim character.
The delimiter character at the end of the line is not altered, thus the returned string probably won�t
be NUL-terminated. Brdline returns a pointer to the start of the line or 0 on end-of-file or read
error. Blinelen returns the length (including the delimiter) of the most recent string returned by
Brdline.

Brdstr returns a malloc(2)-allocated buffer containing the next line of input delimited by delim,
terminated by a NUL (0) byte. Unlike Brdline, which returns when its buffer is full even if no delim
iter has been found, Brdstr will return an arbitrarily long line in a single call. If nulldelim is set, the
terminal delimiter will be overwritten with a NUL. After a successful call to Brdstr, the return value
of Blinelen will be the length of the returned buffer, excluding the NUL.

Bgetc returns the next character from bp, or a negative value at end of file. Bungetc may be called
immediately after Bgetc to allow the same character to be reread.

Bgetrune calls Bgetc to read the bytes of the next UTF sequence in the input stream and returns the
value of the rune represented by the sequence. It returns a negative value at end of file.
Bungetrune may be called immediately after Bgetrune to allow the same UTF sequence to be reread
as either bytes or a rune. Bungetc and Bungetrune may back up a maximum of five bytes.

Bgetd uses charstod (see atof(2)) and Bgetc to read the formatted floating-point number in the
input stream, skipping initial blanks and tabs. The value is stored in *d.

Bread reads nbytes of data from bp into memory starting at addr. The number of bytes read is
returned on success and a negative value is returned if a read error occurred.

Bseek applies seek(2) to bp. It returns the new file offset. Boffset returns the file offset of the next
character to be processed.

Bputc outputs the low order 8 bits of c on bp. If this causes a write to occur and there is an error, a
negative value is returned. Otherwise, a zero is returned.

Bputrune calls Bputc to output the low order 16 bits of c as a rune in UTF format on the output
stream.

Bprint is a buffered interface to print(2). If this causes a write to occur and there is an error, a neg
ative value (Beof) is returned. Otherwise, Bprint returns the number of bytes written. Bvprint
does the same except it takes as argument a va_list parameter, so it can be called within a
variadic function.

Bwrite outputs nbytes of data starting at addr to bp. If this causes a write to occur and there is an
error, a negative value is returned. Otherwise, the number of bytes written is returned.

Bflush causes any buffered output associated with bp to be written. The return is as for Bputc.
Bflush is called on exit for every buffer still open for writing.

Bbuffered returns the number of bytes in the buffer. When reading, this is the number of bytes
still available from the last read on the file; when writing, it is the number of bytes ready to be writ
ten.

391

BIO(2) BIO(2)

Blethal arranges errorf to be called in case of an error happening on read/write. An argument of
nil will have the program terminated in case of error.

If Biofn is called with a non-nil iof function, then that function is called for I/O in lieu of read(2)
and write. A nil argument for iof restores normal behaviour.

SOURCE
/sys/src/libbio

SEE ALSO
open(2), read(2), print(2), exits(2), utf(6),

DIAGNOSTICS
Bio routines that return integers yield Beof if bp is not the descriptor of an open file. Bopen
returns zero if the file cannot be opened in the given mode. All routines set errstr on error.

An error during read or write will call an error handler specified by Blethal, if any.

BUGS
Brdline returns an error on strings longer than the buffer associated with the file and also if the
end-of-file is encountered before a delimiter. Blinelen will tell how many characters are available
in these cases. In the case of a true end-of-file, Blinelen will return zero. At the cost of allocating
a buffer, Brdstr sidesteps these issues.

Only the low byte of Brdstr�s delim is examined, so delim cannot be an arbitrary rune.

The data returned by Brdline may be overwritten by calls to any other bio routine on the same bp.

392

BLOWFISH(2) BLOWFISH(2)

NAME
setupBFstate, bfCBCencrypt, bfCBCdecrypt, bfECBencrypt, bfECBdecrypt - blowfish encryption

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>

void setupBFstate(BFstate *s, uchar key[], int keybytes,
uchar *ivec)

void bfCBCencrypt(uchar *data, int len, BFstate *s)

void bfCBCdecrypt(uchar *data, int len, BFstate *s)

void bfECBencrypt(uchar *data, int len, BFstate *s)

void bfECBdecrypt(uchar *data, int len, BFstate *s)

DESCRIPTION
Blowfish is Bruce Schneier�s symmetric block cipher. It supports variable length keys from 32 to
448 bits and has a block size of 64 bits. Both CBC and ECB modes are supported.

setupBFstate takes a BFstate structure, a key of at most 56 bytes, the length of the key in bytes,
and an initialization vector of 8 bytes (set to all zeroes if argument is nil). The encryption and
decryption functions take a BFstate structure, a data buffer, and a length, which must be a multiple
of eight bytes as padding is currently unsupported.

SOURCE
/sys/src/libsec

SEE ALSO
mp(2), aes(2), des(2), dsa(2), elgamal(2), rc4(2), rsa(2), sechash(2), prime(2), rand(2)

393

BRK(2) BRK(2)

NAME
brk, sbrk � change memory allocation

SYNOPSIS
#include <u.h>
#include <libc.h>

int brk(void *addr)

void* sbrk(ulong incr)

DESCRIPTION
Brk sets the system�s idea of the lowest bss location not used by the program (called the break) to
addr rounded up to the next multiple of 8 bytes. Locations not less than addr and below the stack
pointer may cause a memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program�s data space and a
pointer to the start of the new area is returned. Rounding occurs as with brk.

When a program begins execution via exec the break is set at the highest location defined by the
program and data storage areas. Ordinarily, therefore, only programs with growing data areas
need to use brk. A call to sbrk with a zero argument returns the lowest address in the dynamic
segment.

SOURCE
/sys/src/libc/9sys/sbrk.c

SEE ALSO
intro(2), malloc(2), segattach(2), segbrk(2)

DIAGNOSTICS
These functions set errstr.

The error return from sbrk is (void*)−1.

394

CACHECHARS(2) CACHECHARS(2)

NAME
cachechars, agefont, loadchar, Subfont, Fontchar, Font � font utilities

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>

int cachechars(Font *f, char **s, Rune **r, ushort *c, int max,

int *widp, char **sfname)

int loadchar(Font *f, Rune r, Cacheinfo *c, int h,

int noclr, char **sfname)

void agefont(Font *f)

DESCRIPTION
A Font may contain too many characters to hold in memory simultaneously. The graphics library
and draw device (see draw(3)) cooperate to solve this problem by maintaining a cache of recently
used character images. The details of this cooperation need not be known by most programs:
initdraw and its associated font variable, openfont, stringwidth, string, and freefont are sufficient
for most purposes. The routines described below are used internally by the graphics library to
maintain the font cache.

A Subfont is a set of images for a contiguous range of characters, stored as a single image with
the characters placed side-by-side on a common baseline. It is described by the following data
structures.

typedef
struct Fontchar {

int x; /* left edge of bits */
uchar top; /* first non−zero scan−line */
uchar bottom; /* last non−zero scan−line */
char left; /* offset of baseline */
uchar width; /* width of baseline */

} Fontchar;

typedef
struct Subfont {

char *name;
short n; /* number of chars in subfont */
uchar height; /* height of image */
char ascent; /* top of image to baseline */
Fontchar *info; /* n+1 Fontchars */
Image *bits; /* of font */

} Subfont;

The image fills the rectangle (0, 0, w, height), where w is the sum of the horizontal
extents (of non-zero pixels) for all characters. The pixels to be displayed for character c are in the
rectangle (i−>x, i−>top, (i+1)−>x, i−>bottom) where i is &subfont−>info[c].
When a character is displayed at Point p in an image, the character rectangle is placed at
(p.x+i−>left, p.y) and the next character of the string is displayed at (p.x+i−>width,
p.y). The baseline of the characters is ascent rows down from the top of the subfont image.
The info array has n+1 elements, one each for characters 0 to n−1 plus an additional entry so
the size of the last character can be calculated. Thus the width, w, of the Image associated with a
Subfont s is s−>info[s−>n].x.

A Font consists of an overall height and ascent and a collection of subfonts together with the
ranges of runes (see utf(6)) they represent. Fonts are described by the following structures.

typedef
struct Cachefont {

Rune min; /* value of 0th char in subfont */

395

CACHECHARS(2) CACHECHARS(2)

Rune max; /* value+1 of last char in subfont */
int offset; /* posn in subfont of char at min */
char *name; /* stored in font */
char *subfontname;/* to access subfont */

} Cachefont;

typedef
struct Cacheinfo {

ushort x; /* left edge of bits */
uchar width; /* width of baseline */
schar left; /* offset of baseline */
Rune value; /* of char at this slot in cache */
ushort age;

} Cacheinfo;

typedef
struct Cachesubf {

ulong age; /* for replacement */
Cachefont *cf; /* font info that owns us */
Subfont *f; /* attached subfont */

} Cachesubf;

typedef
struct Font {

char *name;
Display *display;
short height; /* max ht of image;interline space*/
short ascent; /* top of image to baseline */
short width; /* widest so far; used in caching */
short nsub; /* number of subfonts */
ulong age; /* increasing counter; for LRU */
int ncache; /* size of cache */
int nsubf; /* size of subfont list */
Cacheinfo *cache;
Cachesubf *subf;
Cachefont **sub; /* as read from file */
Image *cacheimage;

} Font;

The height and ascent fields of Font are described in graphics(2). Sub contains nsub point
ers to Cachefonts. A Cachefont connects runes min through max, inclusive, to the subfont
with file name name; it corresponds to a line of the file describing the font.

The characters are taken from the subfont starting at character number offset (usually zero) in
the subfont, permitting selection of parts of subfonts. Thus the image for rune r is found in posi
tion r−min+offset of the subfont.

For each font, the library, with support from the graphics server, maintains a cache of subfonts
and a cache of recently used character images. The subf and cache fields are used by the
library to maintain these caches. The width of a font is the maximum of the horizontal extents
of the characters in the cache. String draws a string by loading the cache and emitting a sequence
of cache indices to draw. Cachechars guarantees the images for the characters pointed to by *s or
*r (one of these must be nil in each call) are in the cache of f. It calls loadchar to put missing char
acters into the cache. Cachechars translates the character string into a set of cache indices which
it loads into the array c, up to a maximum of n indices or the length of the string. Cachechars
returns in c the number of cache indices emitted, updates *s to point to the next character to be
processed, and sets *widp to the total width of the characters processed. Cachechars may return
before the end of the string if it cannot proceed without destroying active data in the caches. If it
needs to load a new subfont, it will fill *sfname with the name of the subfont it needs and return
�1. It can return zero if it is unable to make progress because it cannot resize the caches.

396

CACHECHARS(2) CACHECHARS(2)

Loadchar loads a character image into the character cache. Then it tells the graphics server to
copy the character into position h in the character cache. If the current font width is smaller than
the horizontal extent of the character being loaded, loadfont clears the cache and resets it to
accept characters with the bigger width, unless noclr is set, in which case it just returns �1. If the
character does not exist in the font at all, loadfont returns 0; if it is unable to load the character
without destroying cached information, it returns �1, updating *sfname as described above. It
returns 1 to indicate success.

The age fields record when subfonts and characters have been used. The font age is increased
every time the font is used (agefont does this). A character or subfont age is set to the font age
at each use. Thus, characters or subfonts with small ages are the best candidates for replacement
when the cache is full.

SOURCE
/sys/src/libdraw

SEE ALSO
graphics(2), allocimage(2), draw(2), subfont(2), image(6), font(6)

DIAGNOSTICS
All of the functions use the graphics error function (see graphics(2)).

397

CHACHA(2) CHACHA(2)

NAME
setupChachastate, chacha_setblock, chacha_setiv, chacha_encrypt, chacha_encrypt2, hchacha,
ccpoly_encrypt, ccpoly_decrypt � chacha encryption

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <libsec.h>

void setupChachastate(Chachastate *s, uchar key[], ulong keylen,
uchar *iv, ulong ivlen, int rounds)

void chacha_encrypt(uchar *data, ulong len, Chachastate *s)

void chacha_encrypt2(uchar *src, uchar *dst, ulong len, Chachastate
*s)

void chacha_setblock(Chachastate *s, u64int blockno)

void chacha_setiv(Chachastate *s, uchar *iv);

void hchacha(uchar h[32], uchar *key, ulong keylen, uchar
nonce[16], int rounds);

void ccpoly_encrypt(uchar *dat, ulong ndat, uchar *aad, ulong naad,
uchar tag[16], Chachastate *cs);

int ccpoly_decrypt(uchar *dat, ulong ndat, uchar *aad, ulong naad,
uchar tag[16], Chachastate *cs);

DESCRIPTION
Chacha is D J Berstein�s symmetric stream cipher, as modified by RFC7539. It supports keys of 256
bits (128 bits is supported here for special purposes). It has an underlying block size of 64 bytes
(named as constant ChachaBsize).

SetupChachastate takes a reference to a Chachastate structure, a key of keylen bytes, which
should normally be ChachaKeylen, a iv or nonce of ivlen bytes (can be ChachaIVlen=12, 8
or XChachaIVlen=24; set to all zeros if the iv argument is nil), and the number of rounds (set
to the default of 20 if the argument is zero). With a key length of 256 bits (32 bytes), a nonce of
96 bits (12 bytes) and 20 rounds, the function implements the Chacha20 encryption function of
RFC7539.

Chacha_encrypt encrypts len bytes of buf in place using the Chachastate in s. Len can be any
byte length. Encryption and decryption are the same operation given the same starting state s.

Chacha_encrypt2 is similar, but encrypts len bytes of src into dst without modifying src.

Chacha_setblock sets the Chacha block counter for the next encryption to blockno, allowing seek
ing in an encrypted stream.

Chacha_setiv sets the the initialization vector (nonce) to iv.

Hchacha is a key expansion function that takes a 128 or 256-bit key and a 128-bit nonce and pro
duces a new 256-bit key.

Ccpoly_encrypt and ccpoly_decrypt implement authenticated encryption with associated data
(AEAD) using Chacha cipher and Poly1305 message authentication code as specified in RFC7539.
These routines require a Chachastate that has been setup with a new (per key unique) initialization
vector (nonce) on each invocation. The referenced data dat[ndat] is in-place encrypted or
decrypted. Ccpoly_encrypt produces a 16 byte authentication tag, while ccpoly_decrypt verifies
the tag, returning zero on success or negative on a mismatch. The aad[naad] arguments refer to
the additional authenticated data that is included in the tag calculation, but not encrypted.

SOURCE
/sys/src/libsec

SEE ALSO
mp(2), aes(2), blowfish(2), des(2), dsa(2), elgamal(2), rc4(2), rsa(2), salsa(2), sechash(2),
prime(2), rand(2)

398

CHDIR(2) CHDIR(2)

NAME
chdir � change working directory

SYNOPSIS
#include <u.h>
#include <libc.h>

int chdir(char *dirname)

DESCRIPTION
Chdir changes the working directory of the invoking process to dirname. The working directory is
the starting point for evaluating file names that do not begin with / or #, as explained in intro(2).
When Plan 9 boots, the initial process has / for its working directory.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
intro(2), getwd(2)

DIAGNOSTICS
Sets errstr.

399

CLEANNAME(2) CLEANNAME(2)

NAME
cleanname � clean a path name

SYNOPSIS
#include <u.h>
#include <libc.h>

char* cleanname(char *filename)

DESCRIPTION
Cleanname takes a filename and by lexical processing only returns the shortest string that names
the same (possibly hypothetical) file. It eliminates multiple and trailing slashes, and it lexically
interprets . and .. directory components in the name. The string is overwritten in place.

The shortest string cleanname can return is two bytes: the null-terminated string "." . Therefore
filename must contain room for at least two bytes.

SOURCE
/sys/src/libc/port/cleanname.c

SEE ALSO
cleanname(1)

400

COLOR(2) COLOR(2)

NAME
cmap2rgb, cmap2rgba, rgb2cmap � colors and color maps

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>

int rgb2cmap(int red, int green, int blue)

int cmap2rgb(int col)

int cmap2rgba(int col)

DESCRIPTION
These routines convert between �true color� red/green/blue triples and the Plan 9 color map. See
color(6) for a description of RGBV, the standard color map.

Rgb2cmap takes a trio of color values, scaled from 0 (no intensity) to 255 (full intensity), and
returns the index of the color in RGBV closest to that represented by those values.

Cmap2rgb decomposes the color of RGBV index col and returns a 24-bit integer with the low 8
bits representing the blue value, the next 8 representing green, and the next 8 representing red.
Cmap2rgba decomposes the color of RGBV index col and returns a 32-bit integer with the low 8
bits representing an alpha value, defined to be 255, and the next 8 representing blue, then green,
then red, as for cmap2rgba shifted up 8 bits. This 32-bit representation is the format used by
draw(2) and memdraw(2) library routines that take colors as arguments.

SOURCE
/sys/src/libdraw

SEE ALSO
graphics(2), allocimage(2), draw(2), image(6), color(6)

401

COMPLETE(2) COMPLETE(2)

NAME
complete � file name completion

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <complete.h>

typedef struct CompletionCompletion;
struct Completion{

uchar advance; /* whether forward progress has been made */
uchar complete; /* whether the completion now represents a file or directory
char *string; /* the string to advance, suffixed " " or "/" for file or directory
int nmatch; /* number of files that matched */
int nfile; /* number of files returned */
char **filename;/* their names */

};

Completion* complete(char *dir, char *s);

void freecompletion(Completion *c);

DESCRIPTION
The complete function implements file name completion. Given a directory dir and a string s, it
returns an analysis of the file names in that directory that begin with the string s. The fields
nmatch and nfile will be set to the number of files that match the prefix and filename will
be filled in with their names. If the file named is a directory, a slash character will be appended to
it.

If no files match the string, nmatch will be zero, but complete will return the full set of files in the
directory, with nfile set to their number.

The flag advance reports whether the string s can be extended without changing the set of files
that match. If true, string will be set to the extension; that is, the value of string may be
appended to s by the caller to extend the embryonic file name unambiguously.

The flag complete reports whether the extended file name uniquely identifies a file. If true,
string will be suffixed with a blank, or a slash and a blank, depending on whether the resulting
file name identifies a plain file or a directory.

The freecompletion function frees a Completion structure and its contents.

In rio(1) and acme(1), file name completion is triggered by a control-F character or an Insert char
acter.

SOURCE
/sys/src/libcomplete

SEE ALSO
rio(1), acme(1)

DIAGNOSTICS
The complete function returns a null pointer and sets errstr if the directory is unreadable or there
is some other error.

BUGS
The behavior of file name completion should be controlled by the plumber.

402

CONTROL(2) CONTROL(2)

NAME
Control, Controlset, activate, closecontrol, closecontrolset, controlcalled, controlwire, createbox,
createboxbox, createbutton, createcolumn, createentry, createkeyboard, createlabel, createmenu,
createradiobutton, createrow, createscribble, createslider, createstack, createtab, createtext, cre
atetextbutton, ctlerror, ctlmalloc, ctlrealloc, ctlstrdup, ctlprint, deactivate, freectlfont, freectlimage,
initcontrols, namectlfont, namectlimage, newcontrolset, resizecontrolset � interactive graphical
controls

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>
#include <thread.h>
#include <keyboard.h>
#include <mouse.h>
#include <control.h>

typedef struct Control Control;
typedef struct Controlset Controlset;

struct Control
{

char *name;
Rectangle rect; /* area on screen */
Rectangle size; /* min/max Dx, Dy (not a rect) */
Channel *event; /* chan(char*) to client */
Channel *data; /* chan(char*) to client */
...

};

struct Controlset
{

...
Channel *ctl;
Channel *data;
...
int clicktotype;
...

};

void initcontrols(void)

Controlset*newcontrolset(Image *i, Channel *kc, Channel *mc, Channel *rc)

void closecontrolset(Controlset *cs)

int namectlfont(Font *font, char *name)

int freectlfont(char *name)

int namectlimage(Image *image, char *name)

int freectlimage(char *name)

Control*createbox(Controlset *cs, char *name)

Control*createboxbox(Controlset *cs, char *name)

Control*createbutton(Controlset *cs, char *name)

Control*createcolumn(Controlset*, char*)

Control*createentry(Controlset *cs, char *name)

Control*createkeyboard(Controlset *cs, char *name)

Control*createlabel(Controlset *cs, char *name)

Control*createmenu(Controlset *cs, char *name)

Control*createradiobutton(Controlset *cs, char *name)

Control*createrow(Controlset*, char*)

403

CONTROL(2) CONTROL(2)

Control*createscribble(Controlset *cs, char *name)

Control*createslider(Controlset *cs, char *name)

Control*createstack(Controlset*, char*)

Control*createtab(Controlset*, char *)

Control*createtext(Controlset *cs, char *name)

Control*createtextbutton(Controlset *cs, char *name)

void closecontrol(Control *c)

int ctlprint(Control*, char*, ...);

void ctlerror(char *fmt, ...)

Control*controlcalled(char *name)

void controlwire(Control *c, char *cname, Channel *ch)

void activate(Control *c)

void deactivate(Control *c)

void resizecontrolset(Controlset *cs)

void* ctlmalloc(uint n)

void* ctlrealloc(void *p, uint n)

char* ctlstrdup(char *s)

int ctldeletequits;

DESCRIPTION
This library provides a set of interactive controls for graphical displays: buttons, sliders, text entry
boxes, and so on. It also provides aggregator Controls: boxes, columns, rows and stacks of
Controls. A stack is a collection of co-located Controls, of which one is normally visible. A
Controlset collects a group of Controls that share mouse and keyboard. Each
Controlset has a separate thread of control that processes keyboard and mouse events as well
as commands to be passed on to the Controls. Since each Controlset uses a thread, pro
grams using the control library must be linked with the thread library, thread(2).

Controls are manipulated by reading and writing to the control channel, ctl, of their
Controlset. Channels are defined in thread(2). Each Control has two output channels:
Event delivers messages about actions within the control (such as a button press) and data
delivers (if requested by an appropriate write to ctl) control-specific data such as the contents of
a field.

The library provides a simple mechanism for automatic layout: the minimum and maximum sizes
of each simple control can be specified. Boxbox, row, column and stack Controls then
use these sizes to lay out their constituent Controls when called upon to do so. See the descrip
tion of these grouping Controls for further details.

Message format
All messages are represented as UTF-8 text. Numbers are formatted in decimal, and strings are
transmitted in the quoted form of quote(2).

Messages sent to a Controlset are of the form,

sender: destination verb [argument ...]

The sender (and the colon following it) may be omitted. For example, the initial field of a text
entry control called entry could be set by sending the message,

entry value ’Hello, world!’

to its Controlset�s ctl file. This message contains the verb value and the single argument
Hello, world!

To make it easy to write messages, the function chanprint (see thread(2)) can be used to print for
matted text to a Controlset�s channel.

The %q and %Q formats are convenient for properly quoting string arguments, as in

chanprint(e−>event, "value %q", "Don’t touch!");

404

CONTROL(2) CONTROL(2)

It is wise to use %q always instead of %s when sending messages, and avoid dealing with the quot
ing explicitly. In the other direction, tokenize (see getfields(2)) parses these messages and
interprets the quotes correctly.

The destination of a message can be a named control, or a set of controls identified by name or
type. The command

’entry slider’ show

(note the quotation) sends the �show� command to the entry named entry and all controls of type
slider. If there were a control whose name was slider that control would also be shown.

Note that we are still experimenting with destination names. One proposal is that a destination of
the form "�name1 name2 ï type1 type2 ï� selects all controls of the named types in the control
hierarchies (of columns, rows and stacks) whose names precede the types.

Messages sent by a control on its event channel are of the form

sender: event

The sender is the name of the control sending the message; the event describes the event. Its for
mat can often be controlled by setting the Control�s format string. For example, when the user
types a newline at a text entry Control named entry, the control sends the message

entry: value ’Hello again!’ on its event channel.

Initialization and Control sets
After initdraw (see graphics(2)) is called, the function initcontrols should be called to initialize
the library. It calls quotefmtinstall to install the %q and %Q formats; see quote(2).

Each control is represented by a Control data structure and is associated with a Controlset
that groups a set of controls sharing mouse, keyboard, and display. Most applications will need
only one Controlset; only those with multiple windows or unusual configurations will need
more than one. The function newcontrolset creates a Controlset. Its arguments are the image
(usually a window) on which its controls will appear, typically the screen variable in the draw
library, and three channels: kc, a channel of Runes from the keyboard; mc, a channel of Mouse
structures from the mouse; and rc, a channel of int that indicates when the window has been
resized. Any of the channels may be nil, in which case newcontrolset will call initkeyboard
and/or initmouse (see keyboard (2) and mouse(2)) to initialize the keyboard and mouse and
connect them to the control set. The mouse and resize channels must both be nil or both be non-
nil.

The function closecontrolset frees all the controls in the control set and tears down all the associ
ated threads. It does not close the mouse and keyboard.

The public elements of a Controlset are the flag clicktotype, and the ctl and data chan
nels.

Clicktotype is zero by default. If it is set to non-zero, the controls in the set will acquire �focus� by
the click-to-type paradigm. Otherwise, focus is always given to the control under the mouse.

Commands for controls are sent through the Controlset�s ctl channel. One special command
is recognized by the Controlset itself: Sending the string sync to the ctl channel causes that
string to be echoed to the Controlset�s data channel when all commands up to the sync com
mand have been processed. The string is allocated and must be freed (see malloc(2)). Synchro
nization is necessary between sending a command, for example, to resize all controls, and using
their rect fields.

The function resizecontrolset must be provided by the user. When the associated window is
resized, the library will call resizecontrolset with the affected Controlset; the function should
reconnect to and redraw the window.

If all windows are organized in a hierachy of boxboxes, columns, rows and stacks, and minimum
and maximum sizes have already been supplied, only the top control needs to be resized (see the
rect command below).

Fonts and images
Fonts and images must be given names so they may be referenced in messages. The functions
namectlfont and namectlimage associate a (unique) name with the specified font or image. The
association is removed by freectlfont and freectlimage. The font or image is not freed by these

405

CONTROL(2) CONTROL(2)

functions, however.

The function initcontrols establishes name bindings for all the colors mentioned in <draw.h>,
such as black, white, red, yellow, etc., as well as masks transparent and opaque. It
also sets the name font to refer to the default font variable set up by initdraw.

Creation
Each type of control has an associated creation function: createbutton, createentry, etc., whose
arguments are the Controlset to attach it to and a globally unique name for it. A control may
be destroyed by calling closecontrol.

The function controlcalled returns a pointer to the Control with the given name, or nil if no such
control exists.

Configuration
After a control is created, it must be configured using the control-specific commands documented
below. Commands are sent to the ctl channel of the Controlset. Multiple commands may be
sent in a single message; newline characters separate commands. For an example, see the imple
mentation of resizecontrolset in the EXAMPLES section. Note that newline is a separator, not a
terminator; the final command does not need a newline.

Messages sent to the ctl channel are delivered to all controls that match the destination field. This
field is a set of names separated by spaces, tabs or newlines. A control matches the destination if
its name or its type is among the set.

The recipient of a message ignores the initial sender: field of the message, if present, making it
possible to send messages generated on an event channel directly to another control�s ctl
channel.

Activation
When they are created, controls are disabled: they do not respond to user input. Not all controls
need to be responsive; for example, labels are static and a text display might show a log of mes
sages but not be useful to edit. But buttons, entry boxes, and other text displays should be active.

To enable a control, call the activate function, which specifies that the Control c should respond
to mouse and keyboard events; deactivate turns it off again.

Controls can be either revealed (default) or hidden. When a control is hidden, it will not receive
mouse or keyboard events and state changes or show commands will be ignored until the control
is once again revealed . Control hiding is particularly useful when different controls are overlayed,
revealing only the �top� one.

The function controlwire permits rearrangement of the channels associated with a Control. The
channel cname (one of "data" or "event") of Control c is reassigned to the channel ch.
There are several uses for this operation: one may reassign all the event channels to a single
channel, in effect multiplexing all the events onto a single channel; or connect the event channel
of a slider to the ctl channel for delivery to a text display (after setting the format for the slider�s
messages to name the destination control and the appropriate syntax for the rest of the command)
to let the slider act as a scroll bar for the text without rerouting the messages explicitly.

Controls
The following sections document the individual controls in alphabetical order. The layout of each
section is a brief description of the control�s behavior, followed by the messages it sends on
event, followed by the messages it accepts via the ctl channel. The event messages are trig
gered only by mouse or keyboard action; messages to the ctl file do not cause events to be gen
erated.

All controls accept the following messages:

rect minx miny maxx maxy
Set the bounding rectangle for the control on the display. The syntax generated by the
%R print format of the draw library is also acceptable for the coordinates.

size [min�x min�y max�x max�y]
Set the minimum and maximum size for automatic layout in columns, rows and stacks.
Without its four arguments, this command is ignored by primitive controls and used by
grouping controls to calculate their minimum and maximum sizes by examining those
of their constituent members. If all primitive controls have been assigned a size, a

406

CONTROL(2) CONTROL(2)

single size request addressed to the top of a layout hierarchy will assign sizes to all
grouping Controls.

hide Disable drawing of the control and ignore mouse and keyboard events until the control
is once again revealed. Grouping Controls (column, row, and stack) pass the
request down to their constituent Controls.

reveal This is the opposite of hide: the Control is displayed and mouse and keyboard
operations resume. Grouping Controls (column, row, and stack) pass the request
down to their constituent Controls. The reveal command for stacks takes an
optional argument naming the Control to be revealed; all other Controls will be
hidden.

show Display the Control on its screen if not hidden. Some actions will also cause the
Controls to show themselves automatically (but never when the control is hid
den). Grouping Controls (column, row, and stack) pass the request down to their
constituent Controls.

Many messages are common between multiple Controls. Such messages are described in detail
here to avoid repetition. In the individual descriptions, only the syntax is presented.

align n Specify the alignment of (some part of) the Control�s display within its rectan
gle. For textual controls, the alignment specifies where the text should
appear. For multiline text, the alignment refers to each line within its box, and
only the horizontal part is honored. For other Controls, the alignment affects
the appearance of the display in a reasonable way. The valid alignments are
words with obvious interpretations: upperleft, uppercenter,
upperright, centerleft, center, centerright, lowerleft,
lowercenter, and lowerright.

border n Inset the Control (or separate constituent Controls in boxbox, column and
row Controls after the next rect command) within its rectangle by n pixels,
default zero.

bordercolor name
Paint the border of the control with the named color, default black.

focus n The Control now has (if n is non-zero) or does not have (if n is zero) focus.
Most Controls ignore the message; there are plans to make them react.

format fmt Set the format of �value� messages sent on the event channel. By default, the
format is "%q: value %q" for string-valued Controls, "%q: value
%d" for integer-valued Control s such as buttons, and "%q: value
0x%x" for the keyboard and scribble Controls. The %q prints the name of
the Control; the rest the value. Any supplied format string must be type-
equivalent to the default for that Control.

image name
light name
mask name Many controls set a background image or color for display. The image message

sets the image. The mask and light images together specify how the
Control shows it is enabled: the light is printed through the mask when
the state is �on� or �pressed�. Otherwise, the image appears unmodified. The
default image is white; mask opaque; light yellow.

font name
textcolor name

These commands set the font and color for displaying text. The defaults are the
default font set up by the draw library, and black.

value v Set the value of the Control. Textual images accept an arbitrary string; others
an integral value.

Box
A box is a trivial control that does nothing more than pass keyboard, mouse, and focus messages
back on its event channel. Keyboard characters are sent in the format

boxname: key 0xnn

where nn is the hexadecimal value of the character. Mouse messages are sent in the format

boxname: mouse [x y] but msec

407

CONTROL(2) CONTROL(2)

where x, y, but, and msec are the various fields of the Mouse structure. The focus message is
just

boxname: focus n

where n is 0 if the box has lost focus, 1 if it has acquired it.

The box displays within its rectangle an image, under mask, with specified alignment. The control
messages it accepts are:

align a Controls the placement of the image in the rectangle (unimplemented).
border b
bordercolor name
focus n
hide
image name
rect minx miny maxx maxy
reveal
show
size min�x min�y max�x max�y

Boxbox
A boxbox allows a set of controls (��boxes��) to be displayed in rows and columns within the rect
angle of the boxbox. The maximum of the minimum heights of the constituent controls determines
the number of rows to be displayed. The number of columns is the minimum that allows all
Controls to be displayed. This aggregator works well for collections of buttons, labels, or
textbuttons that all have a fixed height.

add name ... adds the named control to the box of controls. The display order is deter
mined by the order of adding. The first named control is top left, the second
goes below it, etc. It is possible to add one control to multiple grouping con
trols but the layout of the result will be quite unpredictable.

border width
bordercolor color
hide This command is passed on to the member controls.
image color Background color displayed between member controls.
reveal This command is passed on to the member controls.
separation width

Set the separation between member controls to n pixels.
rect minx miny maxx maxy

The member controls are layed out within the given rectangle according to the
minimum and maximum sizes given. If the rectangle is not large enough for
the minimum a fatal error is currently generated. If the controls at their maxi
mum size are not big enough to fit, they are top-left justified at their maxi
mum size in the space given. Otherwise, controls will get their minimum size
and be enlarged proportional to the extra size given by the maximum until
they fit given rectangle. The members are separated by borders of the width
established by borderwidth.

remove name Remove the named control from the box.
show This command is passed on to the member controls. Show also (re)displays

background and borders.
size min�x min�y max�x max�y

Button
A button is a simple control that toggles its state when mouse button 1 is pressed on its rectangle.
Each state change triggers an event message:

buttonname: value n
where n encodes the mouse buttons used to make the selection.

The button displays an image (which may of course be a simple color) and illuminates in the stan
dard way when it is �on�. The control messages it accepts are:

align a Controls the placement of the image in the rectangle (unimplemented).

408

CONTROL(2) CONTROL(2)

border b
bordercolor name
focus n
format fmt
hide
image name
light name
mask name
rect minx miny maxx maxy
reveal
show
size min�x min�y max�x max�y
value n Set the button to �on� (if n is non-zero) or �off� (if n is zero).

Column
A column is a grouping control which lays out its members vertically, from top to bottom. Cur
rently, columns ignore mouse and keyboard events, but there are plans to allow dragging the bor
ders (when they have non-zero width) between constituent members.

add name ... adds the named control to the column of controls. The vertical order is deter
mined by the order of adding. The first named control goes at the top. It is
possible to add one control to multiple grouping controls but the layout of the
result will be quite unpredictable.

border width Set the border between members to the width given.
bordercolor color
hide
image color Background color displayed between member controls.
reveal
separation width

Set the separation between member controls to n pixels.
show These three commands are passed on to the member controls. Show also

(re)displays the borders between members.
rect minx miny maxx maxy

The member controls are layed out within the given rectangle according to the
minimum and maximum sizes given. If the rectangle is not large enough for
the minimum a fatal error is currently generated. However, see the example at
the end of this man page. If the controls at their maximum size are not big
enough to fit, they are centered at their maximum size in the space given. Oth
erwise, controls will get their minimum size and be enlarged proportional to the
extra size given by the maximum until they fit given rectangle. The members
are separated by borders of the width established by borderwidth.

remove name Remove the named control from the column.
size [min�x min�y max�x max�y]

Without arguments, this command computes the minimum and maximum size
of a column by adding the minimum and maximum heights to set min�y and
max�y, and it finds the largest minimum and maximum widths to set min�y
and max�y. When called with arguments, it simply sets the minimum and maxi
mum sizes to those given.

Entry
The entry control manages a single line of editable text. When the user hits a carriage return any
where in the text, the control generates the event message,

entryname: value s

with s the complete text of the entry box.

The cursor can be moved by clicking button 1; at the moment, there is no way to select characters,
only a typing position. Some control characters have special actions: control-H (backspace)
deletes the character before the cursor; control-U clears the line; and control-V pastes the snarf
buffer at the typing position. Most important, carriage return sends the text to the event channel.

To enter passwords and other secret text without displaying the contents, set the font to one in
which all characters are the same. The easiest way to do this is to make a font containing only one

409

CONTROL(2) CONTROL(2)

character, at position 0 (NUL), since that position is used to render all characters not otherwise
defined in the font (see draw(2)). The file /lib/font/bit/lucm/passwd.9.font defines
such a font.

The control messages the entry control accepts are:

align a Controls the placement of the text in the rectangle.
border b
bordercolor name
data After receiving this message, the entry will send its value to its data channel as an

unadorned, unquoted string.
focus n When it receives focus, the entry box displays a typing cursor. When it does not

have focus, the cursor is not displayed.
font name
format fmt
hide
image name
rect minx miny maxx maxy
reveal
show
size min�x min�y max�x max�y
textcolor name
value s Set the string displayed in the entry box.

Keyboard
The keyboard control implements a simulated keyboard useful on palmtop devices. Keystrokes,
generated by mouse button 1 on the simulated keys, are sent as event messages:

keyboardname: value 0xnn

where nn is the hexadecimal Unicode value of the character. Shift, control, and caps lock are han
dled by the keyboard control itself; shift and control affect only the next regular keystroke. The Alt
key is unimplemented; it will become equivalent to the standard Plan 9 key for synthesizing non-
ASCII characters.

There are two special keys, Scrib and Menu, which return values 0x10000 and 0x10001.

The image, mask, light rules are used to indicate that a key is pressed, but to aid clumsy fingers
the keystroke is not generated until the key is released, so it is possible to slide the pointer to a
different key to correct for bad aim.

The control messages the keyboard accepts are:

border b
bordercolor name
focus n
font name1 name2

Sets the font for the keys. If only one font is named, it is used for all keys. If two are
named, the second is used for key caps with special names such as Shift and Enter.
(Good choices on the Bitsy are
/lib/font/bit/lucidasans/boldlatin1.6.font for the first and
/lib/font/bit/lucidasans/unicode.6.font for the second argument.) If
neither is specified, both will be set to the default global font.

format fmt
hide
image name
light name
mask name
rect minx miny maxx maxy
reveal
show
size minx miny maxx maxy

Label
A label is like a textbutton (q.v.) that does not react, but whose value is the text it displays. The

410

CONTROL(2) CONTROL(2)

control messages it accepts are:

align a Controls the placement of the image in the rectangle.
border b
bordercolor name
focus n
font name
hide
image name
rect minx miny maxx maxy
reveal
show
size minx miny maxx maxy
textcolor name
value s The value is a string that can be modified only by sending this message to the ctl

file.

Menu
A menu is a pop-up window containing a set of textual selections. When a selection is made, it
removes itself from the screen and reports the selection by value:

menuname: value n

If no selection is made, no message is reported. Because it creates a window, programs using a
menu must have their screen variable (see graphics(2) and window(2)) set up to be refreshed
properly. The easiest way to do this is to call getwindow with refresh argument Refbackup
(see graphics(2)); most programs use Refnone.

The control messages accepted by a menu are:

add text Add a line of text to the end of the menu.
align a Controls the left-right placement of the text in its rectangle.
border b
bordercolor name
focus n
font name
format fmt
hide
image name
rect minx miny maxx maxy
reveal
size minx miny maxx maxy

Only the origin of the rectangle is significant; menus calculate the appropriate size.
selectcolor name

Set the color in which to highlight selected lines; default yellow.
selecttextcolor name

Set the color in which to draw the text in selected lines; default black.
show Display the menu. Not usually needed unless the menu is changed while visible; use

window instead.
window
window n With no arguments, toggle the menu�s visibility; otherwise make it visible (1) or

invisible (0). When the selection is made, the menu will remove its window automat
ically.

Radiobutton
The radiobutton assembles a group of buttons or textbuttons into a single control with a numeric
value. Its value is �1 if none of the constituent buttons is pressed; otherwise it is the index, start
ing at zero, of the button that is pressed. Only one button may be pressed; the radiobutton
manipulates its buttons to guarantee this. State changes trigger an event message:

radiobuttonname: value n

Buttons are added to the radio button using the add message; there is no way to remove them,
although they may be turned off independently using deactivate. The index reported in the value
is defined by the order in which the buttons are added. The constituent buttons should be

411

CONTROL(2) CONTROL(2)

configured and layed out in the usual way; the rectangle of the radiobutton is used only to �catch�

mouse events and should almost always correspond to the bounding box of the constituent but
tons. In other words, the geometry is not maintained automatically.

The control messages the radiobutton accepts are:

add name Add the control with the specified name to the radiobutton.
focus n
format fmt
hide
rect minx miny maxx maxy
reveal
size minx miny maxx maxy
show
value n

Row
A row groups a number of member controls left to right in a rectangle. Rows behave exactly like
columns with the roles of x and y interchanged.

The control messages it accepts are:

add name ...
border width
bordercolor color
hide
image color
rect minx miny maxx maxy
remove name
reveal
separation width
show
size [min�x min�y max�x max�y]

Scribble
The scribble control provides a region in which strokes drawn with mouse button 1 are interpreted
as characters in the manner of scribble(2). In most respects, including the format of its event mes
sages, it is equivalent to a keyboard control.

The control messages it accepts are:

align a Controls the placement of the image in the rectangle (unimplemented).
border b
bordercolor name
focus n
font name Used to display the indicia.
hide
image name
linecolor name The color in which to draw the strokes; default black.
rect minx miny maxx maxy
reveal
size minx miny maxx maxy
show

Stack
A stack groups a number of member controls in the same shared rectangle. Only one of these
controls will be visible (revealed), the others are hidden.

The control messages it accepts are:

hide
rect minx miny maxx maxy
remove name
reveal [n] Without argument, reveal is the opposite of hide: it makes its selected con

trol visible after it was hidden. With an argument, it makes the n�th added con
trol visible, hiding all others.

412

CONTROL(2) CONTROL(2)

show
size [min�x min�y max�x max�y]

Without argument, size computes the maximum of the minimum and maximum
sizes of its constituent controls. With arguments, it sets the size to the given val
ues.

Slider
A slider controls an integer value by dragging the mouse with a button. Configured appropriately,
it can serve as a scroll bar with the standard Plan 9 behavior. When the value changes, an event
message is sent:

slidername: value n

The slider is a good candidate for connecting to another control by setting its format and rewiring
its event channel to the other�s ctl channel.

The geometry of the slider is defined by three numbers: max is a number representing the range
of the slider; vis is a number representing how much of what is being controlled is visible; and
value is a number representing the value of the slider within its range. For example, if the slider
is managing a textual display of 1000 lines, with 18 visible, and the first visible line (numbered
starting form 0) is 304, max will be 1000, vis will be 18, and value will be 304. The indicator
is the visual representation of the vis portion of the controlled object.

The control messages the slider accepts are:

absolute n If n is zero, the slider behaves like a Plan 9 scroll bar: button 2 sets absolute
position, button 1 decreases the value, and button 3 increases it. If n is non-
zero, all buttons behave like button 2, setting the absolute value.

border b
bordercolor name
clamp end n The end is either the word high or low; n sets whether that end is clamped or

not. If it is clamped, that end of the indicator is always at its supremum. A stan
dard scroll bar has neither end clamped; a volume slider would have its low end
clamped. If the low end is clamped, the value of the slider is represented by the
high end of the indicator; otherwise it is represented by the low end.

focus n
format fmt
hide
image name
indicatorcolor name

Set the color in which to draw the indicator; default black.
max n Set the maximum value of the range covered by the slider.
orient dir The string dir begins either hor or ver to specify the orientation of the slider.

The default is vertical. The value always increases to the right for horizontal slid
ers and downwards for vertical sliders.

rect minx miny maxx maxy
reveal
size minx miny maxx maxy
show
value n
vis n Set the visible area shown by the indicator.

Tab
A tab control combines radiobottuns with a stack of windows giving the appearance of tabbed con
trols. Currently, the tabs are positioned at the top of the stack. The radiobutton consists of
textbuttons, the stack can be composed of any type of control.

Control messages are

add button control button control ...
Adds a button to the radiobutton, and an associated control to the stack. But
tons and controls are numbered in the order of addition. There is no remove
operation.

border b

413

CONTROL(2) CONTROL(2)

bordercolor color
focus n
format fmt When a format string is defined, the tab control reports which tab is selected

using the format string (which must print a char* and an int).
image color Color between member controls.
separation n Spacing between buttons in the radiobutton and between the row of buttons and

the stack below it.
rect n n n n
hide
reveal
size n n n n
show
value n Value must be an integer indicating which tab to bring to the top.

Text
A text control presents a set of lines of text. The text cannot be edited with the keyboard, but can
be changed by control messages. (A more interactive text control will be created eventually.) The
mouse can be used to select lines of text. The only event message reports a state change in the
selection of a line:

textname: select n s

states that line n has changed its selection state to s, either zero (unselected) or non-zero
(selected). The non-zero value encodes the mouse buttons that were down when the selection
occurred.

The control messages the text control accepts are:

accumulate s
accumulate n s
add s
add n s With one argument, append the string s as a new last line of the control; if n

is specified, add the line before the current line n, making the new line num
ber n. The lines are zero indexed and n can be no greater than the current
number of lines. Add refreshes the display, but accumulate does not, to
avoid n-squared behavior when assembling a piece of text.

align a Controls the placement of each line of text left-to-right in its rectangle. Ver
tically, lines are tightly packed with separation set by the font�s interline
spacing.

border b
bordercolor name
clear Delete all text.
delete n Delete line n.
focus n
font name
image name
rect minx miny maxx maxy
replace n s Replace line n by the string s.
reveal
scroll n If n is non-zero, the text will automatically scroll so the last line is always vis

ible when new text is added.
select n m Set the selection state of line n to m.
selectcolor name

Set the color in which to highlight selected lines; default yellow.
selectmode s The string s is either single or multi. If single, the default, only one

line may be selected at a time; when a line is selected, other lines are unse
lected. If multi, the selection state of individual lines can be toggled inde
pendently.

size minx miny maxx maxy
show
textcolor name

414

CONTROL(2) CONTROL(2)

topline n Scroll the text so the top visible line is number n.
value s Delete all the text in the control and then add the single line s.

Textbutton
A textbutton is a textual variant of a plain button. Each state change triggers an event message:

textbuttonname: value n

where n encodes the mouse buttons used to make the selection.

Like a regular button, the value of a textbutton is an integer; the text is the string that appears in
the button. It uses the image, light, mask method of indicating its state; moreover, the color of
the text can be set to change when the button is pressed. The control messages it accepts are:

align a Controls the placement of the text in the rectangle.
border b
bordercolor name
focus n
font name
format fmt
hide
image name
light name
mask name
pressedtextcolor name

Set the color in which to display text when the textbutton is pressed.
rect minx miny maxx maxy
reveal
size minx miny maxx maxy
show
text s Set the text displayed in the button.
textcolor name
value n Set the button to �on� (if n is non-zero) or �off� (if n is zero).

Helper functions
The function ctlerror is called when the library encounters an error. It prints the formatted mes
sage and exits the program.

The functions ctlmalloc, ctlrealloc, ctlstrdup, and ctlrunestrdup are packagings of the correspond
ing C library functions. They call ctlerror if they fail to allocate memory, and ctlmalloc zeros the
memory it returns.

Finally, for debugging, if the global variable ctldeletequits is set to a non-zero value, typing a DEL

will cause the program to call

ctlerror("delete");

Caveat
This library is very new and is still missing a number of important features. The details are all sub
ject to change. Another level of library that handles geometry and has sensible default appear
ances for the controls would be useful.

One unusual design goal of this library was to make the controls themselves easy to implement.
The reader is encouraged to create new controls by adapting the source to existing ones.

EXAMPLES
This example creates two entry boxes, top and bot, and copies the contents of one to the other
whenever a newline is typed.

#include <u.h>
#include <libc.h>
#include <thread.h>
#include <draw.h>
#include <mouse.h>
#include <keyboard.h>
#include <control.h>

Controlset *cs;

415

CONTROL(2) CONTROL(2)

int ctldeletequits = 1;

void
resizecontrolset(Controlset*)
{

int i;
Rectangle r, r1, r2;

if(getwindow(display, Refnone) < 0)
sysfatal("resize failed: %r");

r = insetrect(screen−>r, 10);
r1 = r;
r2 = r;
r1.max.y = r1.min.y+1+font−>height+1;
r2.min.y = r1.max.y+10;
r2.max.y = r2.min.y+1+font−>height+1;
chanprint(cs−>ctl, "top rect %R\ntop show", r1);
chanprint(cs−>ctl, "bot rect %R\nbot show", r2);

}

void
threadmain(int argc, char *argv[])
{

char *s, *args[3];
Channel *c;
Control *top, *bot;
int n;

initdraw(0, 0, "example");
initcontrols();
cs = newcontrolset(screen, nil, nil, nil);
cs−>clicktotype = 1;

top = createentry(cs, "top");
chanprint(cs−>ctl, "top image paleyellow");
chanprint(cs−>ctl, "top border 1");
bot = createentry(cs, "bot");
chanprint(cs−>ctl, "bot image paleyellow");
chanprint(cs−>ctl, "bot border 1");

c = chancreate(sizeof(char*), 0);
controlwire(top, "event", c);
controlwire(bot, "event", c);

activate(top);
activate(bot);
resizecontrolset(cs);

for(;;){
s = recvp(c);
n = tokenize(s, args, nelem(args));
if(n==3 && strcmp(args[1], "value")==0){

if(strcmp(args[0], "top:") == 0)
chanprint(cs−>ctl, "bot value %q", args[2]);

else
chanprint(cs−>ctl, "top value %q", args[2]);

}
}
threadexitsall(nil);

}

A richer variant couples a text entry box to a slider. Since the value of a slider is its numerical set
ting, as a decimal number, all that needs changing is the setup of bot:

416

CONTROL(2) CONTROL(2)

bot = createslider(cs, "bot");
chanprint(cs−>ctl, "bot border 1");
chanprint(cs−>ctl, "bot image paleyellow");
chanprint(cs−>ctl, "bot indicatorcolor red");
chanprint(cs−>ctl, "bot max 100");
chanprint(cs−>ctl, "bot clamp low 1");
chanprint(cs−>ctl, "bot orient horizontal");

The rest is the same. Of course, the value of the entry box is only meaningful to the slider if it is
also a decimal number.

Finally, we can avoid processing events altogether by cross-coupling the controls. Replace the rest
of threadmain with this:

chanprint(cs−>ctl, "bot format %q", "%q: top value %q");
chanprint(cs−>ctl, "top format %q", "%q: bot value %q");

controlwire(top, "event", cs−>ctl);
controlwire(bot, "event", cs−>ctl);

activate(top);
activate(bot);
resizecontrolset(cs);

for(;;)
yield();

threadexitsall(nil);

SOURCE
/sys/src/libcontrol

SEE ALSO
draw(2), frame(2), graphics(2), quote(2), thread(2)

BUGS
The library is strict about matters of formatting, argument count in messages, etc., and calls
ctlerror in situations where it may be fine to ignore the error and continue.

417

CPUTIME(2) CPUTIME(2)

NAME
cputime, times, cycles � cpu time in this process and children

SYNOPSIS
#include <u.h>
#include <libc.h>

long times(long t[4])

double cputime(void)

void cycles(uvlong *cyclep)

DESCRIPTION
If t is non-null, times fills it in with the number of milliseconds spent in user code, system calls,
child processes in user code, and child processes in system calls. Cputime returns the sum of
those same times, converted to seconds. Times returns the elapsed real time, in milliseconds, that
the process has been running.

These functions read /dev/cputime, opening that file when they are first called.

Cycles reads the processor�s timestamp counter of cycles since reset, if any, and stores it via
cyclep. Currently supported architectures are 386, amd64, and power; on all others, cycles will
store zero.

SOURCE
/sys/src/libc/9sys
/sys/src/libc/*/cycles.[cs]

SEE ALSO
exec(2), cons(3)

BUGS
Only 386 processors starting with the Pentium have timestamp counters; calling cycles on earlier
processors may execute an illegal instruction.

418

CTIME(2) CTIME(2)

NAME
ctime, localtime, gmtime, asctime, tm2sec, timezone � convert date and time

SYNOPSIS
#include <u.h>
#include <libc.h>

char* ctime(long clock)

Tm* localtime(long clock)

Tm* gmtime(long clock)

char* asctime(Tm *tm)

long tm2sec(Tm *tm)

/env/timezone

DESCRIPTION
Ctime converts a time clock such as returned by time(2) into ASCII (sic) and returns a pointer to a
30-byte string in the following form. All the fields have constant width.

Wed Aug 5 01:07:47 EST 1973\n\0

Localtime and gmtime return pointers to structures containing the broken-down time. Localtime
corrects for the time zone and possible daylight savings time; gmtime converts directly to GMT.
Asctime converts a broken-down time to ASCII and returns a pointer to a 30-byte string.

typedef
struct {

int sec; /* seconds (range 0..59) */
int min; /* minutes (0..59) */
int hour; /* hours (0..23) */
int mday; /* day of the month (1..31) */
int mon; /* month of the year (0..11) */
int year; /* year A.D. � 1900 */
int wday; /* day of week (0..6, Sunday = 0) */
int yday; /* day of year (0..365) */
char zone[4]; /* time zone name */
int tzoff; /* time zone delta from GMT */

} Tm;

Tm2sec converts a broken-down time to seconds since the start of the epoch. It ignores wday,
and assumes the local time zone if zone is not GMT.

When local time is first requested, the program consults the timezone environment variable to
determine the time zone and converts accordingly. (This variable is set at system boot time by
init(8).) The timezone variable contains the normal time zone name and its difference from GMT
in seconds followed by an alternate (daylight) time zone name and its difference followed by a
newline. The remainder is a list of pairs of times (seconds past the start of 1970, in the first time
zone) when the alternate time zone applies. For example:

EST −18000 EDT −14400
9943200 25664400 41392800 57718800 ...

Greenwich Mean Time is represented by

GMT 0 GMT 0
0

SOURCE
/sys/src/libc/9sys

SEE ALSO
date(1), time(2), tmdate(2), init(8)

BUGS
The return values point to static data whose content is overwritten by each call.

419

CTIME(2) CTIME(2)

Daylight Savings Time is ��normal�� in the Southern hemisphere.
These routines are not equipped to handle non-ASCII text, and are provincial anyway.
These routines may garble the date when passed a date parsed with tmparse(2).

420

CTYPE(2) CTYPE(2)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, isascii,
toascii, _toupper, _tolower, toupper, tolower � ASCII character classification

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <ctype.h>

isalpha(c)

isupper(c)

islower(c)

isdigit(c)

isxdigit(c)

isalnum(c)

isspace(c)

ispunct(c)

isprint(c)

isgraph(c)

iscntrl(c)

isascii(c)

_toupper(c)

_tolower(c)

toupper(c)

tolower(c)

toascii(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a predicate returning
nonzero for true, zero for false. Isascii is defined on all integer values; the rest are defined only
where isascii is true and on the single non-ASCII value EOF; see fopen(2).

isalpha c is a letter, a�z or A�Z

isupper c is an upper case letter, A�Z

islower c is a lower case letter, a�z

isdigit c is a digit, 0�9

isxdigit c is a hexadecimal digit, 0�9 or a�f or A�F

isalnum c is an alphanumeric character, a�z or A�Z or 0�9

isspace c is a space, horizontal tab, newline, vertical tab, formfeed, or carriage return (0x20, 0x9,
0xA, 0xB, 0xC, 0xD)

ispunct c is a punctuation character (one of !"#$%&’()*+,−./:;<=>?@[\]^_‘{|}~)

isprint c is a printing character, 0x20 (space) through 0x7E (tilde)

isgraph c is a visible printing character, 0x21 (exclamation) through 0x7E (tilde)

iscntrl c is a delete character, 0x7F, or ordinary control character, 0x0 through 0x1F

isascii c is an ASCII character, 0x0 through 0x7F

Toascii is not a classification macro; it converts its argument to ASCII range by anding with 0x7F.

If c is an upper case letter, tolower returns the lower case version of the character; otherwise it
returns the original character. Toupper is similar, returning the upper case version of a character
or the original character. Tolower and toupper are functions; _tolower and _toupper are corre
sponding macros which should only be used when it is known that the argument is upper case or
lower case, respectively.

SOURCE
/sys/include/ctype.h for the macros.
/sys/src/libc/port/ctype.c for the tables.

SEE ALSO
isalpharune(2)

BUGS
These macros are ASCII-centric.

421

DEBUGGER(2) DEBUGGER(2)

NAME
cisctrace, risctrace, ciscframe, riscframe, localaddr, symoff, fpformat, beieee80ftos, beieeesftos,
beieeedftos, leieee80ftos, leieeesftos, leieeedftos, ieeesftos, ieeedftos � machine-independent
debugger functions

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <bio.h>
#include <mach.h>

int cisctrace(Map *map, uvlong pc, uvlong sp, uvlong link,
Tracer trace)

int risctrace(Map *map, uvlong pc, uvlong sp, uvlong link,
Tracer trace)

uvlong ciscframe(Map *map, uvlong addr, uvlong pc, uvlong sp,
uvlong link)

uvlong riscframe(Map *map, uvlong addr, uvlong pc, uvlong sp,
uvlong link)

int localaddr(Map *map, char *fn, char *var, uvlong *ret,
Rgetter rget)

int symoff(char *buf, int n, uvlong addr, int type)

int fpformat(Map *map, Reglist *rp, char *buf, int n, int code)

int beieee80ftos(char *buf, int n, void *fp)

int beieeesftos(char *buf, int n, void *fp)

int beieeedftos(char *buf, int n, void *fp)

int leieee80ftos(char *buf, int n, void *fp)

int leieeesftos(char *buf, int n, void *fp)

int leieeedftos(char *buf, int n, void *fp)

int ieeesftos(char *buf, int n, ulong f)

int ieeedftos(char *buf, int n, ulong high, ulong low)

extern Machdata *machdata;

DESCRIPTION
These functions provide machine-independent implementations of common debugger functions.
Many of the functions assume that global variables mach and machdata point to the Mach and
Machdata data structures describing the target architecture. The former contains machine param
eters and a description of the register set; it is usually set by invoking crackhdr (see mach(2)) to
interpret the header of an executable. The Machdata structure is primarily a jump table specifying
functions appropriate for processing an executable image for a given architecture. Each applica
tion is responsible for setting machdata to the address of the Machdata structure for the target
architecture. Many of the functions described here are not called directly; instead, they are invoked
indirectly through the Machdata jump table.

These functions must retrieve data and register contents from an executing image. The Map (see
mach(2)) data structure supports the consistent retrieval of data, but no uniform access mecha
nism exists for registers. The application passes the address of a register retrieval function as an
argument to those functions requiring register values. This function, called an Rgetter, is of the
form

ulong rget(Map *map, char *name);

It returns the contents of a register when given the address of a Map associated with an executing
image and the name of the register.

422

DEBUGGER(2) DEBUGGER(2)

Cisctrace and risctrace unwind the stack for up to 40 levels or until the frame for main is found.
They return the count of the number of levels unwound. These functions process stacks conform
ing to the generic compiler model for RISC and CISC architectures, respectively. Map is the address
of a Map data structure associated with the image of an executing process. Sp, pc and link are
starting values for the stack pointer, program counter, and link register from which the unwinding
is to take place. Normally, they are the current contents of the appropriate registers but they can
be any values defining a legitimate process context, for example, an alternate stack in a multi-
threaded process. Trace is the address of an application-supplied function to be called on each
iteration as the frame unwinds. The prototype of this function is:

void tracer(Map *map, ulong pc, ulong fp, Symbol *s);

where Map is the Map pointer passed to cisctrace or risctrace and pc and fp are the program
counter and frame pointer. S is the address of a Symbol structure, as defined in symbol(2), con
taining the symbol table information for the function owning the frame (i.e., the function that
caused the frame to be instantiated).

Ciscframe and riscframe calculate the frame pointer associated with a function. They are suitable
for programs conforming to the CISC and RISC stack models. Map is the address of a Map associ
ated with the memory image of an executing process. Addr is the entry point of the desired func
tion. Pc, sp and link are the program counter, stack pointer and link register of an execution con
text. As with the stack trace functions, these can be the current values of the registers or any
legitimate execution context. The value of the frame pointer is returned. A return value of zero
indicates an error.

Localaddr fills the location pointed to by ret with the address of a local variable. Map is the
address of a Map associated with an executing memory image. Fn and var are pointers to the
names of the function and variable of interest. Rget is the address of a register retrieval function.
If both fn and var are non-zero, the frame for function fn is calculated and the address of the
automatic or argument named var in that frame is returned. If var is zero, the address of the
frame for function fn is returned. In all cases, the frame for the function named fn must be instan
tiated somewhere on the current stack. If there are multiple frames for the function (that is, if it is
recursive), the most recent frame is used. The search starts from the context defined by the cur
rent value of the program counter and stack pointer. If a valid address is found, localaddr returns
1. A negative return indicates an error in resolving the address.

Symoff converts a virtual address to a symbolic reference. The string containing that reference is
of the form �name+offset�, where �name� is the name of the nearest symbol with an address less
than or equal to the target address and �offset� is the hexadecimal offset beyond that symbol. If
�offset� is zero, only the name of the symbol is printed. If no symbol is found within 4,096 bytes
of the address, the address is formatted as a hexadecimal address. Buf is the address of a buffer
of n characters to receive the formatted string. Addr is the address to be converted. Type is the
type code of the search space: CTEXT, CDATA, or CANY. Symoff returns the length of the format
ted string contained in buf.

Fpformat converts the contents of a floating point register to a string. Map is the address of a
Map associated with an executing process. Rp is the address of a Reglist data structure describing
the desired register. Buf is the address of a buffer of n characters to hold the resulting string.
Code must be either F or f, selecting double or single precision, respectively. If code is F, the
contents of the specified register and the following register are interpreted as a double precision
floating point number; this is only meaningful for architectures that implement double precision
floats by combining adjacent single precision registers. For code f, the specified register is for
matted as a single precision float. Fpformat returns 1 if the number is successfully converted or
�1 in the case of an error.

Beieee80ftos, beieeesftos and beieeedftos convert big-endian 80-bit extended, 32-bit single preci
sion, and 64-bit double precision floating point values to a string. Leieee80ftos , leieeesftos, and
leieeedftos are the little-endian counterparts. Buf is the address of a buffer of n characters to
receive the formatted string. Fp is the address of the floating point value to be converted. These
functions return the length of the resulting string.

Ieeesftos converts the 32-bit single precision floating point value f, to a string in buf, a buffer of n
bytes. It returns the length of the resulting string.

423

DEBUGGER(2) DEBUGGER(2)

Ieeedftos converts a 64-bit double precision floating point value to a character string. Buf is the
address of a buffer of n characters to hold the resulting string. High and low contain the most and
least significant 32 bits of the floating point value, respectively. Ieeedftos returns the number of
characters in the resulting string.

SOURCE
/sys/src/libmach

SEE ALSO
mach(2), symbol(2), errstr(2)

DIAGNOSTICS
Set errstr.

424

DES(2) DES(2)

NAME
setupDESstate, des_key_setup, block_cipher, desCBCencrypt, desCBCdecrypt, desECBencrypt,
desECBdecrypt, des3CBCencrypt, des3CBCdecrypt, des3ECBencrypt, des3ECBdecrypt, key_setup,
des56to64, des64to56, setupDES3state, triple_block_cipher - single and triple digital encryption
standard

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>

void des_key_setup(uchar key[8], ulong schedule[32])

void block_cipher(ulong *schedule, uchar *data, int decrypting)

void setupDESstate(DESstate *s, uchar key[8], uchar *ivec)

void desCBCencrypt(uchar *p, int len, DESstate *s)

void desCBCdecrypt(uchar *p, int len, DESstate *s)

void desECBencrypt(uchar *p, int len, DESstate *s)

void desECBdecrypt(uchar *p, int len, DESstate *s)

void triple_block_cipher(ulong expanded_key[3][32], uchar text[8],
int ende)

void setupDES3state(DES3state *s, uchar key[3][8], uchar *ivec)

void des3CBCencrypt(uchar *p, int len, DES3state *s)

void des3CBCdecrypt(uchar *p, int len, DES3state *s)

void des3ECBencrypt(uchar *p, int len, DES3state *s)

void des3ECBdecrypt(uchar *p, int len, DES3state *s)

void key_setup(uchar[7], ulong[32])

void des56to64(uchar *k56, uchar *k64)

void des64to56(uchar *k64, uchar *k56)

DESCRIPTION
The Digital Encryption Standard (DES) is a shared-key or symmetric encryption algorithm using
either a 56-bit key for single DES or three 56-bit keys for triple DES. The keys are encoded into
64 bits where every eight bit is parity.

The basic DES function, block_cipher, works on a block of 8 bytes, converting them in place. It
takes a key schedule, a pointer to the block, and a flag indicating encrypting (0) or decrypting (1).
The key schedule is created from the key using des_key_setup .

Since it is a bit awkward, block_cipher is rarely called directly. Instead, one normally uses routines
that encrypt larger buffers of data and which may chain the encryption state from one buffer to the
next. These routines keep track of the state of the encryption using a DESstate structure that
contains the key schedule and any chained state. SetupDESstate sets up the DESstate structure
using the key and an 8-byte initialization vector.

Electronic code book, using desECBencrypt and desECBdecrypt , is the less secure mode. The
encryption of each 8 bytes does not depend on the encryption of any other. Hence the encryption
is a substitution cipher using 64 bit characters.

Cipher block chaining mode, using desCBCencrypt and desCBCdecrypt, is more secure. Every
block encrypted depends on the initialization vector and all blocks encrypted before it.

For both CBC and ECB modes, a stream of data can be encrypted as multiple buffers. However, all
buffers except the last must be a multiple of 8 bytes to ensure successful decryption of the stream.

There are equivalent triple-DES (DES3-EDE) functions for each of the DES functions.

425

DES(2) DES(2)

In the past, Plan 9 used a 56-bit or 7-byte format for DES keys. To be compatible with the rest of
the world, we�ve abandoned this format. There are two functions, des56to64 and des64to56, to
convert back and forth between the two formats. Also a key schedule can be set up from the 7-
byte format using key_setup.

SOURCE
/sys/src/libsec

SEE ALSO
mp(2), aes(2), blowfish(2), dsa(2), elgamal(2), rc4(2), rsa(2), sechash(2), prime(2), rand(2)
Breaking DES, Electronic Frontier Foundation, O�Reilly, 1998

BUGS
Single DES can be realistically broken by brute-force; its 56-bit key is just too short. It should not
be used in new code, which should probably use aes(2) instead, or at least triple DES.

426

DIAL(2) DIAL(2)

NAME
dial, hangup, announce, listen, accept, reject, netmkaddr, setnetmtpt, getnetconninfo, freenetcon
ninfo � make and break network connections

SYNOPSIS
#include <u.h>
#include <libc.h>

int dial(char *addr, char *local, char *dir, int *cfdp)

int hangup(int ctl)

int announce(char *addr, char *dir)

int listen(char *dir, char *newdir)

int accept(int ctl, char *dir)

int reject(int ctl, char *dir, char *cause)

char* netmkaddr(char *addr, char *defnet, char *defservice)

void setnetmtpt(char *to, int tolen, char *from)

NetConnInfo* getnetconninfo(char *conndir, int fd)

void freenetconninfo(NetConnInfo*)

DESCRIPTION
For these routines, addr is a network address of the form network!netaddr!service,
network!netaddr, or simply netaddr. Network is any directory listed in /net or the special token,
net. Net is a free variable that stands for any network in common between the source and the
host netaddr. Netaddr can be a host name, a domain name, a network address, or a meta-name of
the form $attribute, which is replaced by value from the value-attribute pair attribute=value most
closely associated with the source host in the network data base (see ndb(6)).

If a connection attempt is successful and dir is non-zero, the path name of a line directory that
has files for accessing the connection is copied into dir. The path name is guaranteed to be less
than 40 bytes long. One line directory exists for each possible connection. The data file in the
line directory should be used to communicate with the destination. The ctl file in the line direc
tory can be used to send commands to the line. See ip(3) for messages that can be written to the
ctl file. The last close of the data or ctl file will close the connection.

Dial makes a call to destination addr on a multiplexed network. If the network in addr is net, dial
will try all addresses on networks in common between source and destination until a call succeeds.
It returns a file descriptor open for reading and writing the data file in the line directory. The
addr file in the line directory contains the address called. If the network allows the local address
to be set, as is the case with UDP and TCP port numbers, and local is non-zero, the local address
will be set to local. If cfdp is non-zero, *cfdp is set to a file descriptor open for reading and writ
ing the control file.

Hangup is a means of forcing a connection to hang up without closing the ctl and data files.

Announce and listen are the complements of dial. Announce establishes a network name to which
calls can be made. Like dial, announce returns an open ctl file. The netaddr used in announce
may be a local address or an asterisk, to indicate all local addresses, e.g. tcp!*!echo. The
listen routine takes as its first argument the dir of a previous announce. When a call is received,
listen returns an open ctl file for the line the call was received on. It sets newdir to the path
name of the new line directory. Accept accepts a call received by listen, while reject refuses the
call because of cause. Accept returns a file descriptor for the data file opened ORDWR.

Netmkaddr makes an address suitable for dialing or announcing. It takes an address along with a
default network and service to use if they are not specified in the address. It returns a pointer to
static data holding the actual address to use.

Getnetconninfo returns a structure containing information about a network connection. The struc
ture is:
typedef struct NetConnInfo NetConnInfo;
struct NetConnInfo

427

DIAL(2) DIAL(2)

{
char *dir; /* connection directory */
char *root; /* network root */
char *spec; /* binding spec */
char *lsys; /* local system */
char *lserv; /* local service */
char *rsys; /* remote system */
char *rserv; /* remote service */
char *laddr; /* local address */
char *raddr; /* remote address */

};

The information is obtained from the connection directory, conndir. If conndir is nil, the directory
is obtained by performing fd2path(2) on fd. Getnetconninfo returns either a completely specified
structure, or nil if either the structure can�t be allocated or the network directory can�t be deter
mined. The structure is freed using freenetconninfo.

Setnetmtpt copies the name of the network mount point into the buffer to, whose length is tolen. It
exists to merge two pre-existing conventions for specifying the mount point. Commands that take
a network mount point as a parameter (such as dns, cs (see ndb(8)), and ipconfig(8)) should now
call setnetmtpt. If from is nil, the mount point is set to the default, /net. If from points to a
string starting with a slash, the mount point is that path. Otherwise, the mount point is the string
pointed to by from appended to the string /net. The last form is obsolete and is should be
avoided. It exists only to aid in conversion.

EXAMPLES
Make a call and return an open file descriptor to use for communications:

int callkremvax(void)
{

return dial("kremvax", nil, nil, nil);
}

Call the local authentication server:

int dialauth(char *service)
{

return dial(netmkaddr("$auth", nil, service), nil, nil, nil);
}

Announce as kremvax on TCP/IP and loop forever receiving calls and echoing back to the caller
anything sent:

int
bekremvax(void)
{

int dfd, acfd, lcfd;
char adir[40], ldir[40];
int n;
char buf[256];

acfd = announce("tcp!*!7", adir);
if(acfd < 0)

return −1;
for(;;){

/* listen for a call */
lcfd = listen(adir, ldir);
if(lcfd < 0)

return −1;
/* fork a process to echo */
switch(fork()){
case −1:

perror("forking");
close(lcfd);

428

DIAL(2) DIAL(2)

break;
case 0:

/* accept the call and open the data file */
dfd = accept(lcfd, ldir);
if(dfd < 0)

return −1;

/* echo until EOF */
while((n = read(dfd, buf, sizeof(buf))) > 0)

write(dfd, buf, n);
exits(nil);

default:
close(lcfd);
break;

}
}

}

SOURCE
/sys/src/libc/9sys, /sys/src/libc/port

SEE ALSO
auth(2), ip(3), ndb(8)

DIAGNOSTICS
Dial, announce, and listen return �1 if they fail. Hangup returns nonzero if it fails.

429

DIRREAD(2) DIRREAD(2)

NAME
dirread, dirreadall � read directory

SYNOPSIS
#include <u.h>
#include <libc.h>

long dirread(int fd, Dir **buf)

long dirreadall(int fd, Dir **buf)

#define STATMAX 65535U

#define DIRMAX (sizeof(Dir)+STATMAX)

DESCRIPTION
The data returned by a read(2) on a directory is a set of complete directory entries in a machine-
independent format, exactly equivalent to the result of a stat(2) on each file or subdirectory in the
directory. Dirread decodes the directory entries into a machine-dependent form. It reads from fd
and unpacks the data into an array of Dir structures whose address is returned in *buf (see
stat(2) for the layout of a Dir). The array is allocated with malloc(2) each time dirread is called.

Dirreadall is like dirread, but reads in the entire directory; by contrast, dirread steps through a
directory one read(2) at a time.

Directory entries have variable length. A successful read of a directory always returns an integral
number of complete directory entries; dirread always returns complete Dir structures. See
read(5) for more information.

The constant STATMAX is the maximum size that a directory entry can occupy. The constant
DIRMAX is an upper limit on the size necessary to hold a Dir structure and all the associated
data.

Dirread and dirreadall return the number of Dir structures filled in buf. The file offset is
advanced by the number of bytes actually read.

SOURCE
/sys/src/libc/9sys/dirread.c

SEE ALSO
intro(2), open(2), read(2)

DIAGNOSTICS
Dirread and Dirreadall return zero for end of file and a negative value for error. In either case,
*buf is set to nil so the pointer can always be freed with impunity.

These functions set errstr.

430

DISK(2) DISK(2)

NAME
opendisk, Disk � generic disk device interface

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <disk.h>

typedef struct Disk {
char *prefix;
char part[NAMELEN];
int fd, wfd, ctlfd, rdonly;
int type;
vlong secs, secsize, size, offset;
int c, h, s;

} Disk;

Disk* opendisk(char *file, int rdonly, int noctl)

DESCRIPTION
These routines provide a simple way to gather and use information about floppy(3) and sd(3) disks
and disk partitions, as well as plain files.

Opendisk opens file for reading and stores the file descriptor in the fd field of the Disk structure.
If rdonly is not set, opendisk also opens file for writing and stores that file descriptor in wfd. The
two file descriptors are kept separate to help prevent accidents.

If noctl is not set, opendisk looks for a ctl file in the same directory as the disk file; if it finds one,
it declares the disk to be an sd device, setting the type field in the Disk structure to Tsd. If the
passed file is named fdndisk, it looks for a file fdnctl, and if it finds that, declares the disk
to be a floppy disk, of type Tfloppy. If either control file is found, it is opened for reading and
writing, and the resulting file descriptor is saved as ctlfd. Otherwise the returned disk has type
Tfile.

Opendisk then stats the file and stores its length in size. If the disk is an sd partition, opendisk
reads the sector size from the control file and stores it in secsize; otherwise the sector size is
assumed to be 512, as is the case for floppy disks. Opendisk then stores the disk size measured
in sectors in secs.

If the disk is an sd partition, opendisk parses the control file to find the partition�s offset within its
disk; otherwise it sets offset to zero. If the disk is an ATA disk, opendisk reads the disk geome
try (number of cylinders, heads, and sectors) from the geometry line in the sd control file; other
wise it sets these to zero as well. Name is initialized with the base name of the disk partition, and
is useful for forming messages to the sd control file. Prefix is set to the passed filename with
out the name suffix.

The IBM PC BIOS interface allocates 10 bits for the number of cylinders, 8 for the number of heads,
and 6 for the number of sectors per track. Disk geometries are not quite so simple anymore, but
to keep the interface useful, modern disks and BIOSes present geometries that still fit within these
constraints. These numbers are still used when partitioning and formatting disks. Opendisk
employs a number of heuristics to discover this supposed geometry and store it in the c, h, and s
fields. Disk offsets in partition tables and in FAT descriptors are stored in a form dependent upon
these numbers, so opendisk works hard to report numbers that agree with those used by other
operating systems; the numbers bear little or no resemblance to reality.

SOURCE
/sys/src/libdisk/disk.c

SEE ALSO
floppy(3), sd(3)

431

DRAW(2) DRAW(2)

NAME
Image, draw, gendraw, drawreplxy, drawrepl, replclipr, line, poly, fillpoly, bezier, bezspline, fill
bezier, fillbezspline, ellipse, fillellipse, arc, fillarc, icossin, icossin2, border, string, stringn, rune
string, runestringn, stringbg, stringnbg, runestringbg, runestringnbg, _string, ARROW, drawsetde
bug � graphics functions

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>

typedef
struct Image
{

Display *display; /* display holding data */
int id; /* id of system−held Image */
Rectangle r; /* rectangle in data area, local coords */
Rectangle clipr; /* clipping region */
ulong chan; /* pixel channel format descriptor */
int depth; /* number of bits per pixel */
int repl; /* flag: data replicates to tile clipr */
Screen *screen; /* 0 if not a window */
Image *next; /* next in list of windows */

} Image;

typedef enum
{

/* Porter−Duff compositing operators */
Clear = 0,

SinD = 8,
DinS = 4,
SoutD = 2,
DoutS = 1,

S = SinD|SoutD,
SoverD = SinD|SoutD|DoutS,
SatopD = SinD|DoutS,
SxorD = SoutD|DoutS,

D = DinS|DoutS,
DoverS = DinS|DoutS|SoutD,
DatopS = DinS|SoutD,
DxorS = DoutS|SoutD, /* == SxorD */

Ncomp = 12,
} Drawop;

void draw(Image *dst, Rectangle r, Image *src,
Image *mask, Point p)

void drawop(Image *dst, Rectangle r, Image *src,
Image *mask, Point p, Drawop op)

void gendraw(Image *dst, Rectangle r, Image *src, Point sp,
Image *mask, Point mp)

void gendrawop(Image *dst, Rectangle r, Image *src, Point sp,
Image *mask, Point mp, Drawop op)

int drawreplxy(int min, int max, int x)
Point drawrepl(Rectangle r, Point p)
void replclipr(Image *i, int repl, Rectangle clipr)
void line(Image *dst, Point p0, Point p1, int end0, int end1,

int radius, Image *src, Point sp)
void lineop(Image *dst, Point p0, Point p1, int end0, int end1,

int radius, Image *src, Point sp, Drawop op)

432

DRAW(2) DRAW(2)

void poly(Image *dst, Point *p, int np, int end0, int end1,
int radius, Image *src, Point sp)

void polyop(Image *dst, Point *p, int np, int end0, int end1,
int radius, Image *src, Point sp, Drawop op)

void fillpoly(Image *dst, Point *p, int np, int wind,
Image *src, Point sp)

void fillpolyop(Image *dst, Point *p, int np, int wind,
Image *src, Point sp, Drawop op)

int bezier(Image *dst, Point p0, Point p1, Point p2, Point p3,
int end0, int end1, int radius, Image *src, Point sp)

int bezierop(Image *dst, Point p0, Point p1, Point p2, Point p3,
int end0, int end1, int radius, Image *src, Point sp,
Drawop op)

int bezierpts(Point p0, Point p1, Point p2, Point p3, Point **pp)
int bezspline(Image *dst, Point *pt, int npt, int end0, int end1,

int radius, Image *src, Point sp)
int bezsplineop(Image *dst, Point *pt, int npt, int end0, int end1,

int radius, Image *src, Point sp, Drawop op)
int bezsplinepts(Point *pt, int npt, Point **pp)
int fillbezier(Image *dst, Point p0, Point p1, Point p2, Point p3,

int w, Image *src, Point sp)
int fillbezierop(Image *dst, Point p0, Point p1, Point p2, Point p3,

int w, Image *src, Point sp, Drawop op)
int fillbezspline(Image *dst, Point *pt, int npt, int w,

Image *src, Point sp)
int fillbezsplineop(Image *dst, Point *pt, int npt, int w,

Image *src, Point sp, Drawop op)
void ellipse(Image *dst, Point c, int a, int b, int thick,

Image *src, Point sp)
void ellipseop(Image *dst, Point c, int a, int b, int thick,

Image *src, Point sp, Drawop op)
void fillellipse(Image *dst, Point c, int a, int b,

Image *src, Point sp)
void fillellipseop(Image *dst, Point c, int a, int b,

Image *src, Point sp, Drawop op)
void arc(Image *dst, Point c, int a, int b, int thick,

Image *src, Point sp, int alpha, int phi)
void arcop(Image *dst, Point c, int a, int b, int thick,

Image *src, Point sp, int alpha, int phi, Drawop op)
void fillarc(Image *dst, Point c, int a, int b, Image *src,

Point sp, int alpha, int phi)
void fillarcop(Image *dst, Point c, int a, int b, Image *src,

Point sp, int alpha, int phi, Drawop op)
void icossin(int deg, int *cosp, int *sinp)
void icossin2(int x, int y, int *cosp, int *sinp)
void border(Image *dst, Rectangle r, int i, Image *color, Point sp)
void borderop(Image *dst, Rectangle r, int i, Image *color, Point sp,

Drawop op)
Point string(Image *dst, Point p, Image *src, Point sp,

Font *f, char *s)
Point stringop(Image *dst, Point p, Image *src, Point sp,

Font *f, char *s, Drawop op)
Point stringn(Image *dst, Point p, Image *src, Point sp,

Font *f, char *s, int len)
Point stringnop(Image *dst, Point p, Image *src, Point sp,

Font *f, char *s, int len, Drawop op)
Point runestring(Image *dst, Point p, Image *src, Point sp,

Font *f, Rune *r)

433

DRAW(2) DRAW(2)

Point runestringop(Image *dst, Point p, Image *src, Point sp,
Font *f, Rune *r, Drawop op)

Point runestringn(Image *dst, Point p, Image *src, Point sp,
Font *f, Rune *r, int len)

Point runestringnop(Image *dst, Point p, Image *src, Point sp,
Font *f, Rune *r, int len, Drawop op)

Point stringbg(Image *dst, Point p, Image *src, Point sp,
Font *f, char *s, Image *bg, Point bgp)

Point stringbgop(Image *dst, Point p, Image *src, Point sp,
Font *f, char *s, Image *bg, Point bgp, Drawop op)

Point stringnbg(Image *dst, Point p, Image *src, Point sp,
Font *f, char *s, int len, Image *bg, Point bgp)

Point stringnbgop(Image *dst, Point p, Image *src, Point sp,
Font *f, char *s, int len, Image *bg, Point bgp, Drawop op)

Point runestringbg(Image *dst, Point p, Image *src, Point sp,
Font *f, Rune *r, Image *bg, Point bgp)

Point runestringbgop(Image *dst, Point p, Image *src, Point sp,
Font *f, Rune *r, Image *bg, Point bgp, Drawop op)

Point runestringnbg(Image *dst, Point p, Image *src, Point sp,
Font *f, Rune *r, int len, Image *bg, Point bgp)

Point runestringnbgop(Image *dst, Point p, Image *src, Point sp,
Font *f, Rune *r, int len, Image *bg, Point bgp, Drawop op)

Point _string(Image *dst, Point p, Image *src,
Point sp, Font *f, char *s, Rune *r, int len,
Rectangle clipr, Image *bg, Point bgp, Drawop op)

void drawsetdebug(int on)

enum
{

/* line ends */
Endsquare = 0,
Enddisc = 1,
Endarrow= 2,
Endmask = 0x1F

};

#define ARROW(a, b, c) (Endarrow|((a)<<5)|((b)<<14)|((c)<<23))

DESCRIPTION
The Image type defines rectangular pictures and the methods to draw upon them; it is also the
building block for higher level objects such as windows and fonts. In particular, a window is repre
sented as an Image; no special operators are needed to draw on a window.

r The coordinates of the rectangle in the plane for which the Image has defined pixel val
ues. It should not be modified after the image is created.

clipr The clipping rectangle: operations that read or write the image will not access pixels out
side clipr. Frequently, clipr is the same as r, but it may differ; see in particular
the discussion of repl. The clipping region may be modified dynamically using
replclipr (q.v.).

chan The pixel channel format descriptor, as described in image(6). The value should not be
modified after the image is created.

depth The number of bits per pixel in the picture; it is identically chantodepth(chan) (see
graphics(2)) and is provided as a convenience. The value should not be modified after
the image is created.

repl A boolean value specifying whether the image is tiled to cover the plane when used as a
source for a drawing operation. If repl is zero, operations are restricted to the inter
section of r and clipr. If repl is set, r defines the tile to be replicated and clipr
defines the portion of the plane covered by the tiling, in other words, r is replicated to
cover clipr; in such cases r and clipr are independent.

434

DRAW(2) DRAW(2)

For example, a replicated image with r set to ((0, 0), (1, 1)) and clipr set to
((0, 0), (100, 100)), with the single pixel of r set to blue, behaves identically to an image
with r and clipr both set to ((0, 0), (100, 100)) and all pixels set to blue. However,
the first image requires far less memory. The replication flag may be modified dynami
cally using replclipr (q.v.).

Most of the drawing functions come in two forms: a basic form, and an extended form that takes
an extra Drawop to specify a Porter-Duff compositing operator to use. The basic forms assume
the operator is SoverD, which suffices for the vast majority of applications. The extended forms
are named by adding an -op suffix to the basic form. Only the basic forms are listed below.

draw(dst, r, src, mask, p)
Draw is the standard drawing function. Only those pixels within the intersection of dst−>r
and dst−>clipr will be affected; draw ignores dst−>repl. The operation proceeds as
follows (this is a description of the behavior, not the implementation):

1. If repl is set in src or mask, replicate their contents to fill their clip rectangles.

2. Translate src and mask so p is aligned with r.min.

3. Set r to the intersection of r and dst−>r.

4. Intersect r with src−>clipr. If src−>repl is false, also intersect r with src−>r.

5. Intersect r with mask−>clipr. If mask−>repl is false, also intersect r with
mask−>r.

6. For each location in r, combine the dst pixel with the src pixel using the alpha value
corresponding to the mask pixel. If the mask has an explicit alpha channel, the
alpha value corresponding to the mask pixel is simply that pixel�s alpha channel.
Otherwise, the alpha value is the NTSC greyscale equivalent of the color value, with
white meaning opaque and black transparent. In terms of the Porter-Duff composit
ing algebra, draw replaces the dst pixels with (src in mask) over dst. (In the
extended form, ��over�� is replaced by op).

The various pixel channel formats involved need not be identical. If the channels involved
are smaller than 8-bits, they will be promoted before the calculation by replicating the
extant bits; after the calculation, they will be truncated to their proper sizes.

gendraw(dst, r, src, p0, mask, p1)
Similar to draw except that gendraw aligns the source and mask differently: src is aligned
so p0 corresponds to r.min and mask is aligned so p1 corresponds to r.min. For most
purposes with simple masks and source images, draw is sufficient, but gendraw is the
general operator and the one all other drawing primitives are built upon.

drawreplxy(min,max,x)
Clips x to be in the half-open interval [min, max) by adding or subtracting a multiple of
max−min.

drawrepl(r,p)
Clips the point p to be within the rectangle r by translating the point horizontally by an
integer multiple of rectangle width and vertically by the height.

replclipr(i,repl,clipr)
Because the image data is stored on the server, local modifications to the Image data
structure itself will have no effect. Replclipr modifies the local Image data structure�s
repl and clipr fields, and notifies the server of their modification.

line(dst, p0, p1, end0, end1, thick, src, sp)
Line draws in dst a line of width 1+2*thick pixels joining points p0 and p1. The line is
drawn using pixels from the src image aligned so sp in the source corresponds to p0 in the
destination. The line touches both p0 and p1, and end0 and end1 specify how the ends of
the line are drawn. Endsquare terminates the line perpendicularly to the direction of the
line; a thick line with Endsquare on both ends will be a rectangle. Enddisc terminates
the line by drawing a disc of diameter 1+2*thick centered on the end point. Endarrow
terminates the line with an arrowhead whose tip touches the endpoint.

435

DRAW(2) DRAW(2)

The macro ARROW permits explicit control of the shape of the arrow. If all three parame
ters are zero, it produces the default arrowhead, otherwise, a sets the distance along line
from end of the regular line to tip, b sets the distance along line from the barb to the tip,
and c sets the distance perpendicular to the line from edge of line to the tip of the barb, all
in pixels.

Line and the other geometrical operators are equivalent to calls to gendraw using a mask
produced by the geometric procedure.

poly(dst, p, np, end0, end1, thick, src, sp)
Poly draws a general polygon; it is conceptually equivalent to a series of calls to line joining
adjacent points in the array of Points p, which has np elements. The ends of the poly
gon are specified as in line; interior lines are terminated with Enddisc to make smooth
joins. The source is aligned so sp corresponds to p[0].

fillpoly(dst, p, np, wind, src, sp)
Fillpoly is like poly but fills in the resulting polygon rather than outlining it. The source is
aligned so sp corresponds to p[0]. The winding rule parameter wind resolves ambiguities
about what to fill if the polygon is self-intersecting. If wind is ~0, a pixel is inside the poly
gon if the polygon�s winding number about the point is non-zero. If wind is 1, a pixel is
inside if the winding number is odd. Complementary values (0 or ~1) cause outside pixels
to be filled. The meaning of other values is undefined. The polygon is closed with a line if
necessary.

bezier(dst, a, b, c, d, end0, end1, thick, src, sp)
Bezier draws the cubic Bezier curve defined by Points a, b, c, and d. The end styles are
determined by end0 and end1; the thickness of the curve is 1+2*thick. The source is
aligned so sp in src corresponds to a in dst.

bezierpts(a, b, c, d, pp)
Bezierpts returns in pp a list of points making up the open polygon that bezier would draw.
The caller is responsible for freeing *pp.

bezspline(dst, p, np, end0, end1, thick, src, sp)
Bezspline takes the same arguments as poly but draws a quadratic B-spline (despite its
name) rather than a polygon. If the first and last points in p are equal, the spline has peri
odic end conditions.

bezsplinepts(pt, npt, pp)
Bezsplinepts returns in pp a list of points making up the open polygon that bezspline would
draw. The caller is responsible for freeing *pp.

fillbezier(dst, a, b, c, d, wind, src, sp)
Fillbezier is to bezier as fillpoly is to poly.

fillbezspline(dst, p, wind, src, sp)
Fillbezspline is like fillpoly but fills the quadratic B-spline rather than the polygon outlined
by p. The spline is closed with a line if necessary.

ellipse(dst, c, a, b, thick, src, sp)
Ellipse draws in dst an ellipse centered on c with horizontal and vertical semiaxes a and b.
The source is aligned so sp in src corresponds to c in dst. The ellipse is drawn with thick
ness 1+2*thick.

fillellipse(dst, c, a, b, src, sp)
Fillellipse is like ellipse but fills the ellipse rather than outlining it.

arc(dst, c, a, b, thick, src, sp, alpha, phi)
Arc is like ellipse, but draws only that portion of the ellipse starting at angle alpha and
extending through an angle of phi. The angles are measured in degrees counterclockwise
from the positive x axis.

fillarc(dst, c, a, b, src, sp, alpha, phi)
Fillarc is like arc, but fills the sector with the source color.

icossin(deg, cosp, sinp)
Icossin stores in *cosp and *sinp scaled integers representing the cosine and sine of the
angle deg, measured in integer degrees. The values are scaled so cos(0) is 1024.

436

DRAW(2) DRAW(2)

icossin2(x, y, cosp, sinp)
Icossin2 is analogous to icossin, with the angle represented not in degrees but implicitly by
the point (x,y). It is to icossin what atan2 is to atan (see sin(2)).

border(dst, r, i, color, sp)
Border draws an outline of rectangle r in the specified color. The outline has width i; if pos
itive, the border goes inside the rectangle; negative, outside. The source is aligned so sp
corresponds to r.min.

string(dst, p, src, sp, font, s)
String draws in dst characters specified by the string s and font; it is equivalent to a series
of calls to gendraw using source src and masks determined by the character shapes. The
text is positioned with the left of the first character at p.x and the top of the line of text at
p.y. The source is positioned so sp in src corresponds to p in dst. String returns a
Point that is the position of the next character that would be drawn if the string were
longer.

For characters with undefined or zero-width images in the font, the character at font posi
tion 0 (NUL) is drawn.

The other string routines are variants of this basic form, and have names that encode their
variant behavior. Routines whose names contain rune accept a string of Runes rather than
UTF-encoded bytes. Routines ending in n accept an argument, n, that defines the number
of characters to draw rather than accepting a NUL-terminated string. Routines containing
bg draw the background behind the characters in the specified color (bg) and alignment
(bgp); normally the text is drawn leaving the background intact.

The routine _string captures all this behavior into a single operator. Whether it draws a UTF

string or Rune string depends on whether s or r is null (the string length is always deter
mined by len). If bg is non-null, it is used as a background color. The clipr argument
allows further management of clipping when drawing the string; it is intersected with the
usual clipping rectangles to further limit the extent of the text.

drawsetdebug(on)
Turns on or off debugging output (usually to a serial line) according to whether on is non-
zero.

SOURCE
/sys/src/libdraw

SEE ALSO
graphics(2), stringsize(2), color(6), utf(6), addpt(2)

T. Porter, T. Duff. ��Compositing Digital Images��, Computer Graphics (Proc. SIGGRAPH), 18:3, pp.
253-259, 1984.

DIAGNOSTICS
These routines call the graphics error function on fatal errors.

BUGS
Anti-aliased characters can be drawn by defining a font with multiple bits per pixel, but there are
no anti-aliasing geometric primitives.

437

DSA(2) DSA(2)

NAME
dsagen, dsasign, dsaverify, dsapuballoc, dsapubfree, dsaprivalloc, dsaprivfree, dsasigalloc, dsasig
free, dsaprivtopub - digital signature algorithm

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>

DSApriv* dsagen(DSApub *opub)

DSAsig* dsasign(DSApriv *k, mpint *m)

int dsaverify(DSApub *k, DSAsig *sig, mpint *m)

DSApub* dsapuballoc(void)

void dsapubfree(DSApub*)

DSApriv* dsaprivalloc(void)

void dsaprivfree(DSApriv*)

DSAsig* dsasigalloc(void)

void dsasigfree(DSAsig*)

DSApub* dsaprivtopub(DSApriv*)

DESCRIPTION
DSA is the NIST approved digital signature algorithm. The owner of a key publishes the public part
of the key:

struct DSApub
{

mpint *p; // modulus
mpint *q; // group order, q divides p−1
mpint *alpha; // group generator
mpint *key; // alpha**secret mod p

};

This part can be used for verifying signatures (with dsaverify) created by the owner. The owner
signs (with dsasign) using his private key:

struct DSApriv
{

DSApub pub;
mpint *secret; // (decryption key)

};

Keys are generated using dsagen. If dsagen�s argument opub is nil, a key is created using a new
p and q generated by DSAprimes (see prime(2)). Otherwise, p and q are copied from the old key.

Dsaprivtopub returns a newly allocated copy of the public key corresponding to the private key.

The routines dsapuballoc, dsapubfree, dsaprivalloc, and dsaprivfree are provided to manage key
storage.

Dsasign signs message m using a private key k yielding a

struct DSAsig
{

mpint *r, *s;
};

Dsaverify returns 0 if the signature is valid and �1 if not.

The routines dsasigalloc and dsasigfree are provided to manage signature storage.

SOURCE
/sys/src/libsec

438

DSA(2) DSA(2)

SEE ALSO
mp(2), aes(2), blowfish(2), des(2), rc4(2), rsa(2), sechash(2), prime(2), rand(2)

439

DUP(2) DUP(2)

NAME
dup � duplicate an open file descriptor

SYNOPSIS
#include <u.h>
#include <libc.h>

int dup(int oldfd, int newfd)

DESCRIPTION
Given a file descriptor, oldfd, referring to an open file, dup returns a new file descriptor referring
to the same file.

If newfd is �1 the system chooses the lowest available file descriptor. Otherwise, dup will use
newfd for the new file descriptor (closing any old file associated with newfd). File descriptors are
allocated dynamically, so to prevent unwarranted growth of the file descriptor table, dup requires
that newfd be no greater than 20 more than the highest file descriptor ever used by the program.

Dup does not copy the per file descriptor OCEXEC flag, meaning that newfd will not be closed on
exec(2) syscall, when oldfd had been previously opend with it.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
intro(2), dup(3)

DIAGNOSTICS
Sets errstr.

440

EC(2) EC(2)

NAME
secp256r1, secp256k1, secp384r1, ecdominit, ecdomfree, ecassign, ecadd, ecmul, strtoec, ecgen,
ecverify, ecpubverify, ecdsasign, ecdsaverify, ecencodepub, ecdecodepub, ecpubfree,
X509toECpub, X509ecdsaverify, X509ecdsaverifydigest � elliptic curve cryptography

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>

void secp256r1(mpint *p, mpint *a, mpint *b, mpint *x, mpint *y,
mpint *n, mpint *h)

void secp256k1(mpint *p, mpint *a, mpint *b, mpint *x, mpint *y,
mpint *n, mpint *h)

void secp384r1(mpint *p, mpint *a, mpint *b, mpint *x, mpint *y,
mpint *n, mpint *h)

void ecdominit(ECdomain *dom, void (*init)(mpint *p, mpint *a,
mpint *b, mpint *x, mpint *y, mpint *n, mpint *h))

void ecdomfree(ECdomain *dom)

void ecassign(ECdomain *dom, ECpoint *old, ECpoint *new)

void ecadd(ECdomain *dom, ECpoint *a, ECpoint *b, ECpoint *s)

void ecmul(ECdomain *dom, ECpoint *a, mpint *k, ECpoint *s)

ECpoint* strtoec(ECdomain *dom, char *s, char **rptr, ECpoint *p)

ECpriv* ecgen(ECdomain *dom, ECpriv *p)

int ecverify(ECdomain *dom, ECpoint *p)

int ecpubverify(ECdomain *dom, ECpub *p)

void ecdsasign(ECdomain *dom, ECpriv *priv, uchar *dig, int dlen,
mpint *r, mpint *s)

int ecdsaverify(ECdomain *dom, ECpub *pub, uchar *dig, int dlen,
mpint *r, mpint *s)

int ecencodepub(ECdomain *dom, ECpub *pub, uchar *data, int len)

ECpub* ecdecodepub(ECdomain *dom, uchar *data, int len)

void ecpubfree(ECpub *p);

ECpub* X509toECpub(uchar *cert, int ncert, char *name, int
nname, ECdomain *dom)

char* X509ecdsaverify(uchar *cert, int ncert, ECdomain *dom,
ECpub *pub)

char* X509ecdsaverifydigest(uchar *sig, int siglen, uchar *edi
gest, int edigestlen, ECdomain *dom, ECpub *pub)

DESCRIPTION
These functions implement elliptic curve cryptography. An elliptic curve together with crypto
graphic parameters are specified using an ECdomain struct. Points on the curve are represented
by ECpoint structs.

ecdominit initializes a ECdomain struct and calls the init function such as secp256r1
which fills in the parameters of the curve.

ecdomfree frees the parameters of the curve and zeros the struct. It does not free the memory
of the struct itself.

ecassign, ecadd and ecmul are analogous to their counterparts in mp(2).

441

EC(2) EC(2)

strtoec converts a hex string representing an octet string as specified in Standards for Efficient
Cryptography (SEC) 1 to an ECpoint struct. Both uncompressed and compressed formats are
supported. If rptr is not nil, it is used to return the position in the string where the parser
stopped. If p is nil space is allocated automatically, else the given struct is used.

ecverify and ecpubverify verify that the given point or public key, respectively, is valid.

ecgen generates a keypair and returns a pointer to it. If p is nil space is allocated automati
cally, else the given struct is used.

ecdsasign and ecdsaverify create or verify, respectively, a signature using the ECDSA
scheme specified in SEC 1. It is absolutely vital that dig is a cryptographic hash to the message.
ecdsasign writes the signature to r and s which are assumed to be allocated properly.

ecencodepub and ecdecodepub handle encoding and decoding of public keys in uncom
pressed format. Note that ecdecodepub also verifies that the public key is valid in the specified
domain.

ecpubfree frees a ECpub structure and its associated members.

Given a binary X.509 cert, the function X509toECpub initializes domain parameters and returns
the ECDSA public key. if name is not nil, the CN part of the Distinguished Name of the
certificate�s Subject is returned. X509ecdsaverify and X509ecdsaverifydigest are
analogs to the routines described by rsa(2).

RETURN VALUE
*verify functions return 1 for a positive result. Functions returning pointers may return nil in
case of error (e.g. failing malloc(2)).

SOURCE
/sys/src/libsec/port/ecc.c

SEE ALSO
rsa(2)
Standards for Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography - Certicom Research,
2009

HISTORY
This implementation of elliptic curve cryptography first appeared in 9front (June, 2012).

442

ELGAMAL(2) ELGAMAL(2)

NAME
eggen, egencrypt, egdecrypt, egsign, egverify, egpuballoc, egpubfree, egprivalloc, egprivfree, egsi
galloc, egsigfree, egprivtopub - elgamal encryption

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>

EGpriv* eggen(int nlen, int nrep)

mpint* egencrypt(EGpub *k, mpint *in, mpint *out)

mpint* egdecrypt(EGpriv *k, mpint *in, mpint *out)

EGsig* egsign(EGpriv *k, mpint *m)

int egverify(EGpub *k, EGsig *sig, mpint *m)

EGpub* egpuballoc(void)

void egpubfree(EGpub*)

EGpriv* egprivalloc(void)

void egprivfree(EGpriv*)

EGsig* egsigalloc(void)

void egsigfree(EGsig*)

EGpub* egprivtopub(EGpriv*)

DESCRIPTION
Elgamal is a public key encryption and signature algorithm. The owner of a key publishes the pub
lic part of the key:

struct EGpub
{

mpint *p; // modulus
mpint *alpha; // generator
mpint *key; // (encryption key) alpha**secret mod p

};
This part can be used for encrypting data (with egencrypt) to be sent to the owner. The owner
decrypts (with egdecrypt) using his private key:

struct EGpriv
{

EGpub pub;
mpint *secret; // (decryption key)

};

Keys are generated using eggen. Eggen takes both bit length of the modulus and the number of
repetitions of the Miller-Rabin primality test to run. If the latter is 0, it does the default number of
rounds. Egprivtopub returns a newly allocated copy of the public key corresponding to the private
key.

The routines egpuballoc, egpubfree , egprivalloc, and egprivfree are provided to manage key stor
age.

Egsign signs message m using a private key k yielding a
struct EGsig
{

mpint *r, *s;
};

Egverify returns 0 if the signature is valid and �1 if not.

The routines egsigalloc and egsigfree are provided to manage signature storage.

443

ELGAMAL(2) ELGAMAL(2)

SOURCE
/sys/src/libsec

SEE ALSO
mp(2), aes(2), blowfish(2), des(2), dsa(2), rc4(2), rsa(2), sechash(2), prime(2), rand(2)

444

ENCODE(2) ENCODE(2)

NAME
dec64, enc64, dec32, enc32, dec16, enc16, dec64chr, enc64chr, dec32chr, enc32chr, dec16chr,
enc16chr, encodefmt � encoding byte arrays as strings

SYNOPSIS
#include <u.h>
#include <libc.h>

int dec64(uchar *out, int lim, char *in, int n)

int enc64(char *out, int lim, uchar *in, int n)

int dec32(uchar *out, int lim, char *in, int n)

int enc32(char *out, int lim, uchar *in, int n)

int dec16(uchar *out, int lim, char *in, int n)

int enc16(char *out, int lim, uchar *in, int n)

int dec64chr(int c)

int enc64chr(int o)

int dec32chr(int c)

int enc32chr(int o)

int dec16chr(int c)

int enc16chr(int o)

int encodefmt(Fmt*)

DESCRIPTION
The functions described here handle encoding and decoding of bytes to printable ASCII strings as
specified by RFC4648.

Enc16, enc32 and enc64 create null terminated strings. They return the size of the encoded string
(without the null) or -1 if the encoding fails. The encoding fails if lim, the length of the output
buffer (including null), is too small.

Dec16, dec32 and dec64 return the number of bytes decoded or -1 if the decoding fails. The
decoding fails if the output buffer is not large enough or, for base 32, if the input buffer length is
not a multiple of 8.

Dec16chr, dec32chr and dec64chr return the value for a symbol of the alphabet or -1 when the
symbol is not in the alphabet.

Enc16chr, enc32chr and enc64chr encode a symbol of the alphabet given a value. if the value is
out of range then zero is returned.

Encodefmt can be used with fmtinstall(2) and print(2) to print encoded representations of byte
arrays. The verbs are

H base 16 (i.e. hexadecimal). The default encoding is in upper case. The l flag forces lower
case.

< base 32. The default is upper case, same as H.

[base 64 (same as MIME)

The length of the array is specified as f2. For example, to display a 15 byte array as hex:

char x[15];

fmtinstall(’H’, encodefmt);
print("%.*H\n", sizeof x, x);

SOURCE
/sys/src/libc/port/u16.c
/sys/src/libc/port/u32.c

445

ENCODE(2) ENCODE(2)

/sys/src/libc/port/u64.c
/sys/src/libc/port/encodefmt.c

HISTORY
In Jan 2018, base 32 encoding was changed from non-standard to standard RFC4648 alphabet.

old: 23456789abcdefghijkmnpqrstuvwxyz

new: ABCDEFGHIJKLMNOPQRSTUVWXYZ234567

446

ENCRYPT(2) ENCRYPT(2)

NAME
encrypt, decrypt, netcrypt � DES encryption

SYNOPSIS
#include <u.h>
#include <libc.h>

int encrypt(void *key, void *data, int len)

int decrypt(void *key, void *data, int len)

int netcrypt(void *key, void *data)

DESCRIPTION
Encrypt and decrypt perform DES encryption and decryption. Key is an array of DESKEYLEN
(defined as 7 in <auth.h>) bytes containing the encryption key. Data is an array of len bytes; it
must be at least 8 bytes long. The bytes are encrypted or decrypted in place.

The DES algorithm encrypts an individual 8-byte block of data. Encrypt uses the following method
to encrypt data longer than 8 bytes. The first 8 bytes are encrypted as usual. The last byte of the
encrypted result is prefixed to the next 7 unencrypted bytes to make the next 8 bytes to encrypt.
This is repeated until fewer than 7 bytes remain unencrypted. Any remaining unencrypted bytes
are encrypted with enough of the preceding encrypted bytes to make a full 8-byte block. Decrypt
uses the inverse algorithm.

Netcrypt performs the same encryption as a SecureNet Key. Data points to an ASCII string of deci
mal digits with numeric value between 0 and 10000. These digits are copied into an 8-byte buffer
with trailing binary zero fill and encrypted as one DES block. The first four bytes are each format
ted as two digit ASCII hexadecimal numbers, and the string is copied into data.

SOURCE
/sys/src/libc/port

DIAGNOSTICS
These routines return 1 if the data was encrypted, and 0 if the encryption fails. Encrypt and
decrypt fail if the data passed is less than 8 bytes long. Netcrypt can fail if it is passed invalid
data.

SEE ALSO
securenet(8)

BUGS
The implementation is broken in a way that makes it unsuitable for anything but authentication.

447

ERRSTR(2) ERRSTR(2)

NAME
errstr, rerrstr, werrstr � description of last system call error

SYNOPSIS
#include <u.h>
#include <libc.h>

int errstr(char *err, uint nerr)

void rerrstr(char *err, uint nerr)

void werrstr(char *fmt, ...)

DESCRIPTION
When a system call fails it returns �1 and records a null terminated string describing the error in a
per-process buffer. Errstr swaps the contents of that buffer with the contents of the array err.
Errstr will write at most nerr bytes into err; if the per-process error string does not fit, it is silently
truncated at a UTF character boundary. The returned string is NUL-terminated. Usually errstr will
be called with an empty string, but the exchange property provides a mechanism for libraries to
set the return value for the next call to errstr.

The per-process buffer is ERRMAX bytes long. Any error string provided by the user will be trun
cated at ERRMAX−1 bytes. ERRMAX is defined in <libc.h>.

If no system call has generated an error since the last call to errstr with an empty string, the result
is an empty string.

The verb r in print(2) calls errstr and outputs the error string.

Rerrstr reads the error string but does not modify the per-process buffer, so a subsequent errstr
will recover the same string.

Werrstr takes a print style format as its argument and uses it to format a string to pass to errstr.
The string returned from errstr is discarded.

SOURCE
/sys/src/libc/9syscall
/sys/src/libc/9sys/rerrstr.c
/sys/src/libc/9sys/werrstr.c

DIAGNOSTICS
Errstr always returns 0.

SEE ALSO
intro(2), perror(2)

448

EVENT(2) EVENT(2)

NAME
event, einit, estart, estartfn, etimer, eread, emouse, ekbd, ecanread, ecanmouse, ecankbd, eread
mouse, eatomouse, eresized, egetrect, edrawgetrect, emenuhit, eenter, emoveto, esetcursor,
Event, Mouse, Menu � graphics events

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>
#include <event.h>
#include <cursor.h>

void einit(ulong keys)

ulong event(Event *e)

Mouse emouse(void)

int ekbd(void)

int ecanmouse(void)

int ecankbd(void)

int ereadmouse(Mouse *m)

int eatomouse(Mouse *m, char *buf, int n)

ulong estart(ulong key, int fd, int n)

ulong estartfn(ulong key, int fd, int n,
int (*fn)(int, Event*, uchar*, int))

ulong etimer(ulong key, int n)

ulong eread(ulong keys, Event *e)

int ecanread(ulong keys)

void eresized(int new)

Rectangle egetrect(int but, Mouse *m)

void edrawgetrect(Rectangle r, int up)

int emenuhit(int but, Mouse *m, Menu *menu)

void emoveto(Point p)

void esetcursor(Cursor *c)

int eenter(char *ask, char *buf, int len, Mouse *m)

extern Mouse *mouse

enum{
Emouse = 1,
Ekeyboard = 2,

};

DESCRIPTION
These routines provide an interface to multiple sources of input for unthreaded programs.
Threaded programs (see thread(2)) should instead use the threaded mouse and keyboard interface
described in mouse(2) and keyboard (2).

Einit must be called first. If the argument to einit has the Emouse and Ekeyboard bits set, the
mouse and keyboard events will be enabled; in this case, initdraw (see graphics(2)) must have
already been called. The user must provide a function called eresized to be called whenever the
window in which the process is running has been resized; the argument new is a flag specifying
whether the program must call getwindow (see graphics(2)) to re-establish a connection to its win
dow. After resizing (and perhaps calling getwindow), the global variable screen will be updated
to point to the new window�s Image structure.

449

EVENT(2) EVENT(2)

As characters are typed on the keyboard, they are read by the event mechanism and put in a
queue. Ekbd returns the next rune from the queue, blocking until the queue is non-empty. The
characters are read in raw mode (see cons(3)), so they are available as soon as a complete rune is
typed.

When the mouse moves or a mouse button is pressed or released, a new mouse event is queued by
the event mechanism. Emouse returns the next mouse event from the queue, blocking until the
queue is non-empty. Emouse returns a Mouse structure:

struct Mouse
{

int buttons;
Point xy;
ulong msec;

};

Buttons&1 is set when the left mouse button is pressed, buttons&2 when the middle button
is pressed, and buttons&4 when the right button is pressed. The current mouse position is
always returned in xy. Msec is a time stamp in units of milliseconds.

Ecankbd and ecanmouse return non-zero when there are keyboard or mouse events available to be
read.

Ereadmouse reads the next mouse event from the file descriptor connected to the mouse, converts
the textual data into a Mouse structure by calling eatomouse with the buffer and count from the
read call, and returns the number of bytes read, or �1 for an error.

Estart can be used to register additional file descriptors to scan for input. It takes as arguments
the file descriptor to register, the maximum length of an event message on that descriptor, and a
key to be used in accessing the event. The key must be a power of 2 and must not conflict with
any previous keys. If a zero key is given, a key will be allocated and returned. Estartfn is similar
to estart, but processes the data received by calling fn before returning the event to the user. The
function fn is called with the id of the event; it should return id if the event is to be passed to the
user, 0 if it is to be ignored. The variable Event.v can be used by fn to attach an arbitrary data
item to the returned Event structure. Ekeyboard and Emouse are the keyboard and mouse
event keys.

Etimer starts a repeating timer with a period of n milliseconds; it returns the timer event key, or
zero if it fails. Only one timer can be started. Extra timer events are not queued and the timer
channel has no associated data.

Eread waits for the next event specified by the mask keys of event keys submitted to estart. It fills
in the appropriate field of the argument Event structure, which looks like:

struct Event
{

int kbdc;
Mouse mouse;
int n;
void *v;
uchar data[EMAXMSG];

};

Data is an array which is large enough to hold a 9P message. Eread returns the key for the event
which was chosen. For example, if a mouse event was read, Emouse will be returned.

Event waits for the next event of any kind. The return is the same as for eread.

As described in graphics(2), the graphics functions are buffered. Event, eread, emouse, and ekbd
all cause a buffer flush unless there is an event of the appropriate type already queued.

Ecanread checks whether a call to eread(keys) would block, returning 0 if it would, 1 if it
would not.

Getrect prompts the user to sweep a rectangle. It should be called with m holding the mouse
event that triggered the egetrect (or, if none, a Mouse with buttons set to 7). It changes to the
sweep cursor, waits for the buttons all to be released, and then waits for button number but to be
pressed, marking the initial corner. If another button is pressed instead, egetrect returns a

450

EVENT(2) EVENT(2)

rectangle with zero for both corners, after waiting for all the buttons to be released. Otherwise,
egetrect continually draws the swept rectangle until the button is released again, and returns the
swept rectangle. The mouse structure pointed to by m will contain the final mouse event.

Egetrect uses successive calls to edrawgetrect to maintain the red rectangle showing the sweep-
in-progress. The rectangle to be drawn is specified by rc and the up parameter says whether to
draw (1) or erase (0) the rectangle.

Emenuhit displays a menu and returns a selected menu item number. It should be called with m
holding the mouse event that triggered the emenuhit; it will call emouse to update it. A Menu is a
structure:

struct Menu
{

char **item;
char *(*gen)(int);
int lasthit;

};

If item is nonzero, it should be a null-terminated array of the character strings to be displayed as
menu items. Otherwise, gen should be a function that, given an item number, returns the charac
ter string for that item, or zero if the number is past the end of the list. Items are numbered start
ing at zero. Menuhit waits until but is released, and then returns the number of the selection, or
�1 for no selection. The m argument is filled in with the final mouse event.

Emoveto moves the mouse cursor to the position p on the screen.

Esetcursor changes the cursor image to that described by the Cursor c (see mouse(2)). If c is nil,
it restores the image to the default arrow.

Eenter provides a simple method of text input in graphical programs. It displays a box at the cur
rent position of the mouse cursor (passed in the Mouse *m argument) in which text can be typed
and edited. If the string argument ask is not nil, it is displayed as a static label before the
input string. The buf parameter contains the null-terminated input string to be edited. The len
argument specifies the length of buf in bytes including the terminating null byte. If buf or len
is zero, no text can be entered. On success, eenter returns the number of bytes in the edited
string buf or -1 on error.

SOURCE
/sys/src/libdraw

SEE ALSO
rio(1), graphics(2), plumb(2), cons(3), draw(3)

451

EXEC(2) EXEC(2)

NAME
exec, execl, _privates, _nprivates, _tos � execute a file

SYNOPSIS
#include <u.h>
#include <libc.h>

int exec(char *name, char* argv[])

int execl(char *name, ...)

void **_privates;

int _nprivates;

#include <tos.h>

typedef struct Tos Tos;
struct Tos {

struct { ... } prof; /* profiling data */
uvlong cyclefreq; /* cycle clock frequency */
vlong kcycles; /* kernel cycles */
vlong pcycles; /* process cycles (kernel + user) */
ulong pid; /* process id */
ulong clock; /* profiling clock */
/* top of stack is here */

};

extern Tos *_tos;

DESCRIPTION
Exec and execl overlay the calling process with the named file, then transfer to the entry point of
the image of the file.

Name points to the name of the file to be executed; it must not be a directory, and the permissions
must allow the current user to execute it (see stat(2)). It should also be a valid binary image, as
defined in the a.out(6) for the current machine architecture, or a shell script (see rc(1)). The first
line of a shell script must begin with #! followed by the name of the program to interpret the file
and any initial arguments to that program, for example

#!/bin/rc
ls | mc

When a C program is executed, it is called as follows:

void main(int argc, char *argv[])

Argv is a copy of the array of argument pointers passed to exec; that array must end in a null
pointer, and argc is the number of elements before the null pointer. By convention, the first argu
ment should be the name of the program to be executed. Execl is like exec except that argv will
be an array of the parameters that follow name in the call. The last argument to execl must be a
null pointer.

For a file beginning #!, the arguments passed to the program (/bin/rc in the example above)
will be the name of the file being executed, any arguments on the #! line, the name of the file
again, and finally the second and subsequent arguments given to the original exec call. The result
honors the two conventions of a program accepting as argument a file to be interpreted and
argv[0] naming the file being executed.

Most attributes of the calling process are carried into the result; in particular, files remain open
across exec (except those opened with OCEXEC OR�d into the open mode; see open(2)); and the
working directory and environment (see env(3)) remain the same. However, a newly exec’ed pro
cess has no notification handler (see notify(2)).

The global cell _privates points to an array of _nprivates elements of per-process private
data. This storage is private for each process, even if the processes share data segments.

When the new program begins, the global pointer _tos is set to the address of a structure that
holds information allowing accurate time keeping and clock reading in user space. These data are

452

EXEC(2) EXEC(2)

updated by the kernel during of the life of the process, including across rforks and execs. If there
is a user-space accessible fast clock (a processor cycle counter), cyclefreq will be set to its fre
quency in Hz. Kcycles (pcycles) counts the number of cycles this process has spent in kernel
mode (kernel and user mode). Pid is the current process�s id. Clock is the user-profiling clock
(see prof(1)). Its time is measured in milliseconds but is updated at a system-dependent lower
rate. This clock is typically used by the profiler but is available to all programs.

The above conventions apply to C programs; the raw system interface to the new image is as fol
lows: the word pointed to by the stack pointer is argc; the words beyond that are the zeroth and
subsequent elements of argv, followed by a terminating null pointer; and the return register (e.g.
R0 on the 68020) contains the address of the Tos structure.

SOURCE
/sys/src/libc/9syscall
/sys/src/libc/port/execl.c

SEE ALSO
prof(1), intro(2), stat(2)

DIAGNOSTICS
If these functions fail, they return and set errstr. There can be no return to the calling process
from a successful exec or execl; the calling image is lost.

453

EXITS(2) EXITS(2)

NAME
exits, _exits, atexit, atexitdont, terminate � terminate process, process cleanup

SYNOPSIS
#include <u.h>
#include <libc.h>

void _exits(char *msg)
void exits(char *msg)

int atexit(void(*)(void))
void atexitdont(void(*)(void))

DESCRIPTION
Exits is the conventional way to terminate a process. _Exits is the underlying system call. They can
never return.

Msg conventionally includes a brief (maximum length ERRLEN) explanation of the reason for exit
ing, or a null pointer or empty string to indicate normal termination. The string is passed to the
parent process, prefixed by the name and process id of the exiting process, when the parent does
a wait(2).

Before calling _exits with msg as an argument, exits calls in reverse order all the functions
recorded by atexit.

Atexit records fn as a function to be called by exits. It returns zero if it failed, nonzero otherwise.
A typical use is to register a cleanup routine for an I/O package. To simplify programs that fork or
share memory, exits only calls those atexit-registered functions that were registered by the same
process as that calling exits.

Calling atexit twice (or more) with the same function argument causes exits to invoke the function
twice (or more).

There is a limit to the number of exit functions that will be recorded; atexit returns 0 if that limit
has been reached.

Atexitdont cancels a previous registration of an exit function.

SOURCE
/sys/src/libc/port/exits.c
/sys/src/libc/port/atexit.c

SEE ALSO
fork(2), wait(2)

454

EXP(2) EXP(2)

NAME
exp, log, log10, pow, pow10, sqrt � exponential, logarithm, power, square root

SYNOPSIS
#include <u.h>
#include <libc.h>

double exp(double x)

double log(double x)

double log10(double x)

double pow(double x, double y)

double pow10(int n)

double sqrt(double x)

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x; log10 returns the base 10 logarithm.

Pow returns x
y

and pow10 returns 10
n

as a double.

Sqrt returns the square root of x.

SOURCE
All these routines have portable C implementations in /sys/src/libc/port. Most also have
machine-dependent implementations, written either in assembler or C, in
/sys/src/libc/$objtype.

SEE ALSO
hypot(2), sinh(2), intro(2)

455

FAUTH(2) FAUTH(2)

NAME
fauth � set up authentication on a file descriptor to a file server

SYNOPSIS
#include <u.h>
#include <libc.h>

int fauth(int fd, char *aname)

DESCRIPTION
Fauth is used to establish authentication for the current user to access the resources available
through the 9P connection represented by fd. The return value is a file descriptor, conventionally
called afd, that is subsequently used to negotiate the authentication protocol for the server, typi
cally using auth_proxy or fauth_proxy (see auth(2)). After successful authentication, afd may be
passed as the second argument to a subsequent mount call (see bind(2)), with the same aname,
as a ticket-of-entry for the user.

If fauth returns -1, the error case, that means the file server does not require authentication for
the connection, and afd should be set to -1 in the call to mount.

It is rare to use fauth directly; more commonly amount (see auth(2)) is used.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
attach(5), auth(2) (particularly amount), authsrv(6), auth(8)

DIAGNOSTICS
Sets errstr.

456

FCALL(2) FCALL(2)

NAME
Fcall, convS2M, convD2M, convM2S, convM2D, fcallfmt, dirfmt, dirmodefmt, read9pmsg,
statcheck, sizeS2M, sizeD2M � interface to Plan 9 File protocol

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <fcall.h>

uint convS2M(Fcall *f, uchar *ap, uint nap)

uint convD2M(Dir *d, uchar *ap, uint nap)

uint convM2S(uchar *ap, uint nap, Fcall *f)

uint convM2D(uchar *ap, uint nap, Dir *d, char *strs)

int dirfmt(Fmt*)

int fcallfmt(Fmt*)

int dirmodefmt(Fmt*)

int read9pmsg(int fd, void *buf, uint nbuf)

int statcheck(uchar *buf, uint nbuf)

uint sizeS2M(Fcall *f)

uint sizeD2M(Dir *d)

DESCRIPTION
These routines convert messages in the machine-independent format of the Plan 9 file protocol,
9P, to and from a more convenient form, an Fcall structure:

#define MAXWELEM 16

typedef
struct Fcall
{

uchar type;
u32int fid;
ushort tag;
union {

struct {
u32int msize; /* Tversion, Rversion */
char *version; /* Tversion, Rversion */

};
struct {

ushort oldtag; /* Tflush */
};
struct {

char *ename; /* Rerror */
};
struct {

Qid qid; /* Rattach, Ropen, Rcreate */
u32int iounit; /* Ropen, Rcreate */

};
struct {

Qid aqid; /* Rauth */
};
struct {

u32int afid; /* Tauth, Tattach */
char *uname; /* Tauth, Tattach */
char *aname; /* Tauth, Tattach */

};

457

FCALL(2) FCALL(2)

struct {
u32int perm; /* Tcreate */
char *name; /* Tcreate */
uchar mode; /* Tcreate, Topen */

};
struct {

u32int newfid; /* Twalk */
ushort nwname; /* Twalk */
char *wname[MAXWELEM]; /* Twalk */

};
struct {

ushort nwqid; /* Rwalk */
Qid wqid[MAXWELEM]; /* Rwalk */

};
struct {

vlong offset; /* Tread, Twrite */
u32int count; /* Tread, Twrite, Rread */
char *data; /* Twrite, Rread */

};
struct {

ushort nstat; /* Twstat, Rstat */
uchar *stat; /* Twstat, Rstat */

};
};

} Fcall;

/* these are implemented as macros */

uchar GBIT8(uchar*)
ushort GBIT16(uchar*)
ulong GBIT32(uchar*)
vlong GBIT64(uchar*)

void PBIT8(uchar*, uchar)
void PBIT16(uchar*, ushort)
void PBIT32(uchar*, ulong)
void PBIT64(uchar*, vlong)

#define BIT8SZ 1
#define BIT16SZ 2
#define BIT32SZ 4
#define BIT64SZ 8

This structure is defined in <fcall.h>. See section 5 for a full description of 9P messages and
their encoding. For all message types, the type field of an Fcall holds one of Tversion,
Rversion, Tattach, Rattach, etc. (defined in an enumerated type in <fcall.h>). Fid is
used by most messages, and tag is used by all messages. The other fields are used selectively by
the message types given in comments.

ConvM2S takes a 9P message at ap of length nap, and uses it to fill in Fcall structure f. If the
passed message including any data for Twrite and Rread messages is formatted properly, the
return value is the number of bytes the message occupied in the buffer ap, which will always be
less than or equal to nap; otherwise it is 0. For Twrite and Tread messages, data is set to a
pointer into the argument message, not a copy.

ConvS2M does the reverse conversion, turning f into a message starting at ap. The length of the
resulting message is returned. For Twrite and Rread messages, count bytes starting at
data are copied into the message.

The constant IOHDRSZ is a suitable amount of buffer to reserve for storing the 9P header; the
data portion of a Twrite or Rread will be no more than the buffer size negotiated in the
Tversion/Rversion exchange, minus IOHDRSZ.

458

FCALL(2) FCALL(2)

The routine sizeS2M returns the number of bytes required to store the machine-independent rep
resentation of the Fcall structure f, including its initial 32-bit size field. In other words, it
reports the number of bytes produced by a successful call to convS2M.

Another structure is Dir, used by the routines described in stat(2). ConvM2D converts the
machine-independent form starting at ap into d and returns the length of the machine-
independent encoding. The strings in the returned Dir structure are stored at successive loca
tions starting at strs. Usually strs will point to storage immediately after the Dir itself. It can
also be a nil pointer, in which case the string pointers in the returned Dir are all nil; however,
the return value still includes their length.

ConvD2M does the reverse translation, also returning the length of the encoding. If the buffer is
too short, the return value will be BIT16SZ and the correct size will be returned in the first
BIT16SZ bytes. (If the buffer is less that BIT16SZ, the return value is zero; therefore a correct
test for complete packing of the message is that the return value is greater than BIT16SZ). The
macro GBIT16 can be used to extract the correct value. The related macros with different sizes
retrieve the corresponding-sized quantities. PBIT16 and its brethren place values in messages.
With the exception of handling short buffers in convD2M, these macros are not usually needed
except by internal routines.

Analogous to sizeS2M , sizeD2M returns the number of bytes required to store the machine-
independent representation of the Dir structure d, including its initial 16-bit size field.

The routine statcheck checks whether the nbuf bytes of buf contain a validly formatted
machine-independent Dir entry suitable as an argument, for example, for the wstat (see
stat(2)) system call. It checks that the sizes of all the elements of the entry sum to exactly nbuf,
which is a simple but effective test of validity. Nbuf and buf should include the second two-byte
(16-bit) length field that precedes the entry when formatted in a 9P message (see stat(5)); in other
words, nbuf is 2 plus the sum of the sizes of the entry itself. Statcheck also verifies that the length
field has the correct value (that is, nbuf−2). It returns 0 for a valid entry and −1 for an incorrectly
formatted entry.

Dirfmt, fcallfmt, and dirmodefmt are formatting routines, suitable for fmtinstall(2). They convert
Dir*, Fcall*, and long values into string representations of the directory buffer, Fcall
buffer, or file mode value. Fcallfmt assumes that dirfmt has been installed with format letter D
and dirmodefmt with format letter M.

Read9pmsg calls read(2) multiple times, if necessary, to read an entire 9P message into buf. The
return value is 0 for end of file, or -1 for error; it does not return partial messages.

SOURCE
/sys/src/libc/9sys

SEE ALSO
intro(2), 9p(2), stat(2), intro(5)

459

FD2PATH(2) FD2PATH(2)

NAME
fd2path � return file name associated with file descriptor

SYNOPSIS
#include <u.h>
#include <libc.h>

int fd2path(int fd, char *buf, int nbuf)

DESCRIPTION
As described in intro(2), the kernel stores a rooted path name with every open file or directory;
typically, it is the name used in the original access of the file. Fd2path returns the path name
associated with open file descriptor fd. Up to nbuf bytes of the name are stored in buf; if the name
is too long, it will be silently truncated at a UTF-8 character boundary. The name is always null-
terminated. The return value of fd2path will be zero unless an error occurs.

Changes to the underlying name space do not update the path name stored with the file descrip
tor. Therefore, the path returned by fd2path may no longer refer to the same file (or indeed any
file) after some component directory or file in the path has been removed, renamed or rebound.

As an example, getwd(2) is implemented by opening . and executing fd2path on the resulting file
descriptor.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
bind(1), ns(1), bind(2), intro(2), getwd(2), proc(3)

DIAGNOSTICS
Sets errstr.

460

FGETC(2) FGETC(2)

NAME
fgetc, getc, getchar, fputc, putc, putchar, ungetc, fgets, gets, fputs, puts, fread, fwrite � Stdio input
and output

SYNOPSIS
#include <u.h>
#include <stdio.h>

int fgetc(FILE *f)

int getc(FILE *f)

int getchar(void)

int fputc(int c, FILE *f)

int putc(int c, FILE *f)

int putchar(int c)

int ungetc(int c, FILE *f)

char *fgets(char *s, int n, FILE *f)

char *gets(char *s)

int fputs(char *s, FILE *f)

int puts(char *s)

long fread(void *ptr, long itemsize, long nitems, FILE *stream)

long fwrite(void *ptr, long itemsize, long nitems, FILE *stream)

DESCRIPTION
The functions described here work on open Stdio streams (see fopen).

Fgetc returns as an int the next unsigned char from input stream f. If the stream is at end-
of-file, the end-of-file indicator for the stream is set and fgetc returns EOF. If a read error
occurs, the error indicator for the stream is set and fgetc returns EOF. Getc is like fgetc except
that it is implemented as a macro. Getchar is like getc except that it always reads from stdin.

Ungetc pushes character c back onto the input stream f. The pushed-back character will be
returned by subsequent reads in the reverse order of their pushing. A successful intervening
fseek, fsetpos, or rewind on f discards any pushed-back characters for f. One character of push-
back is guaranteed. Ungetc returns the character pushed back (converted to unsigned char),
or EOF if the operation fails. A successful call to ungetc clears the end-of-file indicator for the
stream. The file position indicator for the stream after reading or discarding all pushed-back char
acters is the same as it was before the characters were pushed back.

Fputc writes character c (converted to unsigned char) to output stream f at the position indi
cated by the position indicator for the stream and advances the indicator appropriately. If the file
cannot support positioning requests, or if the stream was opened with append mode, the character
is appended to the output stream. Fputc returns the character written or EOF if there was a write
error. Putc is like fputc but is implemented as a macro. Putchar is like putc except that it always
writes to stdout.

All other input takes place as if characters were read by successive calls to fgetc and all other out
put takes place as if characters were written by successive calls to fputc.

Fgets reads up to and including the next newline, but not past end-of-file or more than n-1 char
acters, from stream f into array s. A null character is written immediately after the last character
read into the array (if any characters are read at all). Fgets returns s if successful, otherwise a null
pointer. Gets is similar to fgets except that it always reads from stdin and it discards the termi
nating newline, if any. Gets does not check for overflow of the receiving array, so its use is depre
cated.

Fputs writes the string s to stream f, returning EOF if a write error occurred, otherwise a nonnega
tive value. The terminating null character is not written. Puts is the same, writing to stdout.

461

FGETC(2) FGETC(2)

Fread reads from the named input stream at most nitems of data of size itemsize and the type of
*ptr into a block beginning at ptr. It returns the number of items actually read.

Fwrite appends to the named output stream at most nitems of data of size itemsize and the type of
*ptr from a block beginning at ptr. It returns the number of items actually written.

SOURCE
/sys/src/libstdio

SEE ALSO
read(2), fopen(2), bio(2)

BUGS
Stdio does not handle UTF or runes; use Bio instead.

462

FLATE(2) FLATE(2)

NAME
deflateinit, deflate, deflatezlib, deflateblock, deflatezlibblock, inflateinit, inflate, inflatezlib, inflate
block, inflatezlibblock, flateerr, mkcrctab, blockcrc, adler32 � deflate compression

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <flate.h>

int deflateinit(void)

int deflate(void *wr, int (*w)(void*,void*,int),
void *rr, int (*r)(void*,void*,int),
int level, int debug)

int deflatezlib(void *wr, int (*w)(void*,void*,int),
void *rr, int (*r)(void*,void*,int),
int level, int debug)

int deflateblock(uchar *dst, int dsize,
uchar *src, int ssize,
int level, int debug)

int deflatezlibblock(uchar *dst, int dsize,
uchar *src, int ssize,
int level, int debug)

int inflateinit(void)

int inflate(void *wr, int (*w)(void*, void*, int),
void *getr, int (*get)(void*))

int inflatezlib(void *wr, int (*w)(void*, void*, int),
void *getr, int (*get)(void*))

int inflateblock(uchar *dst, int dsize,
uchar *src, int ssize)

int inflatezlibblock(uchar *dst, int dsize,
uchar *src, int ssize)

char *flateerr(int error)

ulong *mkcrctab(ulong poly)

ulong blockcrc(ulong *tab, ulong crc, void *buf, int n)

ulong adler32(ulong adler, void *buf, int n)

DESCRIPTION
These routines compress and decompress data using the deflate compression algorithm, which is
used for most gzip, zip, and zlib files.

Deflate compresses input data retrieved by calls to r with arguments rr, an input buffer, and a
count of bytes to read. R should return the number of bytes read; end of input is signaled by
returning zero, an input error by returning a negative number. The compressed output is written
to w with arguments wr, the output data, and the number of bytes to write. W should return the
number of bytes written; writing fewer than the requested number of bytes is an error. Level indi
cates the amount of computation deflate should do while compressing the data. Higher levels usu
ally take more time and produce smaller outputs. Valid values are 1 to 9, inclusive; 6 is a good
compromise. If debug is non-zero, cryptic debugging information is produced on standard error.

Inflate reverses the process, converting compressed data into uncompressed output. Input is
retrieved one byte at a time by calling get with the argument getr. End of input is signaled by
returning a negative value. The uncompressed output is written to w, which has the same inter
face as for deflate.

Deflateblock and inflateblock operate on blocks of memory but are otherwise similar to deflate and
inflate.

463

FLATE(2) FLATE(2)

The zlib functions are similar, but operate on files with a zlib header and trailer.

Deflateinit or inflateinit must be called once before any call to the corresponding routines.

If the above routines fail, they return a negative number indicating the problem. The possible val
ues are FlateNoMem , FlateInputFail , FlateOutputFail , FlateCorrupted, and FlateInternal. Flateerr
converts the number into a printable message. FlateOk is defined to be zero, the successful return
value for deflateinit, deflate, deflatezlib, inflateinit, inflate, and inflatezlib. The block functions
return the number of bytes produced when they succeed.

Mkcrctab allocates (using malloc(2)), initializes, and returns a table for rapid computation of 32 bit
CRC values using the polynomial poly. Blockcrc uses tab, a table returned by mkcrctab, to update
crc for the n bytes of data in buf, and returns the new value. Crc should initially be zero. Blockcrc
pre-conditions and post-conditions crc by ones complementation.

Adler32 updates the Adler 32-bit checksum of the n bytes of data in buf. The initial value of adler
(that is, its value after seeing zero bytes) should be 1.

SOURCE
/sys/src/libflate

464

FLOOR(2) FLOOR(2)

NAME
fabs, fmod, floor, ceil � absolute value, remainder, floor, ceiling functions

SYNOPSIS
#include <u.h>
#include <libc.h>

double floor(double x)

double ceil(double x)

double fabs(double x)

double fmod(double x, double y)

DESCRIPTION
Fabs returns the absolute value | x |.

Floor returns the largest integer not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns x if y is zero, otherwise the number f with the same sign as x, such that x = iy + f for
some integer i, and | f | < | y |.

SOURCE
/sys/src/libc/port

SEE ALSO
abs(2), frexp(2)

465

FMTINSTALL(2) FMTINSTALL(2)

NAME
fmtinstall, dofmt, dorfmt, fmtprint, fmtvprint, fmtrune, fmtstrcpy, fmtrunestrcpy, fmtfdinit, fmtfd
flush, fmtstrinit, fmtstrflush, runefmtstrinit, runefmtstrflush, errfmt � support for user-defined
print formats and output routines

SYNOPSIS
#include <u.h>
#include <libc.h>

typedef struct Fmt Fmt;
struct Fmt{

uchar runes; /* output buffer is runes or chars? */
void *start; /* of buffer */
void *to; /* current place in the buffer */
void *stop; /* end of the buffer; overwritten if flush fails */
int (*flush)(Fmt*);/* called when to == stop */
void *farg; /* to make flush a closure */
int nfmt; /* num chars formatted so far */
va_list args; /* args passed to dofmt */
int r; /* % format Rune */
int width;
int prec;
ulong flags;

};

enum{
FmtWidth = 1,
FmtLeft = FmtWidth << 1,
FmtPrec = FmtLeft << 1,
FmtSharp = FmtPrec << 1,
FmtSpace = FmtSharp << 1,
FmtSign = FmtSpace << 1,
FmtZero = FmtSign << 1,
FmtUnsigned = FmtZero << 1,
FmtShort = FmtUnsigned << 1,
FmtLong = FmtShort << 1,
FmtVLong = FmtLong << 1,
FmtComma = FmtVLong << 1,

FmtFlag = FmtComma << 1
};

int fmtfdinit(Fmt *f, int fd, char *buf, int nbuf);

int fmtfdflush(Fmt *f);

int fmtstrinit(Fmt *f);

char* fmtstrflush(Fmt *f);

int runefmtstrinit(Fmt *f);

Rune* runefmtstrflush(Fmt *f);

int fmtinstall(int c, int (*fn)(Fmt*));

int dofmt(Fmt *f, char *fmt);

int dorfmt(Fmt*, Rune *fmt);

int fmtprint(Fmt *f, char *fmt, ...);

int fmtvprint(Fmt *f, char *fmt, va_list v);

int fmtrune(Fmt *f, int r);

int fmtstrcpy(Fmt *f, char *s);

466

FMTINSTALL(2) FMTINSTALL(2)

int fmtrunestrcpy(Fmt *f, Rune *s);

int errfmt(Fmt *f);

DESCRIPTION
The interface described here allows the construction of custom print(2) verbs and output routines.
In essence, they provide access to the workings of the formatted print code.

The print(2) suite maintains its state with a data structure called Fmt. A typical call to print(2) or
its relatives initializes a Fmt structure, passes it to subsidiary routines to process the output, and
finishes by emitting any saved state recorded in the Fmt. The details of the Fmt are unimportant
to outside users, except insofar as the general design influences the interface. The Fmt records
whether the output is in runes or bytes, the verb being processed, its precision and width, and
buffering parameters. Most important, it also records a flush routine that the library will call if a
buffer overflows. When printing to a file descriptor, the flush routine will emit saved characters
and reset the buffer; when printing to an allocated string, it will resize the string to receive more
output. The flush routine is nil when printing to fixed-size buffers. User code need never provide
a flush routine; this is done internally by the library.

Custom output routines
To write a custom output routine, such as an error handler that formats and prints custom error
messages, the output sequence can be run from outside the library using the routines described
here. There are two main cases: output to an open file descriptor and output to a string.

To write to a file descriptor, call fmtfdinit to initialize the local Fmt structure f, giving the file
descriptor fd, the buffer buf, and its size nbuf. Then call fmtprint or fmtvprint to generate the
output. These behave like fprint (see print(2)) or vfprint except that the characters are buf
fered until fmtfdflush is called and the return value is either 0 or �1. A typical example of this
sequence appears in the Examples section.

The same basic sequence applies when outputting to an allocated string: call fmtstrinit to initialize
the Fmt, then call fmtprint and fmtvprint to generate the output. Finally, fmtstrflush will return
the allocated string, which should be freed after use. To output to a rune string, use
runefmtstrinit and runefmtstrflush. Regardless of the output style or type, fmtprint or fmtvprint
generates the characters.

Custom format verbs
Fmtinstall is used to install custom verbs and flags labeled by character c, which may be any non-
zero Unicode character. Fn should be declared as

int fn(Fmt*)

Fp−>r is the flag or verb character to cause fn to be called. In fn, fp−>width, fp−>prec are
the width and precision, and fp−>flags the decoded flags for the verb (see print(2) for a
description of these items). The standard flag values are: FmtSign (+), FmtLeft (−),
FmtSpace (’ ’), FmtSharp (#), FmtComma (,), FmtLong (l), FmtShort (h),
FmtUnsigned (u), and FmtVLong (ll). The flag bits FmtWidth and FmtPrec identify
whether a width and precision were specified.

Fn is passed a pointer to the Fmt structure recording the state of the output. If fp−>r is a verb
(rather than a flag), fn should use Fmt−>args to fetch its argument from the list, then format it,
and return zero. If fp−>r is a flag, fn should return one. All interpretation of fp−>width,
fp−>prec, and fp−>flags is left up to the conversion routine. Fmtinstall returns 0 if the instal
lation succeeds, �1 if it fails.

Fmtprint and fmtvprint may be called to help prepare output in custom conversion routines. How
ever, these functions clear the width, precision, and flags. Both functions return 0 for success and
�1 for failure.

The functions dofmt and dorfmt are the underlying formatters; they use the existing contents of
Fmt and should be called only by sophisticated conversion routines. These routines return the
number of characters (bytes of UTF or runes) produced.

Some internal functions may be useful to format primitive types. They honor the width, precision
and flags as described in print(2). Fmtrune formats a single character r. Fmtstrcpy formats a
string s; fmtrunestrcpy formats a rune string s. Errfmt formats the system error string. All these
routines return zero for successful execution. Conversion routines that call these functions will

467

FMTINSTALL(2) FMTINSTALL(2)

work properly regardless of whether the output is bytes or runes.

2c(1) describes the C directive #pragma varargck that can be used to provide type-checking
for custom print verbs and output routines.

EXAMPLES
This function prints an error message with a variable number of arguments and then quits. Com
pared to the corresponding example in print(2), this version uses a smaller buffer, will never trun
cate the output message, but might generate multiple write system calls to produce its output.

#pragma varargckargpos fatal 1

void
fatal(char *fmt, ...)
{

Fmt f;
char buf[64];
va_list arg;

fmtfdinit(&f, 1, buf, sizeof buf);
fmtprint(&f, "fatal: ");
va_start(arg, fmt);
fmtvprint(&f, fmt, arg);
va_end(arg);
fmtprint(&f, "\n");
fmtfdflush(&f);
exits("fatal error");

}

This example adds a verb to print complex numbers.

typedef struct {
double r, i;

} Complex;

#pragma varargcktype"X" Complex

int
Xfmt(Fmt *f)
{

Complex c;

c = va_arg(f−>args, Complex);
return fmtprint(f, "(%g,%g)", c.r, c.i);

}

main(...)
{

Complex x = (Complex){ 1.5, −2.3 };

fmtinstall(’X’, Xfmt);
print("x = %X\n", x);

}

SOURCE
/sys/src/libc/fmt

SEE ALSO
print(2), utf(6), errstr(2)

DIAGNOSTICS
These routines return negative numbers or nil for errors and set errstr.

468

FOPEN(2) FOPEN(2)

NAME
fopen, freopen, fdopen, fileno, fclose, sopenr, sopenw, sclose, fflush, setvbuf, setbuf, fgetpos,
ftell, fsetpos, fseek, rewind, feof, ferror, clearerr � standard buffered input/output package

SYNOPSIS
#include <u.h>
#include <stdio.h>

FILE *fopen(char *filename, char *mode)

FILE *freopen(char *filename, char *mode, FILE *f)

FILE *fdopen(int fd, char *mode)

int fileno(FILE *f)

FILE *sopenr(char *s)

FILE *sopenw(void)

char *sclose(FILE *f)

int fclose(FILE *f)

int fflush(FILE *f)

int setvbuf(FILE *f, char *buf, int type, long size)

void setbuf(FILE *f, char *buf)

int fgetpos(FILE *f, long *pos)

long ftell(FILE *f)

int fsetpos(FILE *f, long *pos)

int fseek(FILE *f, long offset, int whence)

void rewind(FILE *f)

int feof(FILE *f)

int ferror(FILE *f)

void clearerr(FILE *f)

DESCRIPTION
The functions described in this and related pages (fgetc(2), fprintf(2), fscanf(2), and tmpfile(2))
implement the ANSI C buffered I/O package with extensions.

A file with associated buffering is called a stream and is declared to be a pointer to a defined type
FILE. Fopen(2) creates certain descriptive data for a stream and returns a pointer to designate
the stream in all further transactions. There are three normally open streams with constant point
ers declared in the include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant pointer NULL designates no stream at all.

Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer to
be used to identify the stream in subsequent operations, or NULL if the open fails. Mode is a char
acter string having one of the following values:
"r" open for reading
"w" truncate to zero length or create for writing
"a" append; open or create for writing at end of file
"r+" open for update (reading and writing)
"w+" truncate to zero length or create for update
"a+" append; open or create for update at end of file

In addition, each of the above strings can have a b somewhere after the first character, meaning
�binary file�, but this implementation makes no distinction between binary and text files.

469

FOPEN(2) FOPEN(2)

Fclose causes the stream pointed to by f to be flushed (see below) and does a close (see open(2))
on the associated file. It frees any automatically allocated buffer. Fclose is called automatically on
exits(2) for all open streams.

Freopen is like open except that it reuses stream pointer f. Freopen first attempts to close any file
associated with f; it ignores any errors in that close.

Fdopen associates a stream with an open Plan 9 file descriptor.

Fileno returns the number of the Plan 9 file descriptor associated with the stream.

Sopenr associates a read-only stream with a null-terminated string.

Sopenw opens a stream for writing. No file descriptor is associated with the stream; instead, all
output is written to the stream buffer.

Sclose closes a stream opened with sopenr or sopenw. It returns a pointer to the 0 terminated
buffer associated with the stream.

By default, output to a stream is fully buffered: it is accumulated in a buffer until the buffer is full,
and then write (see read(2)) is used to write the buffer. An exception is standard error, which is
line buffered: output is accumulated in a buffer until a newline is written. Input is also fully buf
fered by default; this means that read(2) is used to fill a buffer as much as it can, and then charac
ters are taken from that buffer until it empties. Setvbuf changes the buffering method for file f
according to type: either _IOFBF for fully buffered, _IOLBF for line buffered, or _IONBF for
unbuffered (each character causes a read or write). If buf is supplied, it is used as the buffer and
size should be its size; If buf is zero, a buffer of the given size is allocated (except for the
unbuffered case) using malloc(2).

Setbuf is an older method for changing buffering. If buf is supplied, it changes to fully buffered
with the given buffer, which should be of size BUFSIZ (defined in stdio.h). If buf is zero, the
buffering method changes to unbuffered.

Fflush flushes the buffer of output stream f, delivering any unwritten buffered data to the host file.

There is a file position indicator associated with each stream. It starts out pointing at the first
character (unless the file is opened with append mode, in which case the indicator is always
ignored). The file position indicator is maintained by the reading and writing functions described
in fgetc(2).

Fgetpos stores the current value of the file position indicator for stream f in the object pointed to
by pos. It returns zero on success, nonzero otherwise. Ftell returns the current value of the file
position indicator. The file position indicator is to be used only as an argument to fseek.

Fsetpos sets the file position indicator for stream f to the value of the object pointed to by pos,
which shall be a value returned by an earlier call to fgetpos on the same stream. It returns zero on
success, nonzero otherwise. Fseek obtains a new position, measured in characters from the begin
ning of the file, by adding offset to the position specified by whence: the beginning of the file if
whence is SEEK_SET; the current value of the file position indicator for SEEK_CUR; and the
end-of-file for SEEK_END. Rewind sets the file position indicator to the beginning of the file.

An integer constant EOF is returned upon end of file or error by integer-valued functions that deal
with streams. Feof returns non-zero if and only if f is at its end of file.

Ferror returns non-zero if and only if f is in the error state. It can get into the error state if a sys
tem call failed on the associated file or a memory allocation failed. Clearerr takes a stream out of
the error state.

SOURCE
/sys/src/libstdio

SEE ALSO
fprintf(2), fscanf(2), fgetc(2)
open(2), read(2)

DIAGNOSTICS
The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized with
fopen, input (output) has been attempted on an output (input) stream, or a FILE pointer desig
nates corrupt or otherwise unintelligible FILE data.
Some of these functions set errstr.

470

FOPEN(2) FOPEN(2)

BUGS
Buffering of output can prevent output data from being seen until long after it is computed � per
haps never, as when an abort occurs between buffer filling and flushing.
Buffering of input can cause a process to consume more input than it actually uses. This can
cause trouble across exec(2).
Buffering may delay the receipt of a write error until a subsequent stdio writing, seeking, or file-
closing call.
ANSI says that a file can be fully buffered only if the file is not attached to an interactive device. In
Plan 9 all are fully buffered except standard error.

Fdopen , fileno, sopenr, sopenw, and sclose are not ANSI Stdio functions.

Stdio offers no support for runes or UTF characters. Unless external compatibility is necessary, use
bio(2), which supports UTF and is smaller, faster, and simpler than Stdio.

471

FORK(2) FORK(2)

NAME
fork, rfork � manipulate process resources

SYNOPSIS
#include <u.h>
#include <libc.h>

int fork(void)

int rfork(int flags)

DESCRIPTION
Forking is the only way new processes are created. The flags argument to rfork selects which
resources of the invoking process (parent) are shared by the new process (child) or initialized to
their default values. The resources include the file name space, the open file descriptor table
(which, when shared, permits processes to open and close files for other processes), the set of
environment variables (see env(3)), the note group (the set of processes that receive notes written
to a member�s notepg file; see proc(3)), the set of rendezvous tags (see rendezvous (2)); and
open files. Flags is the logical OR of some subset of

RFPROC If set a new process is created; otherwise changes affect the current process.
RFNOWAIT If set, the child process will be dissociated from the parent. Upon exit the child will

leave no Waitmsg (see wait(2)) for the parent to collect.
RFNAMEG If set, the new process inherits a copy of the parent�s name space; otherwise the

new process shares the parent�s name space. Is mutually exclusive with
RFCNAMEG.

RFCNAMEG If set, the new process starts with a clean name space. A new name space must be
built from a mount of an open file descriptor. Is mutually exclusive with RFNAMEG.

RFNOMNT If set, subsequent mounts into the new name space and dereferencing of path
names starting with # are disallowed.

RFENVG If set, the environment variables are copied; otherwise the two processes share envi
ronment variables. Is mutually exclusive with RFCENVG.

RFCENVG If set, the new process starts with an empty environment. Is mutually exclusive with
RFENVG.

RFNOTEG Each process is a member of a group of processes that all receive notes when a note
is written to any of their notepg files (see proc(3)). The group of a new process is
by default the same as its parent, but if RFNOTEG is set (regardless of RFPROC),
the process becomes the first in a new group, isolated from previous processes.

RFFDG If set, the invoker�s file descriptor table (see intro(2)) is copied; otherwise the two
processes share a single table.

RFCFDG If set, the new process starts with a clean file descriptor table. Is mutually exclusive
with RFFDG.

RFREND If set, the process will be unable to rendezvous (2) with any of its ancestors; its chil
dren will, however, be able to rendezvous with it. In effect, RFREND makes the
process the first in a group of processes that share a space for rendezvous tags.

RFMEM If set, the child and the parent will share data and bss segments. Otherwise, the
child inherits a copy of those segments. Other segment types, in particular stack
segments, will be unaffected. May be set only with RFPROC.

File descriptors in a shared file descriptor table are kept open until either they are explicitly closed
or all processes sharing the table exit.

If RFPROC is set, the value returned in the parent process is the process id of the child process;
the value returned in the child is zero. Without RFPROC, the return value is zero. Process ids
range from 1 to the maximum integer (int) value. Rfork will sleep, if necessary, until required
process resources are available.

Fork is just a call of rfork(RFFDG|RFREND|RFPROC).

SOURCE
/sys/src/libc/9syscall
/sys/src/libc/9sys/fork.c

472

FORK(2) FORK(2)

SEE ALSO
intro(2), proc(3),

DIAGNOSTICS
These functions set errstr.

473

FPRINTF(2) FPRINTF(2)

NAME
fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf, vsnprintf � print formatted output

SYNOPSIS
#include <u.h>
#include <stdio.h>

int fprintf(FILE *f, char *format, ...)

int printf(char *format, ...)

int sprintf(char *s, char *format, ...)

int snprintf(char *s, int n, char *format, ...)

int vfprintf(FILE *f, char *format, va_list args)

int vprintf(char *format, va_list args)

int vsprintf(char *s, char *format, va_list args)

int vsnprintf(char *s, int n, char *format, va_list args)

DESCRIPTION
Fprintf places output on the named output stream f (see fopen(2)). Printf places output on the
standard output stream stdout. Sprintf places output followed by the null character (\0) in consec
utive bytes starting at s; it is the user�s responsibility to ensure that enough storage is available.
Snprintf is like sprintf but writes at most n bytes (including the null character) into s. Vfprintf,
vprintf, vsnprintf, and vsprintf are the same, except the args argument is the argument list of the
calling function, and the effect is as if the calling function�s argument list from that point on is
passed to the printf routines.

Each function returns the number of characters transmitted (not including the \0 in the case of
sprintf and friends), or a negative value if an output error was encountered.

These functions convert, format, and print their trailing arguments under control of a format
string. The format contains two types of objects: plain characters, which are simply copied to the
output stream, and conversion specifications, each of which results in fetching of zero or more
arguments. The results are undefined if there are arguments of the wrong type or too few argu
ments for the format. If the format is exhausted while arguments remain, the excess are ignored.

Each conversion specification is introduced by the character %. After the %, the following appear in
sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value
has fewer characters than the field width, it will be padded with spaces on the left (or right,
if the left adjustment, described later, has been given) to the field width.

An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversions, the number of digits to appear after the decimal point for the e, E,
and f conversions, the maximum number of significant digits for the g and G conversions,
or the maximum number of characters to be written from a string in s conversion. The
precision takes the form of a period (.) followed by an optional decimal integer; if the inte
ger is omitted, it is treated as zero.

An optional h specifying that a following d, i, o, u, x or X conversion specifier applies to a
short int or unsigned short argument (the argument will have been promoted
according to the integral promotions, and its value shall be converted to short or
unsigned short before printing); an optional h specifying that a following n conversion
specifier applies to a pointer to a short argument; an optional l (ell) specifying that a fol
lowing d, i, o, u, x, or X conversion character applies to a long or unsigned long
argument; an optional l specifying that a following n conversion specifier applies to a
pointer to a long int argument; or an optional L specifying that a following e, E, f, g,
or G conversion specifier applies to a long double argument. If an h, l, or L appears
with any other conversion specifier, the behavior is undefined.

474

FPRINTF(2) FPRINTF(2)

A character that indicates the type of conversion to be applied.

A field width or precision, or both, may be indicated by an asterisk (*) instead of a digit string. In
this case, an int arg supplies the field width or precision. The arguments specifying field width
or precision, or both, shall appear (in that order) before the argument (if any) to be converted. A
negative field width argument is taken as a − flag followed by a positive field width. A negative
precision is taken as if it were missing.

The flag characters and their meanings are:
− The result of the conversion is left-justified within the field.
+ The result of a signed conversion always begins with a sign (+ or −).
blank If the first character of a signed conversion is not a sign, or a signed conversion results

in no characters, a blank is prefixed to the result. This implies that if the blank and +
flags both appear, the blank flag is ignored.

The result is to be converted to an ��alternate form.�� For o conversion, it increases the
precision to force the first digit of the result to be a zero. For x or X conversion, a
non-zero result has 0x or 0X prefixed to it. For e, E, f, g, and G conversions, the
result always contains a decimal point, even if no digits follow the point (normally, a dec
imal point appears in the result of these conversions only if a digit follows it). For g and
G conversions, trailing zeros are not be removed from the result as they normally are.
For other conversions, the behavior is undefined.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any indica
tion of sign or base) are used to pad the field width; no space padding is performed. If
the 0 and − flags both appear, the 0 flag will be ignored. For d, i, o, u, x, and X con
versions, if a precision is specified, the 0 flag will be ignored. For other conversions, the
behavior is undefined.

The conversion characters and their meanings are:

d,o,u,x,X
The integer arg is converted to signed decimal (d or i), unsigned octal (o), unsigned
decimal (u), or unsigned hexadecimal notation (x or X); the letters abcdef are used for
x conversion and the letters ABCDEF for X conversion. The precision specifies the min
imum number of digits to appear; if the value being converted can be represented in
fewer digits, it is expanded with leading zeros. The default precision is 1. The result of
converting a zero value with a precision of zero is no characters.

f The double argument is converted to decimal notation in the style [�]ddd.ddd, where
the number of digits after the decimal point is equal to the precision specification. If the
precision is missing, it is taken as 6; if the precision is explicitly 0, no decimal point
appears.

e,E The double argument is converted in the style [�]d.ddde±dd, where there is one digit
before the decimal point and the number of digits after it is equal to the precision; when
the precision is missing, it is taken as 6; if the precision is zero, no decimal point
appears. The E format code produces a number with E instead of e introducing the
exponent. The exponent always contains at least two digits.

g,G The double argument is printed in style f or e (or in style E in the case of a G conver
sion specifier), with the precision specifying the number of significant digits. If an
explicit precision is zero, it is taken as 1. The style used depends on the value con
verted: style e is used only if the exponent resulting from the conversion is less than �4
or greater than or equal to the precision. Trailing zeros are removed from the fractional
portion of the result; a decimal point appears only if it is followed by a digit.

c The int argument is converted to an unsigned char, and the resulting character is
written.

s The argument is taken to be a string (character pointer) and characters from the string
are printed until a null character (\0) is encountered or the number of characters indi
cated by the precision specification is reached. If the precision is missing, it is taken to
be infinite, so all characters up to the first null character are printed. A zero value for
the argument yields undefined results.

P The void* argument is printed in an implementation-defined way (for Plan 9: the
address as hexadecimal number).

n The argument shall be a pointer to an integer into which is written the number of char
acters written to the output stream so far by this call to fprintf. No argument is

475

FPRINTF(2) FPRINTF(2)

converted.
% Print a %; no argument is converted.

If a conversion specification is invalid, the behavior is undefined.

If any argument is, or points to, a union or an aggregate (except for an array of character type
using %s conversion, or a pointer cast to be a pointer to void using %P conversion), the behavior
is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a con
version is wider than the field width, the field is expanded to contain the conversion result.

SOURCE
/sys/src/libstdio

SEE ALSO
fopen(2), fscanf(2), print(2)

BUGS
There is no way to print a wide character (rune); use print(2) or bio(2).

476

FRAME(2) FRAME(2)

NAME
frinit, frsetrects, frinittick, frclear, frcharofpt, frptofchar, frinsert, frdelete, frselect, frtick, frselect
paint, frdrawsel, frdrawsel0, frgetmouse � frames of text

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>
#include <thread.h>
#include <mouse.h>
#include <frame.h>

void frinit(Frame *f, Rectangle r, Font *ft, Image *b, Image **cols)

void frsetrects(Frame *f, Rectangle r, Image *b)

void frinittick(Frame *f)

void frclear(Frame *f, int resize)

ulong frcharofpt(Frame *f, Point pt)

Point frptofchar(Frame *f, ulong p)

void frinsert(Frame *f, Rune *r0, Rune *r1, ulong p)

int frdelete(Frame *f, ulong p0, ulong p1)

void frselect(Frame *f, Mousectl *m)

void frtick(Frame *f, Point pt, int up)

void frselectpaint(Frame *f, Point p0, Point p1, Image *col)

void frdrawsel(Frame *f, Point pt0, ulong p0, ulong p1,
int highlighted)

Point frdrawsel0(Frame *f, Point pt0, ulong p0, ulong p1,
Image *back, Image *text)

enum{
BACK,
HIGH,
BORD,
TEXT,
HTEXT,
NCOL

};

DESCRIPTION
This library supports frames of editable text in a single font on raster displays, such as in sam(1)
and rio(1). Frames may hold any character except NUL (0). Long lines are folded and tabs are at
fixed intervals.

The user-visible data structure, a Frame, is defined in <frame.h>:

typedef struct Frame Frame;
struct Frame
{

Font *font; /* of chars in the frame */
Display *display; /* on which frame appears */
Image *b; /* on which frame appears */
Image *cols[NCOL]; /* text and background colors */
Rectangle r; /* in which text appears */
Rectangle entire; /* of full frame */
Frbox *box;
ulong p0, p1; /* selection */
ushort nbox, nalloc;
ushort maxtab; /* max size of tab, in pixels */

477

FRAME(2) FRAME(2)

ushort nchars; /* # runes in frame */
ushort nlines; /* # lines with text */
ushort maxlines; /* total # lines in frame */
ushort lastlinefull; /* last line fills frame */
ushort modified; /* changed since frselect() */
Image *tick; /* typing tick */
Image *tickback; /* saved image under tick */
int ticked; /* flag: is tick onscreen? */

};

Frbox is an internal type and is not used by the interface. P0 and p1 may be changed by the
application provided the selection routines are called afterwards to maintain a consistent display.
Maxtab determines the size of tab stops. Frinit sets it to 8 times the width of a 0 (zero) character
in the font; it may be changed before any text is added to the frame. The other elements of the
structure are maintained by the library and should not be modified directly.

The text within frames is not directly addressable; instead frames are designed to work alongside
another structure that holds the text. The typical application is to display a section of a longer
document such as a text file or terminal session. Usually the program will keep its own copy of the
text in the window (probably as an array of Runes) and pass components of this text to the frame
routines to display the visible portion. Only the text that is visible is held by the Frame; the appli
cation must check maxlines, nlines, and lastlinefull to determine, for example,
whether new text needs to be appended at the end of the Frame after calling frdelete (q.v.).

There are no routines in the library to allocate Frames; instead the interface assumes that
Frames will be components of larger structures. Frinit prepares the Frame f so characters
drawn in it will appear in the single Font ft. It then calls frsetrects and frinittick to initialize the
geometry for the Frame. The Image b is where the Frame is to be drawn; Rectangle r
defines the limit of the portion of the Image the text will occupy. The Image pointer may be
null, allowing the other routines to be called to maintain the associated data structure in, for exam
ple, an obscured window.

The array of Images cols sets the colors in which text and borders will be drawn. The back
ground of the frame will be drawn in cols[BACK]; the background of highlighted text in
cols[HIGH]; borders and scroll bar in cols[BORD]; regular text in cols[TEXT]; and high
lighted text in cols[HTEXT].

Frclear frees the internal structures associated with f, permitting another frinit or frsetrects on the
Frame. It does not clear the associated display. If f is to be deallocated, the associated Font
and Image must be freed separately. The resize argument should be non-zero if the frame is
to be redrawn with a different font; otherwise the frame will maintain some data structures associ
ated with the font.

To resize a Frame, use frclear and frinit and then frinsert (q.v.) to recreate the display. If a
Frame is being moved but not resized, that is, if the shape of its containing rectangle is
unchanged, it is sufficient to use draw(2) to copy the containing rectangle from the old to the new
location and then call frsetrects to establish the new geometry. (It is unnecessary to call frinittick
unless the font size has changed.) No redrawing is necessary.

Frames hold text as runes, not as bytes. Frptofchar returns the location of the upper left corner
of the p’th rune, starting from 0, in the Frame f. If f holds fewer than p runes, frptofchar returns
the location of the upper right corner of the last character in f. Frcharofpt is the inverse: it returns
the index of the closest rune whose image�s upper left corner is up and to the left of pt.

Frinsert inserts into Frame f starting at rune index p the runes between r0 and r1. If a NUL (0)
character is inserted, chaos will ensue. Tabs and newlines are handled by the library, but all other
characters, including control characters, are just displayed. For example, backspaces are printed;
to erase a character, use frdelete.

Frdelete deletes from the Frame the text between p0 and p1; p1 points at the first rune beyond
the deletion.

Frselect tracks the mouse to select a contiguous string of text in the Frame. When called, a
mouse button is typically down. Frselect will return when the button state has changed (some but
tons may still be down) and will set f−>p0 and f−>p1 to the selected range of text.

478

FRAME(2) FRAME(2)

Programs that wish to manage the selection themselves have several routines to help. They
involve the maintenance of the �tick�, the vertical line indicating a null selection between charac
ters, and the colored region representing a non-null selection. Frtick draws (if up is non-zero) or
removes (if up is zero) the tick at the screen position indicated by pt. Frdrawsel repaints a section
of the frame, delimited by character positions p0 and p1, either with plain background or entirely
highlighted, according to the flag highlighted, managing the tick appropriately. The point pt0 is
the geometrical location of p0 on the screen; like all of the selection-helper routines� Point argu
ments, it must be a value generated by frptofchar. Frdrawsel0 is a lower-level routine, taking as
arguments a background color, back, and text color, text. It assumes that the tick is being handled
(removed beforehand, replaced afterwards, as required) by its caller. Frselectpaint uses a solid
color, col, to paint a region of the frame defined by the Points p0 and p1.

SOURCE
/sys/src/libframe

SEE ALSO
graphics(2), draw(2), cachechars(2).

479

FREXP(2) FREXP(2)

NAME
frexp, ldexp, modf � split into mantissa and exponent

SYNOPSIS
#include <u.h>
#include <libc.h>

double frexp(double value, int *eptr)

double ldexp(double value, int exp)

double modf(double value, double *iptr)

DESCRIPTION
Frexp returns the mantissa of value and stores the exponent indirectly through eptr, so that value
= frexp(value)×2

(*eptr)

Ldexp returns the quantity value×2
exp

.

Modf returns the signed fractional part of value and stores the integer part indirectly through iptr.

SOURCE
/sys/src/libc/port/frexp.c

SEE ALSO
intro(2)

DIAGNOSTICS
Ldexp returns 0 for underflow and the appropriately signed infinity for overflow.

480

FSCANF(2) FSCANF(2)

NAME
fscanf, scanf, sscanf, vfscanf � scan formatted input

SYNOPSIS
#include <u.h>
#include <stdio.h>

int fscanf(FILE *f, char *format, ...)

int scanf(char *format, ...)

int sscanf(char *s, char *format, ...)

int vfscanf(FILE *stream, char *format, char *args)

DESCRIPTION
Fscanf reads from the named input stream f (see fopen(2)) under control of the string pointed to
by format that specifies the admissible input sequences and how they are to be converted for
assignment, using subsequent arguments as pointers to the objects to receive the converted input.
If there are insufficient arguments for the format, the behavior is undefined. If the format is
exhausted while arguments remain, the excess arguments are evaluated (as always) but are other
wise ignored.

Scanf and sscanf are the same, but they read from stdin and the character string s, respectively.
Vfscanf is like scanf, except the args argument is a pointer to an argument in an argument list of
the calling function and the effect is as if the calling function�s argument list from that point on is
passed to the scanf routines.

The format is composed of zero or more directives: one or more white-space characters; an ordi
nary character (not %); or a conversion specification. Each conversion specification is introduced
by the character %. After the %, the following appear in sequence:

An optional assignment-suppressing character *.

An optional decimal integer that specifies the maximum field width.

An optional h, l (ell) or L indicating the size of the receiving object. The conversion speci
fiers d, i, and n shall be preceded by h if the corresponding argument is a pointer to
short rather than a pointer to int, or by l if it is a pointer to long. Similarly, the con
version specifiers o, u, and x shall be preceded by h if the corresponding argument is a
pointer to unsigned short rather than a pointer to unsigned, or by l if it is a pointer
to unsigned long. Finally, the conversion specifiers e, f, and g shall be preceded by l
if the corresponding argument is a pointer to double rather than a pointer to float, or
by L if it is a pointer to long double. If an h, l, or L appears with any other conversion
specifier, the behavior is undefined.

A character that specifies the type of conversion to be applied. The valid conversion speci
fiers are described below.

Fscanf executes each directive of the format in turn. If a directive fails, as detailed below, fscanf
returns. Failures are described as input failures (due to the unavailability of input), or matching
failures (due to inappropriate input).

A directive composed of white space is executed by reading input up to the first non-white-space
character (which remains unread), or until no more characters can be read.

A directive that is an ordinary character is executed by reading the next character from the stream.
If if differs from the one comprising the directive, the directive fails, and the differing and subse
quent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following steps:

Input white-space characters (as specified by isspace, see ctype(2)) are skipped, unless the specifi
cation includes a [, c, or n specifier.

An input item is read from the stream, unless the specification includes an n specifier. An input
item is defined as the longest sequence of input characters (up to any specified maximum field
width) which is an initial subsequence of a matching sequence. The first character, if any, after the

481

FSCANF(2) FSCANF(2)

input item remains unread. If the length of the input item is zero, the execution of the directive
fails: this condition is a matching failure, unless an error prevented input from the stream, in
which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of
input characters) is converted to a type appropriate to the conversion specifier. If the input item is
not a matching sequence, the execution of the directive fails: this condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the conversion is placed in the
object pointed to by the first argument following the format argument that has not already
received a conversion result. If this object does not have an appropriate type, or if the result of the
conversion cannot be represented in the space provided, the behavior is undefined.

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for the
subject sequence of the strtol (see atof(2)) function with 10 for the base argument. The
corresponding argument shall be a pointer to int.

i Matches an optionally signed decimal integer, whose format is the same as expected for the
subject sequence of the strtol function with 0 for the base argument. The corresponding
argument shall be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for the
subject sequence of the strtoul (see atof(2)) function with 8 for the base argument. The
corresponding argument shall be a pointer to unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as expected for the
subject sequence of the strtoul function with 10 for the base argument. The corresponding
argument shall be a pointer to unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected for
the subject sequence of the strtoul function with 16 for the base argument. The corre
sponding argument shall be a pointer to unsigned int.

e,f,g
Matches an optionally signed floating-point number, whose format is the same as expected
for the subject string of the strtod (see atof(2)) function. The corresponding argument shall
be a pointer to float.

s Matches a sequence of non-white-space characters. The corresponding argument shall be a
pointer to the initial character of an array large enough to accept the sequence and a termi
nating NUL (0) character, which will be added automatically.

[Matches a nonempty sequence of characters from a set of expected characters (the scanset).
The corresponding argument shall be a pointer to the initial character of an array large
enough to accept the sequence and a terminating NUL character, which will be added auto
matically. The conversion specifier includes all subsequent characters in the format string,
up to and including the matching right brace (]). The characters between the brackets (the
scanlist) comprise the scanset, unless the character after the left bracket is a circumflex (^),
in which case the scanset contains all characters that do not appear in the scanlist between
the circumflex and the right bracket. As a special case, if the conversion specifier begins
with [] or [^], the right bracket character is in the scanlist and the next right bracket char
acter is the matching right bracket that ends the specification. If a − character is in the
scanlist and is not the first, nor the second where the first character is a ^, nor the last char
acter, the behavior is implementation-defined (in Plan 9: the scanlist includes all characters
in the ASCII (sic) range between the two characters on either side of the −).

c Matches a sequence of characters of the number specified by the field width (1 if no field
width is present in the directive). The corresponding argument shall be a pointer to the ini
tial character of an array large enough to accept the sequence. No NUL character is added.

P Matches an implementation-defined set of sequences, which should be the same as the set
of sequences that may be produced by the %P conversion of the fprintf(2) function (in Plan
9, a hexadecimal number). The corresponding argument shall be a pointer to a pointer to
void. The interpretation of the input item is implementation defined; however, for any
input item other than a value converted earlier during the same program execution, the
behavior of the %P conversion is undefined.

482

FSCANF(2) FSCANF(2)

n No input is consumed. The corresponding argument shall be a pointer to integer into which
is written the number of characters read from the input stream so far by this call to fscanf.
Execution of a %n directive does not increment the assignment count returned at the com
pletion of fscanf.

% Matches a single %; no conversion or assignment occurs. The complete conversion specifica
tion shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers E, G, and X are also valid and behave the same as, respectively, e, g,
and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before
any characters matching the current directive have been read (other than leading white space,
where permitted), execution of the current directive terminates with an input failure; otherwise,
unless execution of the current directive is terminated with a matching failure, execution of the fol
lowing directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left
unread in the input stream. Trailing white space (including newline characters) is left unread
unless matched by a directive. The success of literal matches and suppressed assignments is not
directly determinable other than via the %n directive.

The return value from fscanf is the number of input items assigned, which can be fewer than pro
vided for, or even zero, in the event of an early matching failure. However, if an input failure
occurs before any conversion, EOF is returned.

SOURCE
/sys/src/libstdio

SEE ALSO
fopen(2), fgetc(2)

BUGS
Does not know about UTF.

483

FVERSION(2) FVERSION(2)

NAME
fversion � initialize 9P connection and negotiate version

SYNOPSIS
#include <u.h>
#include <libc.h>

int fversion(int fd, int bufsize, char *version, int nversion)

DESCRIPTION
Fversion is used to initialize the 9P connection represented by fd and to negotiate the version of
the protocol to be used.

The bufsize determines the size of the I/O buffer used to stage 9P requests to the server, subject
to the constraints of the server itself. The version is a text string that represents the highest ver
sion level the protocol will support. The version will be overwritten with the negotiated, possibly
lower, version of the protocol. The return value of fversion is the length of the returned version
string; the value of nversion is therefore not the length of the version string presented to the sys
tem call, but the total length of the buffer to accept the final result, in the manner of a read system
call.

Default values of zero for bufsize and the empty string for version will negotiate sensible defaults
for the connection. If version is the empty string, nversion must still be large enough to receive
the returned version string.

The interpretation of the version strings is defined in version(5).

It is rare to use fversion directly; usually the default negotiation performed by the kernel during
mount (see bind(2)) or even more commonly amount (see auth(2)) is sufficient.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
intro(5), version(5), fauth(2).

DIAGNOSTICS
Sets errstr.

484

GETCALLERPC(2) GETCALLERPC(2)

NAME
getcallerpc � fetch return PC of current function

SYNOPSIS
#include <u.h>
#include <libc.h>

uintptr getcallerpc(void *firstarg)

DESCRIPTION
Getcallerpc is a portable way to discover the PC to which the current function will return. Firstarg
should be a pointer to the first argument to the function in question.

EXAMPLE
void
printpc(int arg)
{

print("Called from %p\n", getcallerpc(&arg));
}

void
main(int argc, char *argv[])
{

printpc(0);
printpc(0);
printpc(0);

}

SOURCE
/sys/src/libc/$objtype/getcallerpc.[cs]

BUGS
The firstarg parameter should not be necessary.

485

GETENV(2) GETENV(2)

NAME
getenv, putenv � access environment variables

SYNOPSIS
#include <u.h>
#include <libc.h>

char* getenv(char *name)
int putenv(char *name, char *val)

DESCRIPTION
Getenv reads the contents of /env/name (see env(3)) into memory allocated with malloc(2), 0-
terminates it, and returns a pointer to that area. If no file exists, 0 is returned.

Putenv creates the file /env/name and writes the string val to it. The terminating 0 is not writ
ten. If the file value cannot be written, �1 is returned.

SOURCE
/sys/src/libc/9sys

SEE ALSO
env(3)

DIAGNOSTICS
Sets errstr.

486

GETFCR(2) GETFCR(2)

NAME
getfcr, setfcr, getfsr, setfsr � control floating point

SYNOPSIS
#include <u.h>
#include <libc.h>

ulong getfcr(void)

void setfcr(ulong fcr)

ulong getfsr(void)

void setfsr(ulong fsr)

DESCRIPTION
These routines provide a fairly portable interface to control the rounding and exception character
istics of IEEE 754 floating point units. In effect, they define a pair of pseudo-registers, the floating
point control register, fcr, which affects rounding, precision, and exceptions, and the floating
point status register, fsr, which holds the accrued exception bits. Each register has a get routine
to retrieve its value, a set routine to modify it, and macros that identify its contents.

The fcr contains bits that, when set, halt execution upon exceptions: FPINEX (enable inexact
exceptions), FPOVFL (enable overflow exceptions), FPUNFL (enable underflow exceptions),
FPZDIV (enable zero divide exceptions), and FPINVAL (enable invalid operation exceptions).
Rounding is controlled by installing in fcr, under mask FPRMASK, one of the values FPRNR
(round to nearest), FPRZ (round towards zero), FPRPINF (round towards positive infinity), and
FPRNINF (round towards negative infinity). Precision is controlled by installing in fcr, under
mask FPPMASK, one of the values FPPEXT (extended precision), FPPSGL (single precision), and
FPPDBL (double precision).

The fsr holds the accrued exception bits FPAINEX, FPAOVFL, FPAUNFL, FPAZDIV, and
FPAINVAL, corresponding to the fsr bits without the A in the name.

Not all machines support all modes. If the corresponding mask is zero, the machine does not sup
port the rounding or precision modes. On some machines it is not possible to clear selective
accrued exception bits; a setfsr clears them all. The exception bits defined here work on all archi
tectures. Where possible, the initial state is equivalent to

setfcr(FPPDBL|FPRNR|FPINVAL|FPZDIV|FPOVFL);

However, this may vary between architectures: the default is to provide what the hardware does
most efficiently. Use these routines if you need guaranteed behavior. Also, gradual underflow is
not available on some machines.

EXAMPLE
To enable overflow traps and make sure registers are rounded to double precision (for example on
the MC68020, where the internal registers are 80 bits long):

setfcr((getfcr() & ~FPPMASK) | FPPDBL | FPOVFL);

SOURCE
/sys/src/libc/$objtype/getfcr.s

487

GETFIELDS(2) GETFIELDS(2)

NAME
getfields, gettokens, tokenize � break a string into fields

SYNOPSIS
#include <u.h>
#include <libc.h>

int getfields(char *str, char **args, int maxargs, int multiflag,
char *delims)

int gettokens(char *str, char **args, int maxargs, char *delims)

int tokenize(char *str, char **args, int maxargs)

DESCRIPTION
Getfields places into the array args pointers to the first maxargs fields of the null terminated UTF

string str. Delimiters between these fields are set to null.

Fields are substrings of str whose definition depends on the value of multiflag. If multiflag is zero,
adjacent fields are separated by exactly one delimiter. For example

getfields("#alice#bob##charles###", arg, 3, 0, "#");

yields three substrings: null-string , alice, and bob##charles###. If the multiflag argument
is not zero, a field is a non-empty string of non-delimiters. For example

getfields("#alice#bob##charles###", arg, 3, 1, "#");

yields the three substrings: alice, bob, and charles###.

Getfields returns the number of fields pointed to.

Gettokens is the same as getfields with multiflag non-zero, except that fields may be quoted using
single quotes, in the manner of rc(1). Any such quotes remain in the resulting args. See quote(2)
for related quote-handling software.

Tokenize is similar to gettokens with delims set to "\t\r\n ", except that quotes are interpreted
but do not appear in the resulting args.

SOURCE
/sys/src/libc/port/getfields.c
/sys/src/libc/port/tokenize.c

SEE ALSO
strtok in strcat(2), quote(2).

488

GETPID(2) GETPID(2)

NAME
getpid, getppid � get process ids

SYNOPSIS
#include <u.h>
#include <libc.h>

int getpid(void)

int getppid(void)

DESCRIPTION
Getpid returns the process id of the current process, a number guaranteed to be unique among all
running processes on the machine executing getpid.

Getppid returns the process id of the parent of the current process.

SOURCE
/sys/src/libc/9sys

SEE ALSO
intro(2), exec(2), proc(3)

DIAGNOSTICS
Returns 0 and sets errstr if unsuccessful.

489

GETUSER(2) GETUSER(2)

NAME
getuser, sysname � get user or system name

SYNOPSIS
#include <u.h>
#include <libc.h>

char* getuser(void)

char* sysname(void)

DESCRIPTION
Getuser returns a pointer to static data which contains the null-terminated name of the user who
owns the current process. Getuser stats the file /proc/pid/status to find the name.

Sysname reads the file /dev/sysname, which contains the name of the machine. Unlike
getuser, sysname caches the string, reading the file only once.

SOURCE
/sys/src/libc/9sys/getuser.c
/sys/src/libc/9sys/sysname.c

SEE ALSO
intro(2), proc(3), cons(3)

490

GETWD(2) GETWD(2)

NAME
getwd � get current directory

SYNOPSIS
#include <u.h>
#include <libc.h>

char* getwd(char *buf, int size)

DESCRIPTION
Getwd fills buf with a null-terminated string representing the current directory and returns buf.

Getwd places no more than size bytes in the buffer provided.

SOURCE
/sys/src/libc/9sys/getwd.c

SEE ALSO
pwd(1), getwd(2), fd2path(2)

DIAGNOSTICS
On error, zero is returned. Errstr(2) may be consulted for more information.

BUGS
Although the name returned by getwd is guaranteed to be the path used to reach the directory, if
the name space has changed underfoot, the name may be incorrect.

491

GRAPHICS(2) GRAPHICS(2)

NAME
Display, Point, Rectangle, Cursor, initdraw, geninitdraw, newwindow, drawerror, initdisplay,
closedisplay, getdefont, getwindow, gengetwindow, flushimage, bufimage, lockdisplay, unlockdis
play, openfont, buildfont, freefont, Pfmt, Rfmt, strtochan, chantostr, chantodepth � interactive
graphics

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>
#include <cursor.h>

int initdraw(void (*errfun)(Display*, char*), char *font,
char *label)

int geninitdraw(char *devdir, void(*errfun)(Display*, char*),

char *font, char *label, char *windir,
int ref)

int newwindow(char *str)

void drawerror(Display *d, char *msg)

Display*initdisplay(char *devdir, char *win, void(*errfun)(Display*, char*))

void closedisplay(Display *d)

Subfont*getdefont(Display *d)

int flushimage(Display *d, int vis)

uchar*bufimage(Display *d, int n)

void lockdisplay(Display *d)

void unlockdisplay(Display *d)

int getwindow(Display *d, int ref)

int gengetwindow(Display *d, char *winname,
Image **ip, Screen **sp, int ref)

Font* openfont(Display *d, char *name)

Font* buildfont(Display *d, char *desc, char *name)

void freefont(Font *f)

int Pfmt(Fmt*)

int Rfmt(Fmt*)

ulong strtochan(char *s)

char* chantostr(char *s, ulong chan)

int chantodepth(ulong chan)

extern Display *display

extern Image *screen

extern Screen *_screen

extern Font *font

DESCRIPTION
A Display structure represents a connection to the graphics device, draw(3), holding all graph
ics resources associated with the connection, including in particular raster image data in use by
the client program. The structure is defined (in part) as:

typedef
struct Display
{

492

GRAPHICS(2) GRAPHICS(2)

...
void (*error)(Display*, char*);
...
Image *black;
Image *white;
Image *opaque;
Image *transparent;
Image *image;
Font *defaultfont;
Subfont*defaultsubfont;
...

};

A Point is a location in an Image (see below and draw(2)), such as the display, and is defined as:

typedef
struct Point {

int x;
int y;

} Point;

The coordinate system has x increasing to the right and y increasing down.

A Rectangle is a rectangular area in an image.

typedef
struct Rectangle {

Point min; /* upper left */
Point max; /* lower right */

} Rectangle;

By definition, min.xdmax.x and min.ydmax.y. By convention, the right (maximum x) and
bottom (maximum y) edges are excluded from the represented rectangle, so abutting rectangles
have no points in common. Thus, max contains the coordinates of the first point beyond the rect
angle.

The Image data structure is defined in draw(2).

A Font is a set of character images, indexed by runes (see utf(6)). The images are organized into
Subfonts, each containing the images for a small, contiguous set of runes. The detailed format
of these data structures, which are described in detail in cachechars(2), is immaterial for most
applications. Font and Subfont structures contain two interrelated fields: ascent, the dis
tance from the top of the highest character (actually the top of the image holding all the charac
ters) to the baseline, and height, the distance from the top of the highest character to the bot
tom of the lowest character (and hence, the interline spacing). See cachechars(2) for more details.

Buildfont parses the font description in the buffer desc, returning a Font* pointer that can be
used by string (see draw(2)) to draw characters from the font. Openfont does the same, but
reads the description from the named file. Freefont frees a font. The convention for naming font
files is:

/lib/font/bit/name/range.size.font

where size is approximately the height in pixels of the lower case letters (without ascenders or
descenders). Range gives some indication of which characters will be available: for example
ascii, latin1, euro, or unicode. Euro includes most European languages, punctuation
marks, the International Phonetic Alphabet, etc., but no Oriental languages. Unicode includes
every character for which appropriate-sized images exist on the system.

A Cursor is defined:

typedef struct
Cursor {

Point offset;
uchar clr[2*16];
uchar set[2*16];

} Cursor;

493

GRAPHICS(2) GRAPHICS(2)

The arrays are arranged in rows, two bytes per row, left to right in big-endian order to give 16
rows of 16 bits each. A cursor is displayed on the screen by adding offset to the current mouse
position, using clr as a mask to draw white at the pixels where clr is one, and then drawing
black at the pixels where set is one. Setcursor and moveto (see mouse(2)) and esetcursor and
emoveto (see event(2)) change the cursor image and its location on the screen.

The routine initdraw connects to the display; it returns �1 if it fails and sets the error string.
Initdraw sets up the global variables display (the Display structure representing the connec
tion), screen (an Image representing the display memory itself or, if rio(1) is running, the
client�s window), and font (the default font for text). The arguments to initdraw include a label,
which is written to /dev/label if non-nil so that it can be used to identify the window when
hidden (see rio(1)). The font is created by reading the named font file. If font is null, initdraw
reads the file named in the environment variable $font; if $font is not set, it imports the
default (usually minimal) font from the operating system. The global font will be set to point to
the resulting Font structure. The errfun argument is a graphics error function to call in the event
of a fatal error in the library; it must never return. Its arguments are the display pointer and an
error string. If errfun is nil, the library provides a default, called drawerror. Another effect of
initdraw is that it installs print(2) formats Pfmt and Rfmt as %P and %R for printing Points and
Rectangles.

The geninitdraw function provides a less automated way to establish a connection, for programs
that wish to connect to multiple displays. Devdir is the name of the directory containing the device
files for the display (if nil, default /dev); errfun, font, and label are as in initdraw; windir is the
directory holding the winname file; and ref specifies the refresh function to be used to create the
window, if running under rio(1) (see window(2)).

The function newwindow may be called before initdraw or geninitdraw to cause the program to
occupy a newly created window rather than take over the one in which it is running when it starts.
The str argument, if non-null, is concatenated to the string "new " that is used to create the win
dow (see rio(4)). For example, newwindow("−hide −dy 100") will cause the program to
run in a newly created, hidden window 100 pixels high.

Initdisplay is part of geninitdraw; it sets up the display structures but does not allocate any fonts
or call getwindow. The arguments are similar to those of initdraw; win names the directory, default
/dev, in which the files associated with the window reside. Closedisplay disconnects the display
and frees the associated data structures. Getdefont builds a Subfont structure from in-core data
describing a default subfont. None of these routines are needed by most programs, since initdraw
calls them as needed.

The data structures associated with the display must be protected in a multi-process program,
because they assume only one process will be using them at a time. Multi-process programs
should set display−>locking to 1, to notify the library to use a locking protocol for its own
accesses, and call lockdisplay and unlockdisplay around any calls to the graphics library that will
cause messages to be sent to the display device. Initdraw and geninitdraw initialize the display to
the locked state.

Getwindow returns a pointer to the window associated with the application; it is called automati
cally by initdraw to establish the screen pointer but must be called after each resizing of the
window to restore the library�s connection to the window. If rio is not running, it returns
display−>image; otherwise it negotiates with rio by looking in /dev/winname to find the
name of the window and opening it using namedimage (see allocimage(2)). The resulting window
will be created using the refresh method ref (see window(2)); this should almost always be
Refnone because rio provides backing store for the window.

Getwindow overwrites the global variables screen, a pointer to the Image defining the window
(or the overall display, if no window system is running); and _screen, a pointer to the Screen
representing the root of the window�s hierarchy. (See window(2). The overloading of the screen
word is an unfortunate historical accident.) Getwindow arranges that screen point to the portion
of the window inside the border; sophisticated clients may use _screen to make further subwin
dows. Programs desiring multiple independent windows may use the mechanisms of rio(4) to cre
ate more windows (usually by a fresh mount of the window sytem in a directory other than /dev),
then use gengetwindow to connect to them. Gengetwindow�s extra arguments are the full path of
the window�s winname file and pointers to be overwritten with the values of the �global� Image
and Screen variables for the new window.

494

GRAPHICS(2) GRAPHICS(2)

The graphics functions described in draw(2), allocimage(2), cachechars(2), and subfont(2) are
implemented by writing commands to files under /dev/draw (see draw(3)); the writes are buf
fered, so the functions may not take effect immediately. Flushimage flushes the buffer, doing all
pending graphics operations. If vis is non-zero, any changes are also copied from the �soft
screen� (if any) in the driver to the visible frame buffer. The various allocation routines in the
library flush automatically, as does the event package (see event(2)); most programs do not need
to call flushimage. It returns �1 on error.

Bufimage is used to allocate space for n bytes in the display buffer. It is used by all the graphics
routines to send messages to the display.

The functions strtochan and chantostr convert between the channel descriptor strings used by
image(6) and the internal ulong representation used by the graphics protocol (see draw(3)�s b
message). Chantostr writes at most nine bytes into the buffer pointed at by s and returns s on
success, 0 on failure. Chantodepth returns the number of bits per pixel used by the format
specified by chan. Both chantodepth and strtochan return 0 when presented with bad
input.

EXAMPLES
To reconnect to the window after a resize event,

if(getwindow(display, Refnone) < 0)
sysfatal("resize failed: %r");

To create and set up a new rio(1) window,

Image *screen2;
Screen *_screen2;

srvwsys = getenv("wsys");
if(srvwsys == nil)

sysfatal("can’t find $wsys: %r");
rfork(RFNAMEG); /* keep mount of rio private */

fd = open(srvwsys, ORDWR);
if(fd < 0)

sysfatal("can’t open $wsys: %r");

/* mount creates window; see rio(4) */
if(mount(fd, −1, "/tmp", MREPL, "new −dx 300−dy 200") < 0)

sysfatal("can’t mount new window: %r");
if(gengetwindow(display, "/tmp/winname",

&screen2, &_screen2, Refnone) < 0)
sysfatal("resize failed: %r");

/* now open /tmp/cons, /tmp/mouse */
...

FILES
/lib/font/bit directory of fonts

SOURCE
/sys/src/libdraw

SEE ALSO
rio(1), addpt(2), allocimage(2), cachechars(2), subfont(2), draw(2), event(2), frame(2), print(2),
window(2), draw(3), rio(4), image(6), font(6)

DIAGNOSTICS
An error function may call errstr(2) for further diagnostics.

BUGS
The names clr and set in the Cursor structure are reminders of an archaic color map and
might be more appropriately called white and black.

495

HTML(2) HTML(2)

NAME
parsehtml, printitems, validitems, freeitems, freedocinfo, dimenkind, dimenspec, targetid, target
name, fromStr, toStr � HTML parser

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <html.h>

Item* parsehtml(uchar* data, int datalen, Rune* src, int mtype,
int chset, Docinfo** pdi)

void printitems(Item* items, char* msg)

int validitems(Item* items)

void freeitems(Item* items)

void freedocinfo(Docinfo* d)

int dimenkind(Dimen d)

int dimenspec(Dimen d)

int targetid(Rune* s)

Rune* targetname(int targid)

uchar* fromStr(Rune* buf, int n, int chset)

Rune* toStr(uchar* buf, int n, int chset)

DESCRIPTION
This library implements a parser for HTML 4.0 documents. The parsed HTML is converted into an
intermediate representation that describes how the formatted HTML should be laid out.

Parsehtml parses an entire HTML document contained in the buffer data and having length
datalen. The URL of the document should be passed in as src. Mtype is the media type of the doc
ument, which should be either TextHtml or TextPlain. The character set of the document is
described in chset, which can be one of US_Ascii, ISO_8859_1, UTF_8 or Unicode. The
return value is a linked list of Item structures, described in detail below. As a side effect, *pdi is
set to point to a newly created Docinfo structure, containing information pertaining to the entire
document.

The library expects two allocation routines to be provided by the caller, emalloc and
erealloc. These routines are analogous to the standard malloc and realloc routines, except
that they should not return if the memory allocation fails. In addition, emalloc is required to
zero the memory.

For debugging purposes, printitems may be called to display the contents of an item list; individ
ual items may be printed using the %I print verb, installed on the first call to parsehtml.
validitems traverses the item list, checking that all of the pointers are valid. It returns 1 is every
thing is ok, and 0 if an error was found. Normally, one would not call these routines directly.
Instead, one sets the global variable dbgbuild and the library calls them automatically. One can
also set warn, to cause the library to print a warning whenever it finds a problem with the input
document, and dbglex, to print debugging information in the lexer.

When an item list is finished with, it should be freed with freeitems. Then, freedocinfo should be
called on the pointer returned in *pdi.

Dimenkind and dimenspec are provided to interpret the Dimen type, as described in the section
Dimension Specifications.

Frame target names are mapped to integer ids via a global, permanent mapping. To find the value
for a given name, call targetid, which allocates a new id if the name hasn�t been seen before. The
name of a given, known id may be retrieved using targetname. The library predefines FTtop,
FTself, FTparent and FTblank.

The library handles all text as Unicode strings (type Rune*). Character set conversion is provided
by fromStr and toStr. FromStr takes n Unicode characters from buf and converts them to the

496

HTML(2) HTML(2)

character set described by chset. ToStr takes n bytes from buf, interpretted as belonging to char
acter set chset, and converts them to a Unicode string. Both routines null-terminate the result,
and use emalloc to allocate space for it.

Items
The return value of parsehtml is a linked list of variant structures, with the generic portion
described by the following definition:

typedef struct Item Item;
struct Item
{

Item* next;
int width;
int height;
int ascent;
int anchorid;
int state;
Genattr* genattr;
int tag;

};

The field next points to the successor in the linked list of items, while width, height, and
ascent are intended for use by the caller as part of the layout process. Anchorid, if non-zero,
gives the integer id assigned by the parser to the anchor that this item is in (see section Anchors).
State is a collection of flags and values described as follows:

enum
{

IFbrk = 0x80000000,
IFbrksp = 0x40000000,
IFnobrk = 0x20000000,
IFcleft = 0x10000000,
IFcright = 0x08000000,
IFwrap = 0x04000000,
IFhang = 0x02000000,
IFrjust = 0x01000000,
IFcjust = 0x00800000,
IFsmap = 0x00400000,
IFindentshift = 8,
IFindentmask = (255<<IFindentshift),
IFhangmask = 255

};

IFbrk is set if a break is to be forced before placing this item. IFbrksp is set if a 1 line space
should be added to the break (in which case IFbrk is also set). IFnobrk is set if a break is not
permitted before the item. IFcleft is set if left floats should be cleared (that is, if the list of
pending left floats should be placed) before this item is placed, and IFcright is set for right
floats. In both cases, IFbrk is also set. IFwrap is set if the line containing this item is allowed to
wrap. IFhang is set if this item hangs into the left indent. IFrjust is set if the line containing
this item should be right justified, and IFcjust is set for center justified lines. IFsmap is used
to indicate that an image is a server-side map. The low 8 bits, represented by IFhangmask,
indicate the current hang into left indent, in tenths of a tabstop. The next 8 bits, represented by
IFindentmask and IFindentshift, indicate the current indent in tab stops.

The field genattr is an optional pointer to an auxiliary structure, described in the section
Generic Attributes.

Finally, tag describes which variant type this item has. It can have one of the values Itexttag,
Iruletag, Iimagetag, Iformfieldtag, Itabletag, Ifloattag or Ispacertag.
For each of these values, there is an additional structure defined, which includes Item as an
unnamed initial substructure, and then defines additional fields.

Items of type Itexttag represent a piece of text, using the following structure:

497

HTML(2) HTML(2)

struct Itext
{

Item;
Rune* s;
int fnt;
int fg;
uchar voff;
uchar ul;

};

Here s is a null-terminated Unicode string of the actual characters making up this text item, fnt
is the font number (described in the section Font Numbers), and fg is the RGB encoded color for
the text. Voff measures the vertical offset from the baseline; subtract Voffbias to get the
actual value (negative values represent a displacement down the page). The field ul is the under
line style: ULnone if no underline, ULunder for conventional underline, and ULmid for strike-
through.

Items of type Iruletag represent a horizontal rule, as follows:

struct Irule
{

Item;
uchar align;
uchar noshade;
int size;
Dimen wspec;

};

Here align is the alignment specification (described in the corresponding section), noshade is
set if the rule should not be shaded, size is the height of the rule (as set by the size attribute),
and wspec is the desired width (see section Dimension Specifications).

Items of type Iimagetag describe embedded images, for which the following structure is
defined:

struct Iimage
{

Item;
Rune* imsrc;
int imwidth;
int imheight;
Rune* altrep;
Map* map;
int ctlid;
uchar align;
uchar hspace;
uchar vspace;
uchar border;
Iimage* nextimage;

};

Here imsrc is the URL of the image source, imwidth and imheight, if non-zero, contain the
specified width and height for the image, and altrep is the text to use as an alternative to the
image, if the image is not displayed. Map, if set, points to a structure describing an associated
client-side image map. Ctlid is reserved for use by the application, for handling animated
images. Align encodes the alignment specification of the image. Hspace contains the number
of pixels to pad the image with on either side, and Vspace the padding above and below.
Border is the width of the border to draw around the image. Nextimage points to the next
image in the document (the head of this list is Docinfo.images).

For items of type Iformfieldtag, the following structure is defined:

struct Iformfield
{

Item;

498

HTML(2) HTML(2)

Formfield* formfield;
};

This adds a single field, formfield, which points to a structure describing a field in a form,
described in section Forms.

For items of type Itabletag, the following structure is defined:

struct Itable
{

Item;
Table* table;

};

Table points to a structure describing the table, described in the section Tables.

For items of type Ifloattag, the following structure is defined:

struct Ifloat
{

Item;
Item* item;
int x;
int y;
uchar side;
uchar infloats;
Ifloat* nextfloat;

};

The item points to a single item (either a table or an image) that floats (the text of the document
flows around it), and side indicates the margin that this float sticks to; it is either ALleft or
ALright. X and y are reserved for use by the caller; these are typically used for the coordinates
of the top of the float. Infloats is used by the caller to keep track of whether it has placed the
float. Nextfloat is used by the caller to link together all of the floats that it has placed.

For items of type Ispacertag, the following structure is defined:

struct Ispacer
{

Item;
int spkind;

};

Spkind encodes the kind of spacer, and may be one of ISPnull (zero height and width),
ISPvline (takes on height and ascent of the current font), ISPhspace (has the width of a
space in the current font) and ISPgeneral (for all other purposes, such as between markers and
lists).

Generic Attributes
The genattr field of an item, if non-nil, points to a structure that holds the values of attributes not
specific to any particular item type, as they occur on a wide variety of underlying HTML tags. The
structure is as follows:

typedef struct Genattr Genattr;
struct Genattr
{

Rune* id;
Rune* class;
Rune* style;
Rune* title;
SEvent* events;

};

Fields id, class, style and title, when non-nil, contain values of correspondingly named
attributes of the HTML tag associated with this item. Events is a linked list of events (with corre
sponding scripted actions) associated with the item:

499

HTML(2) HTML(2)

typedef struct SEvent SEvent;
struct SEvent
{

SEvent* next;
int type;
Rune* script;

};

Here, next points to the next event in the list, type is one of SEonblur, SEonchange,
SEonclick, SEondblclick, SEonfocus, SEonkeypress, SEonkeyup, SEonload,
SEonmousedown, SEonmousemove, SEonmouseout, SEonmouseover, SEonmouseup,
SEonreset, SEonselect, SEonsubmit or SEonunload, and script is the text of the
associated script.

Dimension Specifications
Some structures include a dimension specification, used where a number can be followed by a % or
a * to indicate percentage of total or relative weight. This is encoded using the following struc
ture:

typedef struct Dimen Dimen;
struct Dimen
{

int kindspec;
};

Separate kind and spec values are extracted using dimenkind and dimenspec. Dimenkind returns
one of Dnone, Dpixels, Dpercent or Drelative. Dnone means that no dimension was
specified. In all other cases, dimenspec should be called to find the absolute number of pixels, the
percentage of total, or the relative weight.

Background Specifications
It is possible to set the background of the entire document, and also for some parts of the docu
ment (such as tables). This is encoded as follows:

typedef struct Background Background;
struct Background
{

Rune* image;
int color;

};

Image, if non-nil, is the URL of an image to use as the background. If this is nil, color is used
instead, as the RGB value for a solid fill color.

Alignment Specifications
Certain items have alignment specifiers taken from the following enumerated type:

enum
{

ALnone = 0, ALleft, ALcenter, ALright, ALjustify,
ALchar, ALtop, ALmiddle, ALbottom, ALbaseline

};

These values correspond to the various alignment types named in the HTML 4.0 standard. If an
item has an alignment of ALleft or ALright, the library automatically encapsulates it inside a
float item.

Tables, and the various rows, columns and cells within them, have a more complex alignment
specification, composed of separate vertical and horizontal alignments:

typedef struct Align Align;
struct Align
{

uchar halign;
uchar valign;

};

500

HTML(2) HTML(2)

Halign can be one of ALnone, ALleft, ALcenter, ALright, ALjustify or ALchar.
Valign can be one of ALnone, ALmiddle, ALbottom, ALtop or ALbaseline.

Font Numbers
Text items have an associated font number (the fnt field), which is encoded as
style*NumSize+size. Here, style is one of FntR, FntI, FntB or FntT, for roman,
italic, bold and typewriter font styles, respectively, and size is Tiny, Small, Normal, Large or
Verylarge. The total number of possible font numbers is NumFnt, and the default font num
ber is DefFnt (which is roman style, normal size).

Document Info
Global information about an HTML page is stored in the following structure:

typedef struct Docinfo Docinfo;
struct Docinfo
{

// stuff from HTTP headers, doc head, and body tag
Rune* src;
Rune* base;
Rune* doctitle;
Background background;
Iimage* backgrounditem;
int text;
int link;
int vlink;
int alink;
int target;
int chset;
int mediatype;
int scripttype;
int hasscripts;
Rune* refresh;
Kidinfo* kidinfo;
int frameid;

// info needed to respond to user actions
Anchor* anchors;
DestAnchor* dests;
Form* forms;
Table* tables;
Map* maps;
Iimage* images;

};

Src gives the URL of the original source of the document, and base is the base URL. Doctitle
is the document�s title, as set by a <title> element. Background is as described in the sec
tion Background Specifications, and backgrounditem is set to be an image item for the
document�s background image (if given as a URL), or else nil. Text gives the default foregound
text color of the document, link the unvisited hyperlink color, vlink the visited hyperlink color,
and alink the color for highlighting hyperlinks (all in 24-bit RGB format). Target is the default
target frame id. Chset and mediatype are as for the chset and mtype parameters to
parsehtml. Scripttype is the type of any scripts contained in the document, and is always
TextJavascript. Hasscripts is set if the document contains any scripts. Scripting is cur
rently unsupported. Refresh is the contents of a <meta http−equiv=Refresh ...>
tag, if any. Kidinfo is set if this document is a frameset (see section Frames). Frameid is this
document�s frame id.

Anchors is a list of hyperlinks contained in the document, and dests is a list of hyperlink desti
nations within the page (see the following section for details). Forms, tables and maps are
lists of the various forms, tables and client-side maps contained in the document, as described in
subsequent sections. Images is a list of all the image items in the document.

501

HTML(2) HTML(2)

Anchors
The library builds two lists for all of the <a> elements (anchors) in a document. Each anchor is
assigned a unique anchor id within the document. For anchors which are hyperlinks (the href
attribute was supplied), the following structure is defined:

typedef struct Anchor Anchor;
struct Anchor
{

Anchor* next;
int index;
Rune* name;
Rune* href;
int target;

};

Next points to the next anchor in the list (the head of this list is Docinfo.anchors). Index
is the anchor id; each item within this hyperlink is tagged with this value in its anchorid field.
Name and href are the values of the correspondingly named attributes of the anchor (in particu
lar, href is the URL to go to). Target is the value of the target attribute (if provided) converted to
a frame id.

Destinations within the document (anchors with the name attribute set) are held in the
Docinfo.dests list, using the following structure:

typedef struct DestAnchor DestAnchor;
struct DestAnchor
{

DestAnchor* next;
int index;
Rune* name;
Item* item;

};

Next is the next element of the list, index is the anchor id, name is the value of the name
attribute, and item is points to the item within the parsed document that should be considered to
be the destination.

Forms
Any forms within a document are kept in a list, headed by Docinfo.forms. The elements of
this list are as follows:

typedef struct Form Form;
struct Form
{

Form* next;
int formid;
Rune* name;
Rune* action;
int target;
int method;
int nfields;
Formfield* fields;

};

Next points to the next form in the list. Formid is a serial number for the form within the docu
ment. Name is the value of the form�s name or id attribute. Action is the value of any action
attribute. Target is the value of the target attribute (if any) converted to a frame target id.
Method is one of HGet or HPost. Nfields is the number of fields in the form, and fields
is a linked list of the actual fields.

The individual fields in a form are described by the following structure:

typedef struct Formfield Formfield;
struct Formfield
{

502

HTML(2) HTML(2)

Formfield* next;
int ftype;
int fieldid;
Form* form;
Rune* name;
Rune* value;
int size;
int maxlength;
int rows;
int cols;
uchar flags;
Option* options;
Item* image;
int ctlid;
SEvent* events;

};

Here, next points to the next field in the list. Ftype is the type of the field, which can be one of
Ftext, Fpassword, Fcheckbox, Fradio, Fsubmit, Fhidden, Fimage, Freset,
Ffile, Fbutton, Fselect or Ftextarea. Fieldid is a serial number for the field within
the form. Form points back to the form containing this field. Name, value, size,
maxlength, rows and cols each contain the values of corresponding attributes of the field, if
present. Flags contains per-field flags, of which FFchecked and FFmultiple are defined.
Image is only used for fields of type Fimage; it points to an image item containing the image to
be displayed. Ctlid is reserved for use by the caller, typically to store a unique id of an associ
ated control used to implement the field. Events is the same as the corresponding field of the
generic attributes associated with the item containing this field. Options is only used by fields
of type Fselect; it consists of a list of possible options that may be selected for that field, using
the following structure:

typedef struct Option Option;
struct Option
{

Option* next;
int selected;
Rune* value;
Rune* display;

};

Next points to the next element of the list. Selected is set if this option is to be displayed ini
tially. Value is the value to send when the form is submitted if this option is selected.
Display is the string to display on the screen for this option.

Tables
The library builds a list of all the tables in the document, headed by Docinfo.tables. Each
element of this list has the following format:

typedef struct Table Table;
struct Table
{

Table* next;
int tableid;
Tablerow* rows;
int nrow;
Tablecol* cols;
int ncol;
Tablecell* cells;
int ncell;
Tablecell*** grid;
Align align;
Dimen width;
int border;

503

HTML(2) HTML(2)

int cellspacing;
int cellpadding;
Background background;
Item* caption;
uchar caption_place;
Lay* caption_lay;
int totw;
int toth;
int caph;
int availw;
Token* tabletok;
uchar flags;

};

Next points to the next element in the list of tables. Tableid is a serial number for the table
within the document. Rows is an array of row specifications (described below) and nrow is the
number of elements in this array. Similarly, cols is an array of column specifications, and ncol
the size of this array. Cells is a list of all cells within the table (structure described below) and
ncell is the number of elements in this list. Note that a cell may span multiple rows and/or
columns, thus ncell may be smaller than nrow*ncol. Grid is a two-dimensional array of
cells within the table; the cell at row i and column j is Table.grid[i][j]. A cell that spans
multiple rows and/or columns will be referenced by grid multiple times, however it will only
occur once in cells. Align gives the alignment specification for the entire table, and width
gives the requested width as a dimension specification. Border, cellspacing and
cellpadding give the values of the corresponding attributes for the table, and background
gives the requested background for the table. Caption is a linked list of items to be displayed
as the caption of the table, either above or below depending on whether caption_place is
ALtop or ALbottom. Most of the remaining fields are reserved for use by the caller, except
tabletok, which is reserved for internal use. The type Lay is not defined by the library; the
caller can provide its own definition.

The Tablecol structure is defined for use by the caller. The library ensures that the correct
number of these is allocated, but leaves them blank. The fields are as follows:

typedef struct Tablecol Tablecol;
struct Tablecol
{

int width;
Align align;
Point pos;

};

The rows in the table are specified as follows:

typedef struct Tablerow Tablerow;
struct Tablerow
{

Tablerow* next;
Tablecell* cells;
int height;
int ascent;
Align align;
Background background;
Point pos;
uchar flags;

};

Next is only used during parsing; it should be ignored by the caller. Cells provides a list of all
the cells in a row, linked through their nextinrow fields (see below). Height, ascent and
pos are reserved for use by the caller. Align is the alignment specification for the row, and
background is the background to use, if specified. Flags is used by the parser; ignore this
field.

504

HTML(2) HTML(2)

The individual cells of the table are described as follows:

typedef struct Tablecell Tablecell;
struct Tablecell
{

Tablecell* next;
Tablecell* nextinrow;
int cellid;
Item* content;
Lay* lay;
int rowspan;
int colspan;
Align align;
uchar flags;
Dimen wspec;
int hspec;
Background background;
int minw;
int maxw;
int ascent;
int row;
int col;
Point pos;

};

Next is used to link together the list of all cells within a table (Table.cells), whereas
nextinrow is used to link together all the cells within a single row (Tablerow.cells).
Cellid provides a serial number for the cell within the table. Content is a linked list of the
items to be laid out within the cell. Lay is reserved for the user to describe how these items have
been laid out. Rowspan and colspan are the number of rows and columns spanned by this
cell, respectively. Align is the alignment specification for the cell. Flags is some combination
of TFparsing, TFnowrap and TFisth or�d together. Here TFparsing is used internally by
the parser, and should be ignored. TFnowrap means that the contents of the cell should not be
wrapped if they don�t fit the available width, rather, the table should be expanded if need be (this
is set when the nowrap attribute is supplied). TFisth means that the cell was created by the
<th> element (rather than the <td> element), indicating that it is a header cell rather than a data
cell. Wspec provides a suggested width as a dimension specification, and hspec provides a sug
gested height in pixels. Background gives a background specification for the individual cell.
Minw, maxw, ascent and pos are reserved for use by the caller during layout. Row and col
give the indices of the row and column of the top left-hand corner of the cell within the table grid.

Client−side Maps
The library builds a list of client-side maps, headed by Docinfo.maps, and having the following
structure:

typedef struct Map Map;
struct Map
{

Map* next;
Rune* name;
Area* areas;

};

Next points to the next element in the list, name is the name of the map (use to bind it to an
image), and areas is a list of the areas within the image that comprise the map, using the follow
ing structure:

typedef struct Area Area;
struct Area
{

Area* next;
int shape;
Rune* href;

505

HTML(2) HTML(2)

int target;
Dimen* coords;
int ncoords;

};

Next points to the next element in the map�s list of areas. Shape describes the shape of the
area, and is one of SHrect, SHcircle or SHpoly. Href is the URL associated with this area
in its role as a hypertext link, and target is the target frame it should be loaded in. Coords is
an array of coordinates for the shape, and ncoords is the size of this array (number of elements).

Frames
If the Docinfo.kidinfo field is set, the document is a frameset. In this case, it is typical for
parsehtml to return nil, as a document which is a frameset should have no actual items that need
to be laid out (such will appear only in subsidiary documents). It is possible that items will be
returned by a malformed document; the caller should check for this and free any such items.

The Kidinfo structure itself reflects the fact that framesets can be nested within a document. If
is defined as follows:

typedef struct Kidinfo Kidinfo;
struct Kidinfo
{

Kidinfo* next;
int isframeset;

// fields for "frame"
Rune* src;
Rune* name;
int marginw;
int marginh;
int framebd;
int flags;

// fields for "frameset"
Dimen* rows;
int nrows;
Dimen* cols;
int ncols;
Kidinfo* kidinfos;
Kidinfo* nextframeset;

};

Next is only used if this structure is part of a containing frameset; it points to the next element in
the list of children of that frameset. Isframeset is set when this structure represents a frame
set; if clear, it is an individual frame.

Some fields are used only for framesets. Rows is an array of dimension specifications for rows in
the frameset, and nrows is the length of this array. Cols is the corresponding array for
columns, of length ncols. Kidinfos points to a list of components contained within this
frameset, each of which may be a frameset or a frame. Nextframeset is only used during pars
ing, and should be ignored.

The remaining fields are used if the structure describes a frame, not a frameset. Src provides the
URL for the document that should be initially loaded into this frame. Note that this may be a rela
tive URL, in which case it should be interpretted using the containing document�s URL as the base.
Name gives the name of the frame, typically supplied via a name attribute in the HTML. If no name
was given, the library allocates one. Marginw, marginh and framebd are the values of the
marginwidth, marginheight and frameborder attributes, respectively. Flags can contain some
combination of the following: FRnoresize (the frame had the noresize attribute set, and the
user should not be allowed to resize it), FRnoscroll (the frame should not have any scroll bars),
FRhscroll (the frame should have a horizontal scroll bar), FRvscroll (the frame should have
a vertical scroll bar), FRhscrollauto (the frame should be automatically given a horizontal
scroll bar if its contents would not otherwise fit), and FRvscrollauto (the frame gets a vertical
scrollbar only if required).

506

HTML(2) HTML(2)

SOURCE
/sys/src/libhtml

SEE ALSO
fmt(1)

W3C World Wide Web Consortium, ��HTML 4.01 Specification��.

BUGS
The entire HTML document must be loaded into memory before any of it can be parsed.

507

HTTPD(2) HTTPD(2)

NAME
HConnect, HContent, HContents, HETag, HFields, Hio, Htmlesc, HttpHead, HttpReq, HRange,
HSPairs, hmydomain, hversion, htmlesc, halloc, hbodypush, hbuflen, hcheckcontent, hclose,
hdate2sec, hdatefmt, hfail, hflush, hgetc, hgethead, hinit, hiserror, hload, hlower, hmkcontent,
hmkhfields, hmkmimeboundary, hmkspairs, hmoved, hokheaders, hparseheaders, hparsequery,
hparsereq, hprint, hputc, hreadbuf, hredirected, hreqcleanup, hrevhfields, hrevspairs, hstrdup,
http11, httpfmt, httpunesc, hunallowed, hungetc, hunload, hurlfmt, hurlunesc, hvprint, hwrite,
hxferenc,
� routines for creating an http server

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <httpd.h>

typedef struct HConnect HConnect;
typedef struct HContent HContent;
typedef struct HContents HContents;
typedef struct HETag HETag;
typedef struct HFields HFields;
typedef struct Hio Hio;
typedef struct Htmlesc Htmlesc;
typedef struct HttpHead HttpHead;
typedef struct HttpReq HttpReq;
typedef struct HRange HRange;
typedef struct HSPairs HSPairs;

typedef struct Bin Bin;

struct Htmlesc
{

char *name;
Rune value;

};

struct HContent
{

HContent *next;
char *generic;
char *specific;
float q; /* desirability of this kind of file
int mxb; /* max uchars until worthless */

};

struct HContents
{

HContent *type;
HContent *encoding;

};

/*
* generic http header with a list of tokens,
* each with an optional list of parameters
*/
struct HFields
{

char *s;
HSPairs *params;
HFields *next;

508

HTTPD(2) HTTPD(2)

};

/*
* list of pairs a strings
* used for tag=val pairs for a search or form submission,
* and attribute=value pairs in headers.
*/
struct HSPairs
{

char *s;
char *t;
HSPairs *next;

};

/*
* byte ranges within a file
*/
struct HRange
{

int suffix; /* is this a suffix request? */
ulong start;
ulong stop; /* ~0UL −> not given */
HRange *next;

};

/*
* list of http/1.1 entity tags
*/
struct HETag
{

char *etag;
int weak;
HETag *next;

};

/*
* HTTP custom IO
* supports chunked transfer encoding
* and initialization of the input buffer from a string.
*/
enum
{

Hnone,
Hread,
Hend,
Hwrite,
Herr,

Hsize = HBufSize
};

struct Hio {
Hio *hh; /* next lower layer Hio, or nil if
int fd; /* associated file descriptor */
ulong seek; /* of start */
uchar state; /* state of the file */
uchar xferenc; /* chunked transfer encoding state
uchar *pos; /* current position in the buffer
uchar *stop; /* last character active in the buffer

509

HTTPD(2) HTTPD(2)

uchar *start; /* start of data buffer */
ulong bodylen; /* remaining length of message body
uchar buf[Hsize+32];

};

/*
* request line
*/
struct HttpReq
{

char *meth;
char *uri;
char *urihost;
char *search;
int vermaj;
int vermin;

};

/*
* header lines
*/
struct HttpHead
{

int closeit; /* http1.1 close connection after
uchar persist; /* http/1.1 requests a persistent

uchar expectcont; /* expect a 100−continue */
uchar expectother; /* expect anything else; should reject
ulong contlen; /* if != ~0UL, length of included
HFields *transenc; /* if present, encoding of included
char *client;
char *host;
HContent *okencode;
HContent *oklang;
HContent *oktype;
HContent *okchar;
ulong ifmodsince;
ulong ifunmodsince;
ulong ifrangedate;
HETag *ifmatch;
HETag *ifnomatch;
HETag *ifrangeetag;
HRange *range;
char *authuser; /* authorization info */
char *authpass;

/*
* experimental headers
*/
int fresh_thresh;
int fresh_have;

};

/*
* all of the state for a particular connection
*/
struct HConnect
{

void *private; /* for the library clients */

510

HTTPD(2) HTTPD(2)

void (*replog)(HConnect*, char*, ...);/* called when reply sent

HttpReq req;
HttpHead head;

Bin *bin;

ulong reqtime; /* time at start of request */
char xferbuf[HBufSize]; /* buffer for making up or transferring
uchar header[HBufSize + 2]; /* room for \n\0 */
uchar *hpos;
uchar *hstop;
Hio hin;
Hio hout;

};

/*
* configuration for all connections within the server
*/
extern char *hmydomain;
extern char *hversion;
extern Htmlesc htmlesc[];

void *halloc(HConnect *c, ulong size);
Hio *hbodypush(Hio *hh, ulong len, HFields *te);
int hbuflen(Hio *h, void *p);
int hcheckcontent(HContent*, HContent*, char*, int);
void hclose(Hio*);
ulong hdate2sec(char*);
int hdatefmt(Fmt*);
int hfail(HConnect*, int, ...);
int hflush(Hio*);
int hgetc(Hio*);
int hgethead(HConnect *c, int many);
int hinit(Hio*, int, int);
int hiserror(Hio *h);
int hload(Hio*, char*);
char *hlower(char*);
HContent *hmkcontent(HConnect *c, char *generic, char *specific, HContent *next);
HFields *hmkhfields(HConnect *c, char *s, HSPairs *p, HFields *next);
char *hmkmimeboundary(HConnect *c);
HSPairs *hmkspairs(HConnect *c, char *s, char *t, HSPairs *next);
int hmoved(HConnect *c, char *uri);
void hokheaders(HConnect *c);
int hparseheaders(HConnect*, int timeout);
HSPairs *hparsequery(HConnect *c, char *search);
int hparsereq(HConnect *c, int timeout);
int hprint(Hio*, char*, ...);
int hputc(Hio*, int);
void *hreadbuf(Hio *h, void *vsave);
int hredirected(HConnect *c, char *how, char *uri);
void hreqcleanup(HConnect *c);
HFields *hrevhfields(HFields *hf);
HSPairs *hrevspairs(HSPairs *sp);
char *hstrdup(HConnect *c, char *s);
int http11(HConnect*);
int httpfmt(Fmt*);
char *httpunesc(HConnect *c, char *s);
int hunallowed(HConnect *, char *allowed);

511

HTTPD(2) HTTPD(2)

int hungetc(Hio *h);
char *hunload(Hio*);
int hurlfmt(Fmt*);
char *hurlunesc(HConnect *c, char *s);
int hvprint(Hio*, char*, va_list);
int hwrite(Hio*, void*, int);
int hxferenc(Hio*, int);

DESCRIPTION
For now, look at the source, or httpd(8).

SOURCE
/sys/src/libhttpd

SEE ALSO
bin(2)

BUGS
This is a rough implementation and many details are going to change.

512

HYPOT(2) HYPOT(2)

NAME
hypot � Euclidean distance

SYNOPSIS
#include <u.h>
#include <libc.h>

double hypot(double x, double y)

DESCRIPTION
Hypot returns

sqrt(x*x + y*y)
taking precautions against unwarranted overflows.

SOURCE
/sys/src/libc/port/hypot.c

513

IDN(2) IDN(2)

NAME
utf2idn, idn2utf � convert internationalized domain names to and from unicode

SYNOPSIS
#include <u.h>
#include <libc.h>

int utf2idn(char *name, char *buf, int nbuf);

int idn2utf(char *name, char *buf, int nbuf);

DESCRIPTION
These routines handle encoding and decoding of domain names as specified by RFC5890.

Utf2idn encodes the UTF string name to ASCII internatlionalized domain name in buf. Idn2utf does
the reverse, decoding the ASCII string name back to UTF in buf. The maximum size of buf is gived
by nbuf.

SOURCE
/sys/src/libc/9sys/idn.c

SEE ALSO
/lib/rfc/rfc5890
utf(6)

DIAGNOSTICS
The return value is the number of bytes (excluding the terminating NULL) in buf or −1 on failure.

514

INTMAP(2) INTMAP(2)

NAME
Intmap, allocmap, freemap, insertkey, caninsertkey, lookupkey, deletekey � integer to data struc
ture maps

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <fcall.h>
#include <thread.h>
#include <9p.h>

Intmap* allocmap(void (*inc)(void*))
void freemap(Intmap *map, void (*dec)(void*))
void* lookupkey(Intmap *map, ulong key)
void* insertkey(Intmap *map, ulong key, void *val)
int caninsertkey(Intmap *map, ulong key, void *val)
void* lookupkey(Intmap *map, ulong key)
void* deletekey(Intmap *map, ulong key)

DESCRIPTION
An Intmap is an arbitrary mapping from integers to pointers. Allocmap creates a new map, and
freemap destroys it. The inc function is called each time a new pointer is added to the map; simi
larly, dec is called on each pointer left in the map when it is being freed. Typically these functions
maintain reference counts. New entries are added to the map by calling insertkey, which will
return the previous value associated with the given key, or zero if there was no previous value.
Caninsertkey is like insertkey but only inserts val if there is no current mapping. It returns 1 if val
was inserted, 0 otherwise. Lookupkey returns the pointer associated with key, or zero if there is
no such pointer. Deletekey removes the entry for id from the map, returning the associated
pointer, if any.

Concurrent access to Intmaps is safe, moderated via a QLock stored in the Intmap structure.

In anticipation of the storage of reference-counted structures, an increment function inc may be
specified at map creation time. Lookupkey calls inc (if non-zero) on pointers before returning
them. If the reference count adjustments were left to the caller (and thus not protected by the
lock), it would be possible to accidentally reclaim a structure if, for example, it was deleted from
the map and its reference count decremented between the return of insertkey and the external
increment. Insertkey and caninsertkey do not call inc when inserting val into the map, nor do
insertkey or deletekey call inc when returning old map entries. The rationale is that calling an
insertion function transfers responsibility for the reference to the map, and responsibility is given
back via the return value of deletekey or the next insertkey.

Intmaps are used by the 9P library to implement Fidpools and Reqpools.

SOURCE
/sys/src/lib9p/intmap.c

SEE ALSO
9p(2), 9pfid(2).

515

IOPROC(2) IOPROC(2)

NAME
closeioproc, iocall, ioclose, ioflush, iointerrupt, iodial, ioopen, ioproc, ioread, ioreadn, iosleep,
iowrite � slave I/O processes for threaded programs

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <thread.h>

typedef struct Ioproc Ioproc;

Ioproc* ioproc(void);

int ioopen(Ioproc *io, char *file, int omode);
int ioclose(Ioproc *io, int fd);
long ioread(Ioproc *io, int fd, void *a, long n);
long ioreadn(Ioproc *io, int fd, void *a, long n);
long iowrite(Ioproc *io, int fd, void *a, long n);
int iodial(Ioproc *io, char *addr, char *local, char *dir, int *cdfp);
int iosleep(Ioproc *io, long n);

int ioflush(Ioproc *io);
void iointerrupt(Ioproc *io);
void closeioproc(Ioproc *io);

long iocall(Ioproc *io, long (*op)(va_list *arg), ...);

DESCRIPTION
These routines provide access to I/O in slave procs. Since the I/O itself is done in a slave proc,
other threads in the calling proc can run while the calling thread waits for the I/O to complete.

Ioproc forks a new slave proc and returns a pointer to the Ioproc associated with it. Ioproc uses
mallocz and proccreate; if either fails, it calls sysfatal rather than return an error.

Ioopen, ioclose, ioread, ioreadn, iowrite, iosleep, and iodial execute the similarly named library or
system calls (see open(2), read(2), and dial(2)) in the slave process associated with io.

Iointerrupt interrupts the next or currently executing call in the I/O proc. If there was no call exe
cuting, the interrupt will stay pending and the next I/O call will get interrupted.

Ioflush executes a non-op in the I/O proc. It is commonly called after iointerrupt to clear a pend
ing interrupt.

Closeioproc terminates the I/O proc and frees the associated Ioproc .

Iocall is a primitive that may be used to implement more slave I/O routines. Iocall arranges for op
to be called in io�s proc, with arg set to the variable parameter list, returning the value that op
returns.

EXAMPLE
Relay messages between two file descriptors, counting the total number of bytes seen:

int tot;

void
relaythread(void *v)
{

int *fd, n;
char buf[1024];
Ioproc *io;

fd = v;
io = ioproc();
while((n = ioread(io, fd[0], buf, sizeof buf)) > 0){

if(iowrite(io, fd[1], buf, n) != n)
sysfatal("iowrite: %r");

516

IOPROC(2) IOPROC(2)

tot += n;
}
closeioproc(io);

}

void
relay(int fd0, int fd1)
{

int fd[4];

fd[0] = fd[3] = fd0;
fd[1] = fd[2] = fd1;
threadcreate(relaythread, fd, 8192);
threadcreate(relaythread, fd+2, 8192);

}

If the two relaythread instances were running in different procs, the common access to tot would
be unsafe.

Implement ioread:

static long
_ioread(va_list *arg)
{

int fd;
void *a;
long n;

fd = va_arg(*arg, int);
a = va_arg(*arg, void*);
n = va_arg(*arg, long);
return read(fd, a, n);

}

long
ioread(Ioproc *io, int fd, void *a, long n)
{

return iocall(io, _ioread, fd, a, n);
}

SOURCE
/sys/src/libthread/io*.c

SEE ALSO
dial(2), open(2), read(2), sleep(2), thread(2)

517

IOUNIT(2) IOUNIT(2)

NAME
iounit � return size of atomic I/O unit for file descriptor

SYNOPSIS
#include <u.h>
#include <libc.h>

int iounit(int fd)

DESCRIPTION
Reads and writes of files are transmitted using the 9P protocol (see intro(5)) and in general, opera
tions involving large amounts of data must be broken into smaller pieces by the operating system.
The �I/O unit� associated with each file descriptor records the maximum size, in bytes, that may be
read or written without breaking up the transfer.

The iounit routine uses the dup(3) interface to discover the I/O unit size for the file descriptor fd
and returns its value. Certain file descriptors, particularly those associated with devices, may have
no specific I/O unit, in which case iounit will return 0.

SOURCE
/sys/src/libc/9sys

SEE ALSO
dup(3), read(5)

DIAGNOSTICS
Returns zero if any error occurs or if the I/O unit size of the fd is unspecified or unknown.

518

IP(2) IP(2)

NAME
eipfmt, parseip, parseipmask, parseipandmask, v4parseip, parseether, myipaddr, myetheraddr,
maskip, equivip4, equivip6, defmask, isv4, v4tov6, v6tov4, nhgetv, nhgetl, nhgets, hnputv, hnputl,
hnputs, ptclbsum, readipifc � Internet Protocol addressing

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <ip.h>

int eipfmt(Fmt*)

vlong parseip(uchar *ipaddr, char *str)

vlong parseipmask(uchar *ipaddr, char *str, int v4)

vlong parseipandmask(uchar *ipaddr, uchar *ipmask, char *ipstr,
char *maskstr)

char* v4parseip(uchar *ipaddr, char *str)

int parseether(uchar *eaddr, char *str)

int myetheraddr(uchar *eaddr, char *dev)

int myipaddr(uchar *ipaddr, char *net)

void maskip(uchar *from, uchar *mask, uchar *to)

int equivip4(uchar *ipaddr1, uchar *ipaddr2)

int equivip6(uchar *ipaddr1, uchar *ipaddr2)

uchar* defmask(uchar *ipaddr)

int isv4(uchar *ipaddr)

void v4tov6(uchar *ipv6, uchar *ipv4)

int v6tov4(uchar *ipv4, uchar *ipv6)

ushort nhgets(void *p)

uint nhgetl(void *p)

uvlong nhgetv(void *p)

void hnputs(void *p, ushort v)

void hnputl(void *p, uint v)

void hnputv(void *p, uvlong v)

ushort ptclbsum(uchar *a, int n)

Ipifc* readipifc(char *net, Ipifc *ifc, int index)

uchar IPv4bcast[IPaddrlen];

uchar IPv4allsys[IPaddrlen];

uchar IPv4allrouter[IPaddrlen];

uchar IPallbits[IPaddrlen];

uchar IPnoaddr[IPaddrlen];

uchar v4prefix[IPaddrlen];

DESCRIPTION
These routines are used by Internet Protocol (IP) programs to manipulate IP and Ethernet
addresses. Plan 9, by default, uses V6 format IP addresses. Since V4 addresses fit into the V6
space, all IP addresses can be represented. IP addresses are stored as a string of 16 unsigned
chars, Ethernet addresses as 6 unsigned chars. Either V4 or V6 string representation can be
used for IP addresses. For V4 addresses, the representation can be (up to) 4 decimal integers from
0 to 255 separated by periods. For V6 addresses, the representation is (up to) 8 hex integers from
0x0 to 0xFFFF separated by colons. Strings of 0 integers can be elided using two colons. For

519

IP(2) IP(2)

example, FFFF::1111 is equivalent to FFFF:0:0:0:0:0:0:1111. The string representa
tion for IP masks is a superset of the address representation. It includes slash notation that indi
cates the number of leading 1 bits in the mask. Thus, a V4 class C mask can be represented as
FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00, 255.255.255.0, or /120. The
string representation of Ethernet addresses is exactly 12 hexadecimal digits.

Eipfmt is a print(2) formatter for Ethernet (verb E) addresses, IP V6 (verb I) addresses, IP V4 (verb
V) addresses, and IP V6 (verb M) masks.

Parseip converts a string pointed to by str to a 16-byte IP address starting at ipaddr. As a conces
sion to backwards compatibility, if the string is a V4 address, the return value is an unsigned long
integer containing the big-endian V4 address. If not, the return value is 6.

Parseipmask converts a string pointed to by str to a 16-byte IP mask starting at ipaddr. It too
returns an unsigned long big-endian V4 address or 6. Parseipmask accepts a mask in /prefixlen
slash notation. When the v4 argument is non-zero, then prefixlen in range [0..32] is offset by 96
to yield a mask for a V4 address.

Parseipandmask combines parseip and parseipmask into a single call, interpreting the mask in
context of the supplied IP address type. The returned IP mask is /128 when maskstr is nil.

All three functions return -1 on errors.

V4parseip converts a string pointed to by str to a 4-byte V4 IP address starting at ipaddr.

Myipaddr returns the first valid IP address in the IP stack rooted at net.

Parseether converts a string pointed to by str to a 6-byte Ethernet address starting at eaddr.
Myetheraddr reads the Ethernet address string from file dev/addr and parses it into eaddr. Both
routines return a negative number on errors.

Maskip places the bit-wise AND of the IP addresses pointed to by its first two arguments into the
buffer pointed to by the third.

Equivip returns non-zero if the IP addresses pointed to by its two arguments are equal. Equivip4
operates on v4 addresses, equivip6 operates on v6 addresses.

Defmask returns the standard class A, B, or C mask for ipaddr .

Isv4 returns non-zero if the V6 address is in the V4 space, that is, if it starts with
0:0:0:0:0:0:FFFF. V4tov6 converts the 4-byte V4 address, v4ip, to a V6 address and puts
the result in v6ip. V6tov4 converts the V6 address, v6ip, to a 4-byte V4 address and puts the
result in v4ip.

Hnputs, hnputl and hnputv are used to store 16-bit, 32-bit, and 64-bit integers, respectively, into
IP big-endian form. Nhgets, nhgetl and nhgetv convert big-endian 2, 4 and 8 byte quantities into
integers (or uvlongs).

Pctlbsum returns the one�s complement checksum used in IP protocols, typically invoked as

hnputs(hdr−>cksum, ~ptclbsum(data, len) & 0xffff);

A number of standard IP addresses in V6 format are also defined. They are:

IPv4bcast the V4 broadcast address
IPv4allsys the V4 all systems multicast address
IPv4allrouter the V4 all routers multicast address
IPallbits the V6 all bits on address
IPnoaddr the V6 null address, all zeros
v4prefix the IP V6 prefix to all embedded V4 addresses

Readipifc returns information about a particular interface (index >= 0) or all IP interfaces (index <
0) configured under a mount point net, default /net. Each interface is described by one Ipifc
structure which in turn points to a linked list of Iplifc structures describing the addresses assigned
to this interface. If the list ifc is supplied, that list is freed. Thus, subsequent calls can be used to
free the list returned by the previous call. Ipifc is:

typedef struct Ipifc
{

Ipifc *next;
Iplifc *lifc; /* local addressses */

520

IP(2) IP(2)

/* per ip interface */
int index; /* number of interface in ipifc dir */
char dev[64]; /* associated physical device */
int mtu; /* max transfer unit */

uchar sendra6; /* on == send router adv */
uchar recvra6; /* on == rcv router adv */

ulong pktin; /* packets read */
ulong pktout; /* packets written */
ulong errin; /* read errors */
ulong errout; /* write errors */
Ipv6rp rp; /* route advertisement params */

} Ipifc;

Iplifc is:

struct Iplifc
{

Iplifc *next;

uchar ip[IPaddrlen];
uchar mask[IPaddrlen];
uchar net[IPaddrlen]; /* ip & mask */
ulong preflt; /* preferred lifetime */
ulong validlt; /* valid lifetime */

};

Ipv6rp is:

struct Ipv6rp
{

int mflag;
int oflag;
int maxraint; /* max route adv interval */
int minraint; /* min route adv interval */
int linkmtu;
int reachtime;
int rxmitra;
int ttl;
int routerlt;

};

Dev contains the first 64 bytes of the device configured with this interface. Net is ip&mask if the
network is multipoint or the remote address if the network is point to point.

SOURCE
/sys/src/libip

SEE ALSO
print(2), ip(3)

521

ISALPHARUNE(2) ISALPHARUNE(2)

NAME
isalpharune, islowerrune, isspacerune, istitlerune, isupperrune, isdigitrune, tolowerrune, toti
tlerune, toupperrune � Unicode character classes and cases

SYNOPSIS
#include <u.h>
#include <libc.h>

int isalpharune(Rune c)

int islowerrune(Rune c)

int isspacerune(Rune c)

int istitlerune(Rune c)

int isupperrune(Rune c)

int isdigitrune(Rune c)

Rune tolowerrune(Rune c)

Rune totitlerune(Rune c)

Rune toupperrune(Rune c)

DESCRIPTION
These routines examine and operate on Unicode characters, in particular a subset of their proper
ties as defined in the Unicode standard. Unicode defines some characters as alphabetic and speci
fies three cases: upper, lower, and title. Analogously to ctype(2) for ASCII, these routines test types
and modify cases for Unicode characters. The names are self-explanatory.

The case-conversion routines return the character unchanged if it has no case.

SOURCE
/sys/src/libc/port/runetype.c

SEE ALSO
ctype(2) , The Unicode Standard.

522

JSON(2) JSON(2)

NAME
jsonparse, jsonfree, jsonbyname, jsonstr � JSON parser

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <json.h>

enum {
JSONNull,
JSONBool,
JSONNumber,
JSONString,
JSONArray,
JSONObject,

};

typedef struct JSONEl JSONEl;
struct JSONEl {

char *name;
JSON *val;
JSONEl *next;

};

typedef struct JSON JSON;
struct JSON
{

int t;
union {

double n;
char *s;
JSONEl *first;

};
};

JSON* jsonparse(char *s);
void jsonfree(JSON *j);
JSON* jsonbyname(JSON *j, char *s);
char* jsonstr(JSON *j);
int JSONfmt(Fmt *f)
void JSONfmtinstall(void);

DESCRIPTION
The JSON structure represents a variant json value. The variant type is stored in the t member of
the structure. String values use s, booleans and numbers use the n members in the structure.
Arrays and objects (dictionaries) are represented by a singly-linked list of JSONEl structures
referred to from the first pointer in the JSON structure. Each JSONEl has a val pointer to
the associated value and a next pointer to the next element in the array or object. Dictionary
objects have the name member set to the key of the association.

A json object is parsed by calling jsonparse with a UTF−8 string of the json encoded data. On suc
cess, a non-nil pointer to a newly allocated JSON structure is returned. To free the parsed
objects, jsonfree has to be called.

The jsonbyname function returns the associated value of a dictionary item.

The function jsonstr returns the string value of a json object or nil for any other object type.

JSONfmt is a print(2) formatting routine that prints a well-formatted JSON structure. It can be
installed by hand but JSONfmtinstall installs it under the standard format character J. The header
<json.h> contains a #pragma statement so the compiler can type-check uses of %J in print(2)
format strings.

523

JSON(2) JSON(2)

SOURCE
/sys/src/libjson

DIAGNOSTICS
The functions jsonparse, jsonbyname and jsonstr return nil on error and set an error string (see
errstr(2)).

524

KEYBOARD(2) KEYBOARD(2)

NAME
initkeyboard, ctlkeyboard, closekeyboard � keyboard control

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <thread.h>
#include <keyboard.h>

Keyboardctl *initkeyboard(char *file)

int ctlkeyboard(Keyboardctl *kc, char *msg)

void closekeyboard(Keyboard *kc)

DESCRIPTION
These functions access and control a keyboard interface for character-at-a-time I/O in a multi-
threaded environment, usually in combination with mouse(2). They use the message-passing
Channel interface in the threads library (see thread(2)); programs that wish a more event-driven,
single-threaded approach should use event(2).

Initkeyboard opens a connection to the keyboard and returns a Keyboardctl structure:

typedef struct Keyboardctl Keyboardctl;
struct Keyboardctl
{

Channel *c; /* chan(Rune[20]) */

char *file;
int consfd; /* to cons file */
int ctlfd; /* to ctl file */
int pid; /* of slave proc */

};

The argument to initkeyboard is a file naming the device file from which characters may be read,
typically /dev/cons. If file is nil, /dev/cons is assumed.

Once the Keyboardctl is set up, a message containing a Rune will be sent on the Channel
Keyboardctl.c to report each character read from the device.

Ctlkeyboard is used to set the state of the interface, typically to turn raw mode on and off (see
cons(3)). It writes the string msg to the control file associated with the device, which is assumed to
be the regular device file name with the string ctl appended.

Closekeyboard closes the file descriptors associated with the keyboard, kills the slave processes,
and frees the Keyboardctl structure.

SOURCE
/sys/src/libdraw

SEE ALSO
graphics(2), draw(2), event(2), thread(2).

BUGS
Because the interface delivers complete runes, there is no way to report lesser actions such as shift
keys or even individual bytes.

525

LOCK(2) LOCK(2)

NAME
lock, canlock, unlock, qlock, canqlock, qunlock, rlock, canrlock, runlock, wlock, canwlock, wun
lock, rsleep, rwakeup, rwakeupall, incref, decref � spin locks, queueing rendezvous locks, reader-
writer locks, rendezvous points, and reference counts

SYNOPSIS
#include <u.h>
#include <libc.h>

void lock(Lock *l)
int canlock(Lock *l)
void unlock(Lock *l)

void qlock(QLock *l)
int canqlock(QLock *l)
void qunlock(QLock *l)

void rlock(RWLock *l)
int canrlock(RWLock *l)
void runlock(RWLock *l)

void wlock(RWLock *l)
int canwlock(RWLock *l)
void wunlock(RWLock *l)

typedef struct Rendez {
QLock *l;
...

} Rendez;

void rsleep(Rendez *r)
int rwakeup(Rendez *r)
int rwakeupall(Rendez *r)

#include <thread.h>

typedef struct Ref {
long ref;

} Ref;

void incref(Ref*)
long decref(Ref*)

DESCRIPTION
These routines are used to synchronize processes sharing memory.

Locks are spin locks, QLocks and RWLocks are different types of queueing rendezvous locks,
and Rendezes are rendezvous points.

Locks and rendezvous points work in regular programs as well as programs that use the thread
library (see thread(2)). The thread library replaces the rendezvous (2) system call with its own
implementation, threadrendezvous , so that threads as well as processes may be synchronized by
locking calls in threaded programs.

Used carelessly, spin locks can be expensive and can easily generate deadlocks. Their use is dis
couraged, especially in programs that use the thread library because they prevent context switches
between threads.

Lock blocks until the lock has been obtained. Canlock is non-blocking. It tries to obtain a lock
and returns a non-zero value if it was successful, 0 otherwise. Unlock releases a lock.

QLocks have the same interface but are not spin locks; instead if the lock is taken qlock will sus
pend execution of the calling task until it is released.

Although Locks are the more primitive lock, they have limitations; for example, they cannot syn
chronize between tasks in the same proc. Use QLocks instead.

RWLocks manage access to a data structure that has distinct readers and writers. Rlock grants
read access; runlock releases it. Wlock grants write access; wunlock releases it. Canrlock and

526

LOCK(2) LOCK(2)

canwlock are the non-blocking versions. There may be any number of simultaneous readers, but
only one writer. Moreover, if write access is granted no one may have read access until write
access is released.

All types of lock should be initialized to all zeros before use; this puts them in the unlocked state.

Rendezes are rendezvous points. Each Rendez r is protected by a QLock r−>l, which must
be held by the callers of rsleep, rwakeup, and rwakeupall. Rsleep atomically releases r−>l and
suspends execution of the calling task. After resuming execution, rsleep will reacquire r−>l
before returning. If any processes are sleeping on r, rwakeup wakes one of them. it returns 1 if a
process was awakened, 0 if not. Rwakeupall wakes all processes sleeping on r, returning the num
ber of processes awakened. Rwakeup and rwakeupall do not release r−>l and do not suspend
execution of the current task.

Before use, Rendezes should be initialized to all zeros except for r−>l pointer, which should
point at the QLock that will guard r. It is important that this QLock is the same one that protects
the rendezvous condition; see the example.

A Ref contains a long that can be incremented and decremented atomically: Incref increments
the Ref in one atomic operation. Decref atomically decrements the Ref and returns zero if the
resulting value is zero, non-zero otherwise.

EXAMPLE
Implement a buffered single-element channel using rsleep and rwakeup:

typedef struct Chan
{

QLock l;
Rendez full, empty;
int val, haveval;

} Chan;

Chan*
mkchan(void)
{

Chan *c;

c = mallocz(sizeof *c, 1);
c−>full.l = &c−>l;
c−>empty.l = &c−>l;
return c;

}

void
send(Chan *c, int val)
{

qlock(&c−>l);
while(c−>haveval)

rsleep(&c−>full);
c−>haveval = 1;
c−>val = val;
rwakeup(&c−>empty); /* no longer empty */
qunlock(&c−>l);

}

int
recv(Chan *c)
{

int v;

qlock(&c−>l);
while(!c−>haveval)

rsleep(&c−>empty);
c−>haveval = 0;
v = c−>val;

527

LOCK(2) LOCK(2)

rwakeup(&c−>full); /* no longer full */
qunlock(&c−>l);
return v;

}

Note that the QLock protecting the Chan is the same QLock used for the Rendez; this ensures
that wakeups are not missed.

SOURCE
/sys/src/libc/port/lock.c
/sys/src/libc/9sys/qlock.c
/sys/src/libthread/ref.c

SEE ALSO
rfork in fork(2)

BUGS
Locks are not strictly spin locks. After each unsuccessful attempt, lock calls sleep(0) to yield
the CPU; this handles the common case where some other process holds the lock. After a thou
sand unsuccessful attempts, lock sleeps for 100ms between attempts. After another thousand
unsuccessful attempts, lock sleeps for a full second between attempts. Locks are not intended to
be held for long periods of time. The 100ms and full second sleeps are only heuristics to avoid
tying up the CPU when a process deadlocks. As discussed above, if a lock is to be held for much
more than a few instructions, the queueing lock types should almost always be used.

It is an error for a program to fork when it holds a lock in shared memory, since this will result in
two processes holding the same lock at the same time, which should not happen.

528

MACH(2) MACH(2)

NAME
crackhdr, machbytype, machbyname, newmap, setmap, findseg, unusemap, loadmap, attachproc,
get1, get2, get4, get8, geta, put1, put2, put4, put8, puta beswab, beswal, beswav, leswab, leswal,
leswav � machine-independent access to executable files

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <bio.h>
#include <mach.h>

int crackhdr(int fd, Fhdr *fp)

void machbytype(int type)

int machbyname(char *name)

Map *newmap(Map *map, int n)

int setmap(Map *map, int fd, uvlong base, uvlong end,

vlong foffset, char *name)

int findseg(Map *map, char *name)

void unusemap(Map *map, int seg)

Map *loadmap(Map *map, int fd, Fhdr *fp)

Map *attachproc(int pid, int kflag, int corefd, Fhdr *fp)

int get1(Map *map, uvlong addr, uchar *buf, int n)

int get2(Map *map, uvlong addr, ushort *val)

int get4(Map *map, uvlong addr, ulong *val)

int get8(Map *map, uvlong addr, uvlong *val)

int geta(Map *map, uvlong addr, uvlong *val)

int put1(Map *map, uvlong addr, uchar *buf, int n)

int put2(Map *map, uvlong addr, ushort val)

int put4(Map *map, uvlong addr, ulong val)

int put8(Map *map, uvlong addr, uvlong val)

int puta(Map *map, uvlong addr, uvlong val)

ushort beswab(ushort val)

ulong beswal(ulong val)

uvlong beswav(uvlong val)

ushort leswab(ushort val)

ulong leswal(ulong val)

uvlong leswav(uvlong val)

extern Mach mach;

extern Machdata machdata;

DESCRIPTION
These functions provide a processor-independent interface for accessing the executable files or
executing images of all architectures. Related library functions described in symbol(2) and
object(2) provide similar access to symbol tables and object files.

An executable is a file containing an executable program or the text file of the /proc file sys
tem associated with an executing process as described in proc(3). After opening an executable, an
application invokes a library function which parses the file header, determines the target architec
ture and initializes data structures with parameters and pointers to functions appropriate for that
architecture. Next, the application invokes functions to construct one or more maps, data

529

MACH(2) MACH(2)

structures that translate references in the address space of the executable to offsets in the file.
Each map comprises one or more segments, each associating a non-overlapping range of mem
ory addresses with a logical section of the executable. Other library functions then use a map and
the architecture-specific data structures to provide a generic interface to the processor-dependent
data.

Crackhdr interprets the header of the executable associated with the open file descriptor fd. It
loads the data structure fp with a machine-independent description of the header information and
points global variable mach to the Mach data structure containing processor-dependent parame
ters of the target architecture.

Machbytype selects architecture-specific data structures and parameter values based on the code
stored in the field named type in the Fhdr data structure. Machbyname performs the same selec
tion based on the name of a processor class; see 2c(1) for a list of valid names. Both functions
point global variables mach and machdata to the Mach and Machdata data structures appropriate
for the target architecture and load global variable asstype with the proper disassembler type
code.

Newmap creates an empty map with n segments. If map is zero, the new map is dynamically allo
cated, otherwise it is assumed to point to an existing dynamically allocated map whose size is
adjusted, as necessary. A zero return value indicates an allocation error.

Setmap loads the first unused segment in map with the segment mapping parameters. Fd is an
open file descriptor associated with an executable. Base and end contain the lowest and highest
virtual addresses mapped by the segment. Foffset is the offset to the start of the segment in the
file. Name is a name to be attached to the segment.

Findseg returns the index of the segment named name in map. A return of -1 indicates that no
segment matches name.

Unusemap marks segment number seg in map map unused. Other segments in the map remain
unaffected.

Loadmap initializes a default map containing segments named �text� and �data� that map the
instruction and data segments of the executable described in the Fhdr structure pointed to by fp.
Usually that structure was loaded by crackhdr and can be passed to this function without modifica
tion. If map is non-zero, that map, which must have been dynamically allocated, is resized to con
tain two segments; otherwise a new map is allocated. This function returns zero if allocation fails.
Loadmap is usually used to build a map for accessing a static executable, for example, an exe
cutable program file.

Attachproc constructs a map for accessing a running process. It returns the address of a Map con
taining segments mapping the address space of the running process whose process ID is pid. If
kflag is non-zero, the process is assumed to be a kernel process. Corefd is an file descriptor
opened to /proc/pid/mem. Fp points to the Fhdr structure describing the header of the exe
cutable. For most architectures the resulting Map contains four segments named �text�, �data�,
�regs� and �fpregs�. The latter two provide access to the general and floating point registers,
respectively. If the executable is a kernel process (indicated by a non-zero kflag argument), the
data segment extends to the maximum supported address, currently 0xffffffff, and the register
sets are read-only. In user-level programs, the data segment extends to the top of the stack or
0x7fffffff if the stack top cannot be found, and the register sets are readable and writable.
Attachproc returns zero if it is unable to build the map for the specified process.

Get1, get2, get4, and get8 retrieve the data stored at address addr in the executable associated
with map. Get1 retrieves n bytes of data beginning at addr into buf. Get2, get4 and get8 retrieve
16-bit, 32-bit and 64-bit values respectively, into the location pointed to by val. The value is
byte-swapped if the source byte order differs from that of the current architecture. This implies
that the value returned by get2, get4, and get8 may not be the same as the byte sequences
returned by get1 when n is two, four or eight; the former may be byte-swapped, the latter reflects
the byte order of the target architecture. If the file descriptor associated with the applicable seg
ment in map is negative, the address itself is placed in the return location. These functions return
the number of bytes read or a �1 when there is an error.

Put1, put2, put4, and put8 write to the executable associated with map. The address is translated
using the map parameters and multi-byte quantities are byte-swapped, if necessary, before they

530

MACH(2) MACH(2)

are written. Put1 transfers n bytes stored at buf; put2, put4, and put8 write the 16-bit, 32-bit or
64-bit quantity contained in val, respectively. The number of bytes transferred is returned. A �1
return value indicates an error.

Beswab, beswal, and beswav return the ushort, long, and vlong big-endian representation of
val, respectively. Leswab , leswal, and leswav return the little-endian representation of the
ushort, long, and vlong contained in val.

SOURCE
/sys/src/libmach

SEE ALSO
2c(1), symbol(2), object(2), errstr(2), proc(3), a.out(6)

DIAGNOSTICS
These routines set errstr.

531

MALLOC(2) MALLOC(2)

NAME
malloc, mallocalign, mallocz, free, realloc, calloc, msize, setmalloctag, setrealloctag, getmalloctag,
getrealloctag, malloctopoolblock � memory allocator

SYNOPSIS
#include <u.h>
#include <libc.h>

void* malloc(ulong size)

void* mallocalign(ulong size, ulong align, long offset, ulong span)

void* mallocz(ulong size, int clr)

void free(void *ptr)

void* realloc(void *ptr, ulong size)

void* calloc(ulong nelem, ulong elsize)

ulong msize(void *ptr)

void setmalloctag(void *ptr, uintptr tag)

uintptrgetmalloctag(void *ptr)

void setrealloctag(void *ptr, uintptr tag)

uintptrgetrealloctag(void *ptr)

void* malloctopoolblock(void*)

DESCRIPTION
Malloc and free provide a simple memory allocation package. Malloc returns a pointer to a new
block of at least size bytes. The block is suitably aligned for storage of any type of object. No two
active pointers from malloc will have the same value. The call malloc(0) returns a valid pointer
rather than null.

The argument to free is a pointer to a block previously allocated by malloc; this space is made
available for further allocation. It is legal to free a null pointer; the effect is a no-op. The contents
of the space returned by malloc are undefined. Mallocz behaves as malloc, except that if clr is
non-zero, the memory returned will be zeroed.

Mallocalign allocates a block of at least n bytes of memory respecting alignment contraints. If
align is non-zero, the returned pointer is aligned to be equal to offset modulo align. If span is
non-zero, the n byte block allocated will not span a span-byte boundary.

Realloc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old sizes.
Realloc takes on special meanings when one or both arguments are zero:

realloc(0, size)
means malloc(size); returns a pointer to the newly-allocated memory

realloc(ptr, 0)
means free(ptr); returns null

realloc(0, 0)
no-op; returns null

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to
zeros. Free frees such a block.

When a block is allocated, sometimes there is some extra unused space at the end. Msize grows
the block to encompass this unused space and returns the new number of bytes that may be used.

The memory allocator maintains two word-sized fields associated with each block, the ��malloc
tag�� and the ��realloc tag��. By convention, the malloc tag is the PC that allocated the block, and
the realloc tag the PC that last reallocated the block. These may be set or examined with
setmalloctag, getmalloctag, setrealloctag, and getrealloctag. When allocating blocks directly with
malloc and realloc, these tags will be set properly. If a custom allocator wrapper is used, the allo
cator wrapper can set the tags itself (usually by passing the result of getcallerpc(2) to

532

MALLOC(2) MALLOC(2)

setmalloctag) to provide more useful information about the source of allocation.

Malloctopoolblock takes the address of a block returned by malloc and returns the address of the
corresponding block allocated by the pool(2) routines.

SOURCE
/sys/src/libc/port/malloc.c

SEE ALSO
leak(1), trump (in acid(1)), brk(2), getcallerpc(2), pool(2)

DIAGNOSTICS
Malloc, realloc and calloc return 0 if there is no available memory. Errstr is likely to be set. If the
allocated blocks have no malloc or realloc tags, getmalloctag and getrealloctag return ~0.

After including pool.h, the call poolcheck(mainmem) can be used to scan the storage arena
for inconsistencies such as data written beyond the bounds of allocated blocks. It is often useful
to combine this with setting

mainmem−>flags |= POOL_NOREUSE;
at the beginning of your program. This will cause malloc not to reallocate blocks even once they
are freed; poolcheck(mainmem) will then detect writes to freed blocks.

The trump library for acid can be used to obtain traces of malloc execution; see acid(1).

BUGS
The different specification of calloc is bizarre.

User errors can corrupt the storage arena. The most common gaffes are (1) freeing an already
freed block, (2) storing beyond the bounds of an allocated block, and (3) freeing data that was not
obtained from the allocator. When malloc and free detect such corruption, they abort.

533

MATRIX(2) MATRIX(2)

NAME
ident, matmul, matmulr, determinant, adjoint, invertmat, xformpoint, xformpointd, xformplane,
pushmat, popmat, rot, qrot, scale, move, xform, ixform, persp, look, viewport � Geometric trans
formations

SYNOPSIS
#include <draw.h>

#include <geometry.h>

void ident(Matrix m)

void matmul(Matrix a, Matrix b)

void matmulr(Matrix a, Matrix b)

double determinant(Matrix m)

void adjoint(Matrix m, Matrix madj)

double invertmat(Matrix m, Matrix inv)

Point3 xformpoint(Point3 p, Space *to, Space *from)

Point3 xformpointd(Point3 p, Space *to, Space *from)

Point3 xformplane(Point3 p, Space *to, Space *from)

Space *pushmat(Space *t)

Space *popmat(Space *t)

void rot(Space *t, double theta, int axis)

void qrot(Space *t, Quaternion q)

void scale(Space *t, double x, double y, double z)

void move(Space *t, double x, double y, double z)

void xform(Space *t, Matrix m)

void ixform(Space *t, Matrix m, Matrix inv)

int persp(Space *t, double fov, double n, double f)

void look(Space *t, Point3 eye, Point3 look, Point3 up)

void viewport(Space *t, Rectangle r, double aspect)

DESCRIPTION
These routines manipulate 3-space affine and projective transformations, represented as 4×4
matrices, thus:

typedef double Matrix[4][4];

Ident stores an identity matrix in its argument. Matmul stores a×b in a. Matmulr stores b×a in b.
Determinant returns the determinant of matrix m. Adjoint stores the adjoint (matrix of cofactors)
of m in madj. Invertmat stores the inverse of matrix m in minv, returning m�s determinant.
Should m be singular (determinant zero), invertmat stores its adjoint in minv.

The rest of the routines described here manipulate Spaces and transform Point3s. A Point3 is a
point in three-space, represented by its homogeneous coordinates:

typedef struct Point3 Point3;
struct Point3{

double x, y, z, w;
};

The homogeneous coordinates (x, y, z, w) represent the Euclidean point (x/w, y/w, z/w) if w`0,
and a ��point at infinity�� if w=0.

A Space is just a data structure describing a coordinate system:

typedef struct Space Space;
struct Space{

534

MATRIX(2) MATRIX(2)

Matrix t;
Matrix tinv;
Space *next;

};

It contains a pair of transformation matrices and a pointer to the Space�s parent. The matrices
transform points to and from the ��root coordinate system,�� which is represented by a null Space
pointer.

Pushmat creates a new Space. Its argument is a pointer to the parent space. Its result is a newly
allocated copy of the parent, but with its next pointer pointing at the parent. Popmat discards
the Space that is its argument, returning a pointer to the stack. Nominally, these two functions
define a stack of transformations, but pushmat can be called multiple times on the same Space
multiple times, creating a transformation tree.

Xformpoint and Xformpointd both transform points from the Space pointed to by from to the
space pointed to by to. Either pointer may be null, indicating the root coordinate system. The dif
ference between the two functions is that xformpointd divides x, y, z, and w by w, if w`0,
making (x, y, z) the Euclidean coordinates of the point.

Xformplane transforms planes or normal vectors. A plane is specified by the coefficients (a, b, c,
d) of its implicit equation ax+by+cz+d=0. Since this representation is dual to the homogeneous
representation of points, libgeometry represents planes by Point3 structures, with (a, b, c,
d) stored in (x, y, z, w).

The remaining functions transform the coordinate system represented by a Space. Their Space
* argument must be non-null � you can�t modify the root Space. Rot rotates by angle theta (in
radians) about the given axis, which must be one of XAXIS, YAXIS or ZAXIS. Qrot transforms
by a rotation about an arbitrary axis, specified by Quaternion q.

Scale scales the coordinate system by the given scale factors in the directions of the three axes.
Move translates by the given displacement in the three axial directions.

Xform transforms the coordinate system by the given Matrix. If the matrix�s inverse is known a
priori, calling ixform will save the work of recomputing it.

Persp does a perspective transformation. The transformation maps the frustum with apex at the
origin, central axis down the positive y axis, and apex angle fov and clipping planes y=n and y=f
into the double-unit cube. The plane y=n maps to y�=-1, y=f maps to y�=1.

Look does a view-pointing transformation. The eye point is moved to the origin. The line
through the eye and look points is aligned with the y axis, and the plane containing the eye,
look and up points is rotated into the x-y plane.

Viewport maps the unit-cube window into the given screen viewport. The viewport rectangle r has
r.min at the top left-hand corner, and r.max just outside the lower right-hand corner. Argu
ment aspect is the aspect ratio (dx/dy) of the viewport�s pixels (not of the whole viewport). The
whole window is transformed to fit centered inside the viewport with equal slop on either top and
bottom or left and right, depending on the viewport�s aspect ratio. The window is viewed down
the y axis, with x to the left and z up. The viewport has x increasing to the right and y increasing
down. The window�s y coordinates are mapped, unchanged, into the viewport�s z coordinates.

SOURCE
/sys/src/libgeometry/matrix.c

SEE ALSO
arith3(2)

535

MEMDRAW(2) MEMDRAW(2)

NAME
Memimage, Memdata, Memdrawparam, memimageinit, wordaddr, byteaddr, memimagemove,
allocmemimage, allocmemimaged, readmemimage, creadmemimage, writememimage, freememim
age, memsetchan, loadmemimage, cloadmemimage, unloadmemimage, memfillcolor, memarc,
mempoly, memellipse, memfillpoly, memimageline, memimagedraw, drawclip, drawclipnorepl,
memlinebbox, memlineendsize, allocmemsubfont, openmemsubfont, freememsubfont, memsub
fontwidth, getmemdefont, memimagestring, hwdraw � drawing routines for memory-resident
images

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>
#include <memdraw.h>

typedef struct Memdata
{

ulong *base; /* allocated data pointer */
uchar *bdata; /* first byte of actual data; word−aligned */
int ref; /* number of Memimages using this data */
void* imref; /* last image that pointed at this */
int allocd; /* is this malloc’d? */

} Memdata;

enum {
Frepl = 1<<0, /* is replicated */
Fsimple = 1<<1, /* is 1x1 */
Fgrey = 1<<2, /* is grey */
Falpha = 1<<3, /* has explicit alpha */
Fcmap = 1<<4, /* has cmap channel */
Fbytes = 1<<5, /* has only 8−bit channels */

};

typedef struct Memimage
{

Rectangle r; /* rectangle in data area, local coords */
Rectangle clipr; /* clipping region */
int depth; /* number of bits of storage per pixel */
int nchan; /* number of channels */
ulong chan; /* channel descriptions */

Memdata *data; /* pointer to data */
int zero; /* data−>bdata+zero==&byte containing (0,0) */
ulong width; /* width in words of a single scan line */
Memlayer *layer; /* nil if not a layer*/
ulong flags;
...

} Memimage;

typedef struct Memdrawparam
{

Memimage *dst;
Rectangle r;
Memimage *src;
Rectangle sr;
Memimage *mask;
Rectangle mr;
...

} Memdrawparam;

536

MEMDRAW(2) MEMDRAW(2)

int drawdebug;

int memimageinit(void)
ulong* wordaddr(Memimage *i, Point p)
uchar* byteaddr(Memimage *i, Point p)
void memimagemove(void *from, void *to)

Memimage* allocmemimage(Rectangle r, ulong chan)
Memimage* allocmemimaged(Rectangle r, ulong chan, Memdata *data)
Memimage* readmemimage(int fd)
Memimage* creadmemimage(int fd)
int writememimage(int fd, Memimage *i)
void freememimage(Memimage *i)
int memsetchan(Memimage*, ulong)

int loadmemimage(Memimage *i, Rectangle r,
uchar *buf, int nbuf)

int cloadmemimage(Memimage *i, Rectangle r,
uchar *buf, int nbuf)

int unloadmemimage(Memimage *i, Rectangle r,
uchar *buf, int nbuf)

void memfillcolor(Memimage *i, ulong color)

void memarc(Memimage *dst, Point c, int a, int b, int thick,
Memimage *src, Point sp, int alpha, int phi, Drawop op)

void mempoly(Memimage *dst, Point *p, int np, int end0,
int end1, int radius, Memimage *src, Point sp, Drawop op)

void memellipse(Memimage *dst, Point c, int a, int b,
int thick, Memimage *src, Point sp, Drawop op)

void memfillpoly(Memimage *dst, Point *p, int np, int wind,
Memimage *src, Point sp, Drawop op)

void memimageline(Memimage *dst, Point p0, Point p1, int end0,
int end1, int radius, Memimage *src, Point sp, Drawop op)

void memimagedraw(Memimage *dst, Rectangle r, Memimage *src,
Point sp, Memimage *mask, Point mp, Drawop op)

int drawclip(Memimage *dst, Rectangle *dr, Memimage *src,
Point *sp, Memimage *mask, Point *mp,
Rectangle *sr, Rectangle *mr)

int drawclipnorepl(Memimage *dst, Rectangle *dr, Memimage *src,
Point *sp, Memimage *mask, Point *mp,
Rectangle *sr, Rectangle *mr)

Rectangle memlinebbox(Point p0, Point p1, int end0, int end1,
int radius)

int memlineendsize(int end)

Memsubfont* allocmemsubfont(char *name, int n, int height,
int ascent, Fontchar *info, Memimage *i)

Memsubfont* openmemsubfont(char *name)
void freememsubfont(Memsubfont *f)
Point memsubfontwidth(Memsubfont *f, char *s)
Memsubfont* getmemdefont(void)
Point memimagestring(Memimage *dst, Point p, Memimage *color,

Point cp, Memsubfont *f, char *cs)

int hwdraw(Memdrawparam *param)

DESCRIPTION
The Memimage type defines memory-resident rectangular pictures and the methods to draw upon
them; Memimages differ from Images (see draw(2)) in that they are manipulated directly in user
memory rather than by RPCs to the /dev/draw hierarchy. The memdraw library is the basis for
the kernel draw(3) driver and also used by a number of programs that must manipulate images
without a display.

537

MEMDRAW(2) MEMDRAW(2)

The r, clipr, depth, nchan, and chan structure elements are identical to the ones of the
same name in the Image structure.

The flags element of the Memimage structure holds a number of bits of information about the
image. In particular, it subsumes the purpose of the repl element of Image structures.

Memimageinit initializes various static data that the library depends on, as well as the replicated
solid color images memopaque, memtransparent, memblack, and memwhite. It should be
called before referring to any of these images and before calling any of the other library functions.
It returns non-zero on error.

Each Memimage points at a Memdata structure that in turn points at the actual pixel data for the
image. This allows multiple images to be associated with the same Memdata. The first word of
the data pointed at by the base element of Memdata points back at the Memdata structure, so
that the memory allocator (see pool(2)) can compact image memory using memimagemove .

Because images can have different coordinate systems, the zero element of the Memimage
structure contains the offset that must be added to the bdata element of the corresponding
Memdata structure in order to yield a pointer to the data for the pixel (0,0). Adding width
machine words to this pointer moves it down one scan line. The depth element can be used to
determine how to move the pointer horizontally. Note that this method works even for images
whose rectangles do not include the origin, although one should only dereference pointers corre
sponding to pixels within the image rectangle. Wordaddr and byteaddr perform these calcula
tions, returning pointers to the word and byte, respectively, that contain the beginning of the data
for a given pixel.

Allocmemimage allocates images with a given rectangle and channel descriptor (see strtochan
in graphics(2)), creating a fresh Memdata structure and associated storage. Allocmemimaged is
similar but uses the supplied Memdata structure rather than a new one. The readmemimage func
tion reads an uncompressed bitmap from the given file descriptor, while creadmemimage reads a
compressed bitmap. Writememimage writes a compressed representation of i to file descriptor fd.
For more on bitmap formats, see image(6). Freememimage frees images returned by any of these
routines. The Memimage structure contains some tables that are used to store precomputed val
ues depending on the channel descriptor. Memsetchan updates the chan element of the structure
as well as these tables, returning �1 if passed a bad channel descriptor.

Loadmemimage and cloadmemimage replace the pixel data for a given rectangle of an image with
the given buffer of uncompressed or compressed data, respectively. When calling
cloadmemimage, the buffer must contain an integral number of compressed chunks of data that
exactly cover the rectangle. Unloadmemimage retrieves the uncompressed pixel data for a given
rectangle of an image. All three return the number of bytes consumed on success, and �1 in case
of an error.

Memfillcolor fills an image with the given color, a 32-bit number as described in color(2).

Memarc, mempoly, memellipse, memfillpoly, memimageline , and memimagedraw are identical to
the arc, poly, ellipse, fillpoly, line, and gendraw, routines described in draw(2), except that they
operate on Memimages rather than Images. Similarly, allocmemsubfont, openmemsubfont,
freememsubfont, memsubfontwidth, getmemdefont, and memimagestring are the Memimage
analogues of allocsubfont, openfont, freesubfont, strsubfontwidth, getdefont, and string (see
subfont(2) and graphics(2)), except that they operate only on Memsubfonts rather than Fonts.

Drawclip takes the images involved in a draw operation, together with the destination rectangle dr
and source and mask alignment points sp and mp, and clips them according to the clipping rect
angles of the images involved. It also fills in the rectangles sr and mr with rectangles congruent
to the returned destination rectangle but translated so the upper left corners are the returned sp
and mp. Drawclipnorepl does the same as drawclip but avoids clamping sp and mr within the
image rectangle of source and mask when replicated. Drawclip and drawclipnorepl return zero
when the clipped rectangle is empty. Memlinebbox returns a conservative bounding box contain
ing a line between two points with given end styles and radius. Memlineendsize calculates the
extra length added to a line by attaching an end of a given style.

The hwdraw function is a no-op stub that may be overridden by clients of the library. Hwdraw is
called at each call to memimagedraw with the current request�s parameters. If it can satisfy the
request, it should do so and return 1. If it cannot satisfy the request, it should return 0. This

538

MEMDRAW(2) MEMDRAW(2)

allows (for instance) the kernel to take advantage of hardware acceleration.

SOURCE
/sys/src/libmemdraw

SEE ALSO
addpt(2), color(2), draw(2), graphics(2), memlayer(2), stringsize(2), subfont(2), color(6), utf(6)

BUGS
Memimagestring is unusual in using a subfont rather than a font, and in having no parameter to
align the source.

539

MEMLAYER(2) MEMLAYER(2)

NAME
memdraw, memlalloc, memldelete, memlexpose, memlfree, memlhide, memline, memlnorefresh,
memload, memunload, memlorigin, memlsetrefresh, memltofront, memltofrontn, memltorear,
memltorearn � windows of memory-resident images

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>
#include <memdraw.h>
#include <memlayer.h>

typedef struct Memscreen Memscreen;
typedef struct Memlayer Memlayer;
typedef void (*Refreshfn)(Memimage*, Rectangle, void*);

struct Memscreen
{

Memimage *frontmost; /* frontmost layer on screen */
Memimage *rearmost; /* rearmost layer on screen */
Memimage *image; /* upon which all layers are drawn */
Memimage *fill; /* if non−zero, picture to use when repainting */

};

struct Memlayer
{

Rectangle screenr; /* true position of layer on screen */
Point delta; /* add delta to go from image coords to screen */
Memscreen *screen; /* screen this layer belongs to */
Memimage *front; /* window in front of this one */
Memimage *rear; /* window behind this one*/
int clear; /* layer is fully visible */
Memimage *save; /* save area for obscured parts */
Refreshfn refreshfn; /* fn to refresh obscured parts if save==nil */
void *refreshptr;/* argument to refreshfn */

};

Memimage* memlalloc(Memscreen *s, Rectangle r, Refreshfn fn, void *arg, ulong col)

void memlnorefresh(Memimage *i, Rectangle r, void *arg)

int memlsetrefresh(Memimage *i, Refreshfn fn, void *arg)

void memldelete(Memimage *i)

void memlfree(Memimage *i)

void memlexpose(Memimage *i, Rectangle r)

void memlhide(Memimage *i, Rectangle r)

void memltofront(Memimage *i)

void memltofrontn(Memimage**ia, int n)

void memltorear(Memimage *i)

void memltorearn(Memimage **ia , int n)

int memlorigin(Memimage *i, Point log, Point phys)

void memdraw(Memimage *dst, Rectangle r,
Memimage *src, Point sp, Memimage *mask, Point mp, Drawop op)

int memload(Memimage *i, Rectangle r,
uchar *buf, int n, int iscompressed)

int memunload(Memimage *i, Rectangle r,
uchar *buf, int n)

540

MEMLAYER(2) MEMLAYER(2)

DESCRIPTION
These functions build upon the memdraw(2) interface to maintain overlapping graphical windows
on in-memory images. They are used by the kernel to implement the windows interface presented
by draw(3) and window(2) and probably have little use outside of the kernel.

The basic function is to extend the definition of a Memimage (see memdraw(2)) to include over
lapping windows defined by the Memlayer type. The first fields of the Memlayer structure are
identical to those in Memimage, permitting a function that expects a Memimage to be passed a
Memlayer, and vice versa. Both structures have a save field, which is nil in a Memimage and
points to �backing store� in a Memlayer. The layer routines accept Memimages or
Memlayers; if the image is a Memimage the underlying Memimage routine is called; otherwise
the layer routines recursively subdivide the geometry, reducing the operation into a smaller com
ponent that ultimately can be performed on a Memimage, either the display on which the window
appears, or the backing store.

Memlayers are associated with a Memscreen that holds the data structures to maintain the
windows and connects them to the associated image. The fill color is used to paint the back
ground when a window is deleted. There is no function to establish a Memscreen; to create one,
allocate the memory, zero frontmost and rearmost, set fill to a valid fill color or image,
and set image to the Memimage (or Memlayer) on which the windows will be displayed.

Memlalloc allocates a Memlayer of size r on Memscreen s. If col is not DNofill, the new win
dow will be initialized by painting it that color.

The refresh function fn and associated argument arg will be called by routines in the library to
restore portions of the window uncovered due to another window being deleted or this window
being pulled to the front of the stack. The function, when called, receives a pointer to the image
(window) being refreshed, the rectangle that has been uncovered, and the arg recorded when the
window was created. A couple of predefined functions provide built-in management methods:
memlnorefresh does no backup at all, useful for making efficient temporary windows; while a nil
function specifies that the backing store (Memlayer.save) will be used to keep the obscured
data. Other functions may be provided by the client. Memlsetrefresh allows one to change the
function associated with the window.

Memldelete deletes the window i, restoring the underlying display. Memlfree frees the data struc
tures without unlinking the window from the associated Memscreen or doing any graphics.

Memlexpose restores rectangle r within the window, using the backing store or appropriate refresh
method. Memlhide goes the other way, backing up r so that portion of the screen may be modified
without losing the data in this window.

Memltofront pulls i to the front of the stack of windows, making it fully visible. Memltofrontn pulls
the n windows in the array ia to the front as a group, leaving their internal order unaffected.
Memltorear and memltorearn push the windows to the rear.

Memlorigin changes the coordinate systems associated with the window i. The points log and phys
represent the upper left corner (min) of the window�s internal coordinate system and its physical
location on the screen. Changing log changes the interpretation of coordinates within the window;
for example, setting it to (0, 0) makes the upper left corner of the window appear to be the origin
of the coordinate system, regardless of its position on the screen. Changing phys changes the
physical location of the window on the screen. When a window is created, its logical and physical
coordinates are the same, so

memlorigin(i, i−>r.min, i−>r.min)
would be a no-op.

Memdraw and memline are implemented in the layer library but provide the main entry points for
drawing on memory-resident windows. They have the signatures of memimagedraw and
memimageline (see memdraw(2)) but accept Memlayer or Memimage arguments both.

Memload and memunload are similarly layer-savvy versions of loadmemimage and
unloadmemimage . The iscompressed flag to memload specifies whether the n bytes of data in buf
are in compressed image format (see image(6)).

SOURCE
/sys/src/libmemlayer

541

MEMLAYER(2) MEMLAYER(2)

SEE ALSO
graphics(2), memdraw(2), stringsize(2), window(2), draw(3)

542

MEMORY(2) MEMORY(2)

NAME
memccpy, memchr, memcmp, memcpy, memmove, memset � memory operations

SYNOPSIS
#include <u.h>
#include <libc.h>

void* memccpy(void *s1, void *s2, int c, ulong n)

void* memchr(void *s, int c, ulong n)

int memcmp(void *s1, void *s2, ulong n)

void* memcpy(void *s1, void *s2, ulong n)

void* memmove(void *s1, void *s2, ulong n)

void* memset(void *s, int c, ulong n)

DESCRIPTION
These functions operate efficiently on memory areas (arrays of bytes bounded by a count, not ter
minated by a zero byte). They do not check for the overflow of any receiving memory area.

Memccpy copies bytes from memory area s2 into s1, stopping after the first occurrence of byte c
has been copied, or after n bytes have been copied, whichever comes first. It returns a pointer to
the byte after the copy of c in s1, or zero if c was not found in the first n bytes of s2.

Memchr returns a pointer to the first occurrence of byte c in the first n bytes of memory area s, or
zero if c does not occur.

Memcmp compares its arguments, looking at the first n bytes only, and returns an integer less
than, equal to, or greater than 0, according as s1 is lexicographically less than, equal to, or greater
than s2. The comparison is bytewise unsigned.

Memcpy copies n bytes from memory area s2 to s1. It returns s1.

Memmove works like memcpy, except that it is guaranteed to work if s1 and s2 overlap.

Memset sets the first n bytes in memory area s to the value of byte c. It returns s.

SOURCE
All these routines have portable C implementations in /sys/src/libc/port. Most also have
machine-dependent assembly language implementations in /sys/src/libc/$objtype.

SEE ALSO
strcat(2)

BUGS
ANSI C does not require memcpy to handle overlapping source and destination; on Plan 9, it does,
so memmove and memcpy behave identically.

If memcpy and memmove are handed a negative count, they abort.

543

MKTEMP(2) MKTEMP(2)

NAME
mktemp � make a unique file name

SYNOPSIS
#include <u.h>
#include <libc.h>

char* mktemp(char *template)

DESCRIPTION
Mktemp replaces template by a unique file name, and returns the address of the template. The
template should look like a file name with eleven trailing Xs. The Xs are replaced by a letter fol
lowed by the current process id. Letters from a to z are tried until a name that can be accessed
(see access(2)) is generated. If no such name can be generated, mktemp returns "/" .

SOURCE
/sys/src/libc/port/mktemp.c

SEE ALSO
getpid(2), access(2)

544

MOUSE(2) MOUSE(2)

NAME
initmouse, readmouse, closemouse, moveto, getrect, drawgetrect, menuhit, setcursor, enter �

mouse control

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>
#include <thread.h>
#include <mouse.h>
#include <cursor.h>

Mousectl *initmouse(char *file, Image *i)

int readmouse(Mousectl *mc)

void closemouse(Mousectl *mc)

void moveto(Mousectl *mc, Point pt)

void setcursor(Mousectl *mc, Cursor *c)

Rectangle getrect(int but, Mousectl *mc)

void drawgetrect(Rectangle r, int up)

int menuhit(int but, Mousectl *mc, Menu *menu, Screen *scr)

int enter(char *ask, char *buf, int len,
Mousectl *mc, Keyboardctl *kc, Screen *scr)

DESCRIPTION
These functions access and control a mouse in a multi-threaded environment. They use the
message-passing Channel interface in the threads library (see thread(2)); programs that wish a
more event-driven, single-threaded approach should use event(2).

The state of the mouse is recorded in a structure, Mouse, defined in <mouse.h>:

typedef struct Mouse Mouse;
struct Mouse
{

int buttons; /* bit array: LMR=124 */
Point xy;
ulong msec;

};

The Point xy records the position of the cursor, buttons the state of the buttons (three bits
representing, from bit 0 up, the buttons from left to right, 0 if the button is released, 1 if it is
pressed), and msec, a millisecond time stamp.

The routine initmouse returns a structure through which one may access the mouse:

typedef struct Mousectl Mousectl;
struct Mousectl
{

Mouse;
Channel *c; /* chan(Mouse)[16] */
Channel *resizec; /* chan(int)[2] */

char *file;
int mfd; /* to mouse file */
int cfd; /* to cursor file */
int pid; /* of slave proc */
Image* image; /* of associated window/display */

};

The arguments to initmouse are a file naming the device file connected to the mouse and an Image
(see draw(2)) on which the mouse will be visible. Typically the file is nil, which requests the

545

MOUSE(2) MOUSE(2)

default /dev/mouse; and the image is the window in which the program is running, held in the
variable screen after a call to initdraw.

Once the Mousectl is set up, mouse motion will be reported by messages of type Mouse sent
on the Channel Mousectl.c. Typically, a message will be sent every time a read of
/dev/mouse succeeds, which is every time the state of the mouse changes.

When the window is resized, a message is sent on Mousectl.resizec. The actual value sent
may be discarded; the receipt of the message tells the program that it should call getwindow
(see graphics(2)) to reconnect to the window.

Readmouse updates the Mouse structure held in the Mousectl, blocking if the state has not
changed since the last readmouse or message sent on the channel. It calls flushimage (see
graphics(2)) before blocking, so any buffered graphics requests are displayed.

Closemouse closes the file descriptors associated with the mouse, kills the slave processes, and
frees the Mousectl structure.

Moveto moves the mouse cursor on the display to the position specified by pt.

Setcursor sets the image of the cursor to that specified by c. If c is nil, the cursor is set to the
default. The format of the cursor data is spelled out in <cursor.h> and described in
graphics(2).

Getrect returns the dimensions of a rectangle swept by the user, using the mouse, in the manner
rio(1) or sam(1) uses to create a new window. The but argument specifies which button the user
must press to sweep the window; any other button press cancels the action. The returned rectan
gle is all zeros if the user cancels.

Getrect uses successive calls to drawgetrect to maintain the red rectangle showing the sweep-in-
progress. The rectangle to be drawn is specified by rc and the up parameter says whether to draw
(1) or erase (0) the rectangle.

Menuhit provides a simple menu mechanism. It uses a Menu structure defined in <mouse.h>:

typedef struct Menu Menu;
struct Menu
{

char **item;
char *(*gen)(int);
int lasthit;

};

Menuhit behaves the same as its namesake emenuhit described in event(2), with two exceptions.
First, it uses a Mousectl to access the mouse rather than using the event interface; and second,
it creates the menu as a true window on the Screen scr (see window(2)), permitting the menu to
be displayed in parallel with other activities on the display. If scr is null, menuhit behaves like
emenuhit, creating backing store for the menu, writing the menu directly on the display, and
restoring the display when the menu is removed.

Enter is a multithreded version of the eenter function described in event(2). Like menuhit, it has a
optional scr argument to create a window. Keyboard input is read from the channel in the
Keyboardctl *kc argument (see keyboard (2)).

SOURCE
/sys/src/libdraw

SEE ALSO
graphics(2), draw(2), event(2), keyboard (2), thread(2).

546

MP(2) MP(2)

NAME
mpsetminbits, mpnew, mpfree, mpbits, mpnorm, mpcopy, mpassign, mprand, mpnrand, strtomp,
mpfmt, mptoa, betomp, mptobe, mptober, letomp, mptole, mptolel, mptoui, uitomp, mptoi, itomp,
uvtomp, mptouv, vtomp, mptov, mptod, dtomp, mpdigdiv, mpadd, mpsub, mpleft, mpright,
mpmul, mpexp, mpmod, mpmodadd, mpmodsub, mpmodmul, mpdiv, mpcmp, mpsel, mpfacto
rial, mpextendedgcd, mpinvert, mpsignif, mplowbits0, mpvecdigmuladd, mpvecdigmulsub,
mpvecadd, mpvecsub, mpveccmp, mpvecmul, mpmagcmp, mpmagadd, mpmagsub, crtpre, crtin,
crtout, crtprefree, crtresfree � extended precision arithmetic

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <mp.h>

mpint* mpnew(int n)

void mpfree(mpint *b)

void mpsetminbits(int n)

void mpbits(mpint *b, int n)

mpint* mpnorm(mpint *b)

mpint* mpcopy(mpint *b)

void mpassign(mpint *old, mpint *new)

mpint* mprand(int bits, void (*gen)(uchar*, int), mpint *b)

mpint* mpnrand(mpint *n, void (*gen)(uchar*, int), mpint *b)

mpint* strtomp(char *buf, char **rptr, int base, mpint *b)

char* mptoa(mpint *b, int base, char *buf, int blen)

int mpfmt(Fmt*)

mpint* betomp(uchar *buf, uint blen, mpint *b)

int mptobe(mpint *b, uchar *buf, uint blen, uchar **bufp)

void mptober(mpint *b, uchar *buf, int blen)

mpint* letomp(uchar *buf, uint blen, mpint *b)

int mptole(mpint *b, uchar *buf, uint blen, uchar **bufp)

void mptolel(mpint *b, uchar *buf, int blen)

uint mptoui(mpint*)

mpint* uitomp(uint, mpint*)

int mptoi(mpint*)

mpint* itomp(int, mpint*)

mpint* vtomp(vlong, mpint*)

vlong mptov(mpint*)

mpint* uvtomp(uvlong, mpint*)

uvlong mptouv(mpint*)

mpint* dtomp(double, mpint*)

double mptod(mpint*)

void mpadd(mpint *b1, mpint *b2, mpint *sum)

void mpmagadd(mpint *b1, mpint *b2, mpint *sum)

void mpsub(mpint *b1, mpint *b2, mpint *diff)

void mpmagsub(mpint *b1, mpint *b2, mpint *diff)

547

MP(2) MP(2)

void mpleft(mpint *b, int shift, mpint *res)

void mpright(mpint *b, int shift, mpint *res)

void mpand(mpint *b1, mpint *b2, mpint *res)

void mpbic(mpint *b1, mpint *b2, mpint *res)

void mpor(mpint *b1, mpint *b2, mpint *res)

void mpnot(mpint *b, mpint *res)

void mpxor(mpint *b1, mpint *b2, mpint *res)

void mptrunc(mpint *b, int n, mpint *res)

void mpxtend(mpint *b, int n, mpint *res)

void mpasr(mpint *b, int n, mpint *res)

void mpmul(mpint *b1, mpint *b2, mpint *prod)

void mpexp(mpint *b, mpint *e, mpint *m, mpint *res)

void mpmod(mpint *b, mpint *m, mpint *remainder)

void mpdiv(mpint *dividend, mpint *divisor, mpint *quotient,
mpint *remainder)

void mpmodadd(mpint *b1, mpint *b2, mpint *m, mpint *sum)

void mpmodsub(mpint *b1, mpint *b2, mpint *m, mpint *diff)

void mpmodmul(mpint *b1, mpint *b2, mpint *m, mpint *prod)

int mpcmp(mpint *b1, mpint *b2)

int mpmagcmp(mpint *b1, mpint *b2)

void mpsel(int s, mpint *b1, mpint *b2, mpint *res)

mpint* mpfactorial(ulong n)

void mpextendedgcd(mpint *a, mpint *b, mpint *d, mpint *x,
mpint *y)

void mpinvert(mpint *b, mpint *m, mpint *res)

int mpsignif(mpint *b)

int mplowbits0(mpint *b)

void mpdigdiv(mpdigit *dividend, mpdigit divisor,
mpdigit *quotient)

void mpvecadd(mpdigit *a, int alen, mpdigit *b, int blen,
mpdigit *sum)

void mpvecsub(mpdigit *a, int alen, mpdigit *b, int blen,
mpdigit *diff)

void mpvecdigmuladd(mpdigit *b, int n, mpdigit m, mpdigit *p)

int mpvecdigmulsub(mpdigit *b, int n, mpdigit m, mpdigit *p)

void mpvecmul(mpdigit *a, int alen, mpdigit *b, int blen,
mpdigit *p)

int mpveccmp(mpdigit *a, int alen, mpdigit *b, int blen)

CRTpre* crtpre(int nfactors, mpint **factors)

CRTres* crtin(CRTpre *crt, mpint *x)

void crtout(CRTpre *crt, CRTres *r, mpint *x)

void crtprefree(CRTpre *cre)

void crtresfree(CRTres *res)

mpint *mpzero, *mpone, *mptwo

548

MP(2) MP(2)

DESCRIPTION
These routines perform extended precision integer arithmetic. The basic type is mpint, which
points to an array of mpdigits, stored in little-endian order:

typedef struct mpint mpint;
struct mpint
{

int sign; /* +1 or −1 */
int size; /* allocated digits */
int top; /* significant digits */
mpdigit *p;
char flags;

};

The sign of 0 is +1.

The size of mpdigit is architecture-dependent and defined in /$cputype/include/u.h.
Mpints are dynamically allocated and must be explicitly freed. Operations grow the array of dig
its as needed.

In general, the result parameters are last in the argument list.

Routines that return an mpint will allocate the mpint if the result parameter is nil. This
includes strtomp, itomp, uitomp, btomp, and dtomp. These functions, in addition to mpnew and
mpcopy, will call sysfatal (see perror(2)) if the allocation fails.

Input and result parameters may point to the same mpint. The routines check and copy where
necessary.

Mpnew creates an mpint with an initial allocation of n bits. If n is zero, the allocation will be
whatever was specified in the last call to mpsetminbits or to the initial value, 1056. Mpfree frees
an mpint. Mpbits grows the allocation of b to fit at least n bits. If b−>top doesn�t cover n bits,
mpbits increases it to do so. Unless you are writing new basic operations, you can restrict yourself
to mpnew(0) and mpfree(b).

Mpnorm normalizes the representation by trimming any high order zero digits. All routines except
mpbits return normalized results.

Mpcopy creates a new mpint with the same value as b while mpassign sets the value of new to be
that of old.

Mprand creates an n bit random number using the generator gen. Gen takes a pointer to a string
of uchar�s and the number to fill in.

Mpnrand uses gen to generate a uniform random number x, 0 d x < n.

Strtomp and mptoa convert between ASCII and mpint representations using the base indicated.
Only the bases 2, 4, 8, 10, 16, 32, and 64 are supported. Strtomp skips any leading spaces or
tabs. Strtomp�s scan stops when encountering a digit not valid in the base. If base is zero then
C-style prefixes are interpreted to find the base: 0x for hexadecimal, 0b for binary and 0 for
octal. Otherwise decimal is assumed. rptr is not zero, *rptr is set to point to the character imme
diately after the string converted. If the parse terminates before any digits are found, strtomp
return nil. Mptoa returns a pointer to the ASCII filled buffer. If the parameter buf is nil, the
buffer is allocated. Setting base to zero uses hexadecimal default. Mpfmt can be used with
fmtinstall(2) and print(2) to print ASCII representations of mpints. The conventional verb is B, for
which mp.h provides a pragma. The precision in the format string changes the base, defaulting
to hexadecimal when omited.

Mptobe and mptole convert an mpint to a byte array. The former creates a big endian representa
tion, the latter a little endian one. If the destination buf is not nil, it specifies the buffer of length
blen for the result. If the representation is less than blen bytes, the rest of the buffer is zero filled.
If buf is nil, then a buffer is allocated and a pointer to it is deposited in the location pointed to by
bufp. Sign is ignored in these conversions, i.e., the byte array version is always positive.

Mptober and mptolel fill blen lower bytes of an mpint into a fixed length byte array. Mptober fills
the bytes right adjusted in big endian order so that the least significant byte is at buf[blen−1] while
mptolel fills in little endian order; left adjusted; so that the least significat byte is filled into buf[0].

549

MP(2) MP(2)

Betomp, and letomp convert from a big or little endian byte array at buf of length blen to an mpint.
If b is not nil, it refers to a preallocated mpint for the result. If b is nil, a new integer is allocated
and returned as the result.

The integer (and floating point) conversions are:

mptoui mpint->unsigned int
uitomp unsigned int->mpint
mptoi mpint->int
itomp int->mpint
mptouv mpint->unsigned vlong
uvtomp unsigned vlong->mpint
mptov mpint->vlong
vtomp vlong->mpint
mptod mpint->double
dtomp double->mpint

When converting to the base integer types, if the integer is too large, the largest integer of the
appropriate sign and size is returned.

When converting to and from floating point, results are rounded using IEEE 754 "round to nearest".
If the integer is too large in magnitude, mptod returns infinity of the appropriate sign.

The mathematical functions are:

mpadd sum = b1 + b2.
mpmagadd sum = abs(b1) + abs(b2).
mpsub diff = b1 − b2.
mpmagsub diff = abs(b1) − abs(b2).
mpleft res = b<<shift.
mpright res = b>>shift.
mpmul prod = b1*b2.
mpexp if m is nil, res = b**e. Otherwise, res = b**e mod m.
mpmod remainder = b % m.
mpdiv quotient = dividend/divisor. remainder = dividend %

divisor.
mpcmp returns -1, 0, or +1 as b1 is less than, equal to, or greater than b2.
mpmagcmp the same as mpcmp but ignores the sign and just compares magnitudes.
mpsel assigns b1 to res when s is not zero, otherwise b2 is assigned to res.
mpfactorial returns n!.

Logical operations (treating negative numbers using two�s complement):

mpand res = b1 & b2.
mpbic res = b1 & ~b2.
mpor res = b1 | b2.
mpxor res = b1 ^ b2.
mpnot res = ~b1.
mpasr res = b>>shift (mpasr, unlike mpright, uses two�s complement).
mptrunc truncates b to n bits and stores the result in res. The result is never negative.
mpxtend truncates b to n bits, sign extends the MSB and stores the result in res.

Modular arithmetic:

mpmodadd sum = b1+b2 mod m.
mpmodsub diff = b1−b2 mod m.
mpmodmul prod = b1*b2 mod m.

Mpextendedgcd computes the greatest common denominator, d, of a and b. It also computes x
and y such that a*x + b*y = d. Both a and b are required to be positive. If called with nega
tive arguments, it will return a gcd of 0.

Mpinvert computes the multiplicative inverse of b mod m.

Mpsignif returns the number of significant bits in b. Mplowbits0 returns the number of consecutive
zero bits at the low end of the significant bits. For example, for 0x14, mpsignif returns 5 and
mplowbits0 returns 2. For 0, mpsignif and mplowbits0 both return 0.

550

MP(2) MP(2)

The remaining routines all work on arrays of mpdigit rather than mpint�s. They are the basis
of all the other routines. They are separated out to allow them to be rewritten in assembler for
each architecture. There is also a portable C version for each one.

mpdigdiv quotient = dividend[0:1] / divisor.
mpvecadd sum[0:alen] = a[0:alen−1] + b[0:blen−1]. We assume

alen >= blen and that sum has room for alen+1 digits.
mpvecsub diff[0:alen−1] = a[0:alen−1] − b[0:blen−1]. We assume

that alen >= blen and that diff has room for alen digits.
mpvecdigmuladd p[0:n] += m * b[0:n−1]. This multiplies a an array of digits times

a scalar and adds it to another array. We assume p has room for n+1 dig
its.

mpvecdigmulsub p[0:n] −= m * b[0:n−1]. This multiplies a an array of digits times
a scalar and subtracts it from another array. We assume p has room for
n+1 digits. It returns +1 is the result is positive and -1 if negative.

mpvecmul p[0:alen+blen] = a[0:alen−1] * b[0:blen−1]. We assume
that p has room for alen+blen+1 digits.

mpveccmp This returns -1, 0, or +1 as a - b is negative, 0, or positive.

mptwo, mpone and mpzero are the constants 2, 1 and 0. These cannot be freed.

Time invariant computation
In the field of cryptography, it is sometimes neccesary to implement algorithms such that the run
time of the algorithm is not depdenent on the input data. This library provides partial support for
time invariant computation with the MPtimesafe flag that can be set on input or destination
operands to request timing safe operation. The result of a timing safe operation will also have the
MPtimesafe flag set and is not normalized.

Chinese remainder theorem
When computing in a non-prime modulus, n, it is possible to perform the computations on the
residues modulo the prime factors of n instead. Since these numbers are smaller, multiplication
and exponentiation can be much faster.

Crtin computes the residues of x and returns them in a newly allocated structure:

typedef struct CRTres CRTres;
{

int n; /* number of residues */
mpint *r[n]; /* residues */

};

Crtout takes a residue representation of a number and converts it back into the number. It also
frees the residue structure.

Crepre saves a copy of the factors and precomputes the constants necessary for converting the
residue form back into a number modulo the product of the factors. It returns a newly allocated
structure containing values.

Crtprefree and crtresfree free CRTpre and CRTres structures respectively.

SOURCE
/sys/src/libmp

551

MULDIV(2) MULDIV(2)

NAME
muldiv, umuldiv � high-precision multiplication and division

SYNOPSIS
#include <u.h>
#include <libc.h>

long muldiv(long a, long b, long c)

ulong umuldiv(ulong a, ulong b, ulong c)

DESCRIPTION
Muldiv returns a*b/c, using a vlong to hold the intermediate result. Umuldiv is the equivalent
for unsigned integers. They can be used to scale integer values without worry about overflowing
the intermediate result.

On some architectures, these routines can generate a trap if the final result does not fit in a long
or ulong; on others they will silently truncate.

552

NAN(2) NAN(2)

NAME
NaN, Inf, isNaN, isInf � not-a-number and infinity functions

SYNOPSIS
#include <u.h>
#include <libc.h>

double NaN(void)

double Inf(int)

int isNaN(double)

int isInf(double, int)

DESCRIPTION
The IEEE floating point standard defines values called �not-a-number� and positive and negative
�infinity�. These values can be produced by such things as overflow and division by zero. Also, the
library functions sometimes return them when the arguments are not in the domain, or the result
is out of range. By default, manipulating these values may cause a floating point exception on
some processors but setfcr (see getfcr(2)) can change that behavior.

NaN returns a double that is not-a-number. IsNaN returns true if its argument is not-a-number.

Inf(i) returns positive infinity if i is greater than or equal to zero, else negative infinity. IsInf
returns true if its first argument is infinity with the same sign as the second argument.

SOURCE
/sys/src/libc/port/nan.c

SEE ALSO
getfcr(2)

553

NDB(2) NDB(2)

NAME
ndbopen, ndbcat, ndbchanged, ndbclose, ndbreopen, ndbsearch, ndbsnext, ndbgetvalue, ndbfree,
ipattr, ndbgetipaddr, ndbipinfo, csipinfo, ndbhash, ndbparse, csgetvalue, ndbfindattr, dnsquery,
ndbdiscard, ndbconcatenate, ndbreorder, ndbsubstitute, ndbdedup � network database

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <bio.h>
#include <ndb.h>

Ndb* ndbopen(char *file)

Ndb* ndbcat(Ndb *db1, Ndb *db2)

int ndbchanged(Ndb *db)

int ndbreopen(Ndb *db)

void ndbclose(Ndb *db)

Ndbtuple* ndbsearch(Ndb *db, Ndbs *s, char *attr, char *val)

Ndbtuple* ndbsnext(Ndbs *s, char *attr, char *val)

char* ndbgetvalue(Ndb *db, Ndbs *s, char *attr, char *val,
char *rattr, Ndbtuple **tp)

char* csgetvalue(char *netroot, char *attr, char *val,
char *rattr, Ndbtuple **tp)

char* ipattr(char *name)

Ndbtuple* ndbgetipaddr(Ndb *db, char *sys);

Ndbtuple* ndbipinfo(Ndb *db, char *attr, char *val, char **attrs,
int nattr)

Ndbtuple* csipinfo(char *netroot, char *attr, char *val,
char **attrs, int nattr)

ulong ndbhash(char *val, int hlen)

Ndbtuple* ndbparse(Ndb *db)

Ndbtuple* dnsquery(char *netroot, char *domainname, char *type)

Ndbtuple* ndbfindattr(Ndbtuple *entry, Ndbtuple *line, char *attr)

void ndbfree(Ndbtuple *db)

Ndbtuple* ndbdiscard(Ndbtuple *t, Ndbtuple *a)

Ndbtuple* ndbconcatenate(Ndbtuple *a, Ndbtuple *b)

Ndbtuple* ndbreorder(Ndbtuple *t, Ndbtuple *a)

Ndbtuple* ndbsubstitute(Ndbtuple *t, Ndbtuple *from, Ndbtuple *to)

Ndbtuple* ndbdedup(Ndbtuple *t)

void ndbsetmalloctag(Ndbtuple *t, uintptr tag)

DESCRIPTION
These routines are used by network administrative programs to search the network database.
They operate on the database files described in ndb(6).

Ndbopen opens the database file and calls malloc(2) to allocate a buffer for it. If file is zero, all
network database files are opened.

Ndbcat concatenates two open databases. Either argument may be nil.

Ndbreopen throws out any cached information for the database files associated with db and
reopens the files.

554

NDB(2) NDB(2)

Ndbclose closes any database files associated with db and frees all storage associated with them.

Ndbsearch and ndbsnext search a database for an entry containing the attribute/value pair,
attr=val. Ndbsearch is used to find the first match and ndbsnext is used to find each successive
match. On a successful search both return a linked list of Ndbtuple structures acquired by
malloc(2) that represent the attribute/value pairs in the entry. On failure they return zero.

typedef struct Ndbtuple Ndbtuple;
struct Ndbtuple {

char attr[Ndbalen];
char *val;
Ndbtuple *entry;
Ndbtuple *line;
ulong ptr; /* for the application; starts 0 */
char valbuf[Ndbvlen]; /* initial allocation for val */

};

The entry pointers chain together all pairs in the entry in a null-terminated list. The line pointers
chain together all pairs on the same line in a circular list. Thus, a program can implement 2 levels
of binding for pairs in an entry. In general, pairs on the same line are bound tighter than pairs on
different lines.

The argument s of ndbsearch has type Ndbs and should be pointed to valid storage before calling
ndbsearch, which will fill it with information used by ndbsnext to link successive searches. The
structure Ndbs looks like:

typedef struct Ndbs Ndbs;
struct Ndbs {

Ndb *db; /* data base file being searched */
...
Ndbtuple *t; /* last attribute value pair found */

};

The t field points to the pair within the entry matched by the ndbsearch or ndbsnext.

Ndbgetvalue searches the database for an entry containing not only an attribute/value pair,
attr=val, but also a pair with the attribute rattr. If successful, it returns a malloced copy of the
NUL-terminated value associated with rattr. If tp is non nil, *tp will point to the entry. Otherwise
the entry will be freed.

Csgetvalue is like ndbgetvalue but queries the connection server instead of looking directly at the
database. Its first argument specifies the network root to use. If the argument is 0, it defaults to
"/net".

Ndbfree frees a list of tuples returned by one of the other routines.

Ipattr takes the name of an IP system and returns the attribute it corresponds to:

dom domain name

ip Internet number

sys system name

Ndbgetipaddr looks in db for entries matching sys as the value of a sys= or dom= attribute/value
pair and returns all IP addresses. If sys is already an IP address, a tuple containing just that
address is returned.

Ndbipinfo looks up Internet protocol information about a system. This is an IP aware search. It
looks first for information in the system�s database entry and then in the database entries for any
IP subnets or networks containing the system. The system is identified by the attribute/value pair,
attr=val. Ndbipinfo returns a list of tuples whose attributes match the attributes in the n element
array attrs. If any attrs begin with @, the @ is excluded from the attribute name, but causes any
corresponding value returned to be a resolved IP address(es), not a name. For example, consider
the following database entries describing a network, a subnetwork, and a system.

ipnet=big ip=10.0.0.0
dns=dns.big.com
smtp=smtp.big.com

555

NDB(2) NDB(2)

ipnet=dept ip=10.1.1.0 ipmask=255.255.255.0
smtp=smtp1.big.com

ip=10.1.1.4 dom=x.big.com
bootf=/386/9pc

Calling

ndbipinfo(db, "dom", "x.big.com", ["bootf" "smtp" "dns"], 3)

will return the tuples bootf=/386/9pc, smtp=smtp1.big.com, and dns=dns.big.com.

Csipinfo is to ndbipinfo as csgetvalue is to ndbgetvalue .

The next three routines are used by programs that create the hash tables and database files.
Ndbhash computes a hash offset into a table of length hlen for the string val. Ndbparse reads and
parses the next entry from the database file. Multiple calls to ndbparse parse sequential entries in
the database file. A zero is returned at end of file.

Dnsquery submits a query about domainname to the ndb/dns mounted at netroot/dns. It
returns a linked list of Ndbtuple’s representing a single database entry. The tuples are logically
arranged into lines using the line field in the structure. The possible type�s of query are and the
attributes on each returned tuple line is:

ip find the IP addresses. Returns domain name (dom) and ip address (ip).

ipv6 find the IPv6 addresses. Returns domain name (dom) and ipv6 address (ip).

mx look up the mail exchangers. Returns preference (pref) and exchanger (mx).

ptr do a reverse query. Here domainname must be an ASCII IP address. Returns reverse name
(ptr) and domain name (dom).

cname
get the system that this name is a nickname for. Returns the nickname (dom) and the real
name (cname).

soa return the start of area record for this field. Returns area name (dom), primary name
server (ns), serial number (serial), refresh time in seconds (refresh), retry time in seconds
(retry), expiration time in seconds (expire), and minimum time to lie (ttl).

srv get the service records. Returns the priority of target host (pri), relative weight (weight) for
entries with the same priority, port on this target host of this service (port), and the domain
name of the target host (target).

txt get the descriptive text. The semantics of the text depends on the domain.

ns name servers. Returns domain name (dom) and name server (ns).

Ndbfindattr searches entry for the tuple with attribute attr and returns a pointer to the tuple. If
line points to a particular line in the entry, the search starts there and then wraps around to the
beginning of the entry.

All of the routines provided to search the database provide an always consistent view of the rele
vant files. However, it may be advantageous for an application to read in the whole database using
ndbopen and ndbparse and provide its own search routines. The ndbchanged routine can be used
by the application to periodically check for changes. It returns zero if none of the files comprising
the database have changes and non-zero if they have.

Finally, a number of routines are provided for manipulating tuples.

Ndbdiscard removes attr/val pair a from tuple t and frees it. If a isn�t in t it is just freed.

Ndbconcatenate concatenates two tuples and returns the result. Either or both tuples may be nil.

Ndbreorder reorders a tuple t to make the line containing attr/val pair a first in the entry and mak
ing a first in its line.

Ndbsubstitute replaces a single attr/val pair from in t with the tuple to. All attr/val pairs in to end
up on the same line. from is freed.

Ndbdedup removes duplicate attr/val pairs from tuple list t.

Ndbsetmalloctag sets the malloc tag (see setmalloctag in malloc(2)) of each tuple in the list t to
tag.

556

NDB(2) NDB(2)

FILES
/lib/ndb directory of network database files

SOURCE
/sys/src/libndb

SEE ALSO
ndb(6), ndb(8)

557

NOTIFY(2) NOTIFY(2)

NAME
notify, noted, atnotify � handle asynchronous process notification

SYNOPSIS
#include <u.h>
#include <libc.h>

int notify(void (*f)(void*, char*))

int noted(int v)

int atnotify(int (*f)(void*, char*), int in)

DESCRIPTION
When a process raises an exceptional condition such as dividing by zero or writing on a closed
pipe, a note is posted to communicate the exception. A note may also be posted by a write (see
read(2)) to the process�s /proc/n/note file or to the /proc/m/notepg file of a process in
the same process group (see proc(3)). When the note is received the behavior of the process
depends on the origin of the note. If the note was posted by an external process, the process
receiving the note exits; if generated by the system the note string, preceded by the name and id
of the process and the string "suicide: ", is printed on the process�s standard error file and
the process is suspended in the Broken state for debugging.

These default actions may be overridden. The notify function registers a notification handler to be
called within the process when a note is received. The argument to notify replaces the previous
handler, if any. An argument of zero cancels a previous handler, restoring the default action. A
fork(2) system call leaves the handler registered in both the parent and the child; exec(2) restores
the default behavior. Handlers may not perform floating point operations.

After a note is posted, the handler is called with two arguments: the first is a pointer to a Ureg
structure (defined in /$objtype/include/ureg.h) giving the current values of registers; the
second is a pointer to the note itself, a null-terminated string with no more than ERRLEN charac
ters in it including the terminal NUL. The Ureg argument is usually not needed; it is provided to
help recover from traps such as floating point exceptions. Its use and layout are machine- and
system-specific.

A notification handler must finish either by exiting the program or by calling noted; if the handler
returns the behavior is undefined and probably erroneous. Until the program calls noted, any fur
ther externally-generated notes (e.g., hangup or alarm) will be held off, and any further notes
generated by erroneous behavior by the program (such as divide by zero) will kill the program.
The argument to noted defines the action to take: NDFLT instructs the system to perform the
default action as if the handler had never been registered; NCONT instructs the system to resume
the process at the point it was notified. In neither case does noted return to the handler. If the
note interrupted an incomplete system call, that call returns an error (with error string
interrupted) after the process resumes. A notification handler can also jump out to an envi
ronment set up with setjmp using the notejmp function (see setjmp(2)), which is implemented by
modifying the saved state and calling noted(NCONT).

Regardless of the origin of the note or the presence of a handler, if the process is being debugged
(see proc(3)) the arrival of a note puts the process in the Stopped state and awakens the debug
ger.

Atnotify
Rather than using the system calls notify and noted, most programs should use atnotify to register
notification handlers. The parameter in is non-zero to register the function f, and zero to cancel
registration. A handler must return a non-zero number if the note was recognized (and resolved);
otherwise it must return zero. When the system posts a note to the process, each handler regis
tered with atnotify is called with arguments as described above until one of the handlers returns
non-zero. Then noted is called with argument NCONT. If no registered function returns non-zero,
atnotify calls noted with argument NDFLT.

APE
Noted has two other possible values for its argument. NSAVE returns from the handler and clears
the note, enabling the receipt of another, but does not return to the program. Instead it starts a
new handler with the same stack, stack pointer, and arguments as the original, at the address

558

NOTIFY(2) NOTIFY(2)

recorded in the program counter of the Ureg structure. Typically, the program counter will be
overridden by the first note handler to be the address of a separate function; NSAVE is then a
�trampoline� to that handler. That handler may execute noted(NRSTR) to return to the original
program, usually after restoring the original program counter. NRSTR is identical to NCONT
except that it can only be executed after an NSAVE. NSAVE and NRSTR are designed to improve
the emulation of signals by the ANSI C/POSIX environment; their use elsewhere is discouraged.

Notes
The set of notes a process may receive is system-dependent, but there is a common set that
includes:

Note Meaning
interrupt user interrupt (DEL key)
hangup I/O connection closed
alarm alarm expired
sys: breakpoint breakpoint instruction
sys: bad address system call address argument out of range
sys: odd address system call address argument unaligned
sys: bad sys call system call number out of range
sys: odd stack system call user stack unaligned
sys: write on closed pipe write on closed pipe
sys: fp: fptrap floating point exception
sys: trap: trap other exception (see below)

The notes prefixed sys: are generated by the operating system. They are suffixed by the user
program counter in format pc=0x1234. If the note is due to a floating point exception, just
before the pc is the address of the offending instruction in format fppc=0x1234. Notes are
limited to ERRLEN bytes; if they would be longer they are truncated but the pc is always reported
correctly.

The types and syntax of the trap and fptrap portions of the notes are machine-dependent.

SOURCE
/sys/src/libc/9syscall
/sys/src/libc/port/atnotify.c

SEE ALSO
postnote(2), intro(2), notejmp in setjmp(2)

BUGS
Since exec(2) discards the notification handler, there is a window of vulnerability to notes in a new
process.

559

NUSB(2) NUSB(2)

NAME
usbcmd, classname, closedev, configdev, devctl, getdev, loaddevstr, opendev, opendevdata,
openep, unstall - USB device driver library

SYNOPSIS
#include <u.h>
#include <libc.h>
#include "../lib/usb.h"

struct Dev {
Ref;
char* dir; /* path for the endpoint dir */
int id; /* usb id for device or ep. number */
int dfd; /* descriptor for the data file */
int cfd; /* descriptor for the control file */
int maxpkt; /* cached from usb description */
Usbdev* usb; /* USB description */
void* aux; /* for the device driver */
void (*free)(void*); /* idem. to release aux */
char* hname; /* hash name, unique for device */

};

struct Usbdev {
ulong csp; /* USB class/subclass/proto */
int vid; /* vendor id */
int did; /* product (device) id */
int dno; /* device release number */
char* vendor;
char* product;
char* serial;
int ls; /* low speed */
int class; /* from descriptor */
int nconf; /* from descriptor */
Conf* conf[Nconf]; /* configurations */
Ep* ep[Nep]; /* all endpoints in device */
Desc* ddesc[Nddesc]; /* (raw) device specific descriptors */

};

struct Ep {
uchar addr; /* endpt address */
uchar dir; /* direction, Ein/Eout */
uchar type; /* Econtrol, Eiso, Ebulk, Eintr */
uchar isotype; /* Eunknown, Easync, Eadapt, Esync */
int id;
int maxpkt; /* max. packet size */
Conf* conf; /* the endpoint belongs to */
Iface* iface; /* the endpoint belongs to */

};

struct Altc {
int attrib;
int interval;
void* aux; /* for the driver program */

};

struct Iface {
int id; /* interface number */
ulong csp; /* USB class/subclass/proto */
Altc* altc[Naltc];
Ep* ep[Nep];
void* aux; /* for the driver program */

};

560

NUSB(2) NUSB(2)

struct Conf {
int cval; /* value for set configuration */
int attrib;
int milliamps; /* maximum power in this config. */
Iface* iface[Niface]; /* up to 16 interfaces */

};

struct Desc {
Conf* conf; /* where this descriptor was read */
Iface* iface; /* last iface before desc in conf. */
Ep* ep; /* last endpt before desc in conf. */
Altc* altc; /* last alt.c. before desc in conf. */
DDesc data; /* unparsed standard USB descriptor */

};

struct DDesc {
uchar bLength;
uchar bDescriptorType;
uchar bbytes[1];
/* extra bytes allocated here to keep the rest of it */

};

#define Class(csp) ((csp)&0xff)
#define Subclass(csp) (((csp)>>8)&0xff)
#define Proto(csp) (((csp)>>16)&0xff)
#define CSP(c, s, p) ((c) | ((s)<<8) | ((p)<<16))
#define GET2(p) ...
#define PUT2(p,v) ...
#define GET4(p) ...
#define PUT4(p,v) ...
#define dprint if(usbdebug)fprint
#define ddprint if(usbdebug > 1)fprint

int Ufmt(Fmt *f);
char* classname(int c);
void closedev(Dev *d);
int configdev(Dev *d);
int devctl(Dev *dev, char *fmt, ...);
void* emallocz(ulong size, int zero);
char* estrdup(char *s);
char* hexstr(void *a, int n);
char* loaddevstr(Dev *d, int sid);
Dev* opendev(char *fn);
int opendevdata(Dev *d, int mode);
Dev* openep(Dev *d, int id);
int unstall(Dev *dev, Dev *ep, int dir);
int usbcmd(Dev *d, int type, int req,

int value, int index, uchar *data, int count);
Dev* getdev(char *devid);

extern int usbdebug; /* more messages for bigger values */

DESCRIPTION
This library provides convenience structures and functions to write USB device drivers. It is not
intended for user programs using USB devices. See usb(3) for a description of the interfaces pro
vided for that purpose.

Usb drivers rely on usb(3) to perform I/O through USB as well as on usbd to perform the initial
configuration for the device�s setup endpoint. The rest of the work is up to the driver and is where
this library may help.

An endpoint as provided by usb(3) is represented by a Dev data structure. The setup endpoint for
a device represents the USB device, because it is the means to configure and operate the device.
This structure is reference counted. Functions creating Devs adjust the number of references to
one, initially. The driver is free to call incref (in lock(2)) to add references and closedev to drop

561

NUSB(2) NUSB(2)

references (and release resources when the last one vanishes). As an aid to the driver, the field
aux may keep driver-specific data and the function free will be called (if not null) to release the
aux structure when the reference count goes down to zero.

Dev.dir holds the path for the endpoint�s directory.

The field id keeps the device number for setup endpoints and the endpoint number for all other
endpoints. For example, it would be 3 for /dev/usb/ep3.0 and 1 for /dev/usb/ep3.1. It
is easy to remember this because the former is created to operate on the device, while the later
has been created as a particular endpoint to perform I/O.

Fields dfd and cfd keep the data and control file descriptors, respectively. When a Dev is cre
ated the control file is open, initially. Opening the data file requires calling opendevdata with the
appropriate mode.

When the device configuration information has been loaded (see below), maxpkt holds the maxi
mum packet size (in bytes) for the endpoint and usb keeps the rest of the USB information.

Most of the information in usb comes from parsing various device and configuration descriptors
provided by the device, by calling one of the functions described later. Only descriptors unknown
to the library are kept unparsed at usb.ddesc as an aid for the driver (which should know how
to parse them and what to do with the information).

Configuration
Getdev is the primary entry point for device setup. It takes a numeric device address or device path
which usually gets passed to drivers as a program argument and sets up the device, retuning a
configured Dev representing the setup endpoint of the device.

Opendev creates a Dev for the endpoint with directory fn. Usually, the endpoint is a setup end
point representing a device. The endpoint control file is open, but the data file is not. The USB
description is void. In most cases drivers call getdev and openep and do not call this function
directly.

Configdev opens the data file for the device supplied and loads and parses its configuration infor
mation. After calling it, the device is ready for I/O and the USB description in Dev.usb is valid.
In most cases drivers call getdev and do not call this function directly.

Control requests for an endpoint may be written by calling devctl in the style of print(2). It is better
not to call print directly because the control request should be issued as a single write system call.
See usb(3) for a list of available control requests (not to be confused with USB control transfers
performed on a control endpoint).

Input/Output
Opendevdata opens the data file for the device according to the given mode. The mode must
match that of the endpoint, doing otherwise is considered an error. Actual I/O is performed by
reading/writing the descriptor kept in the dfd field of Dev.

For control endpoints, it is not necessary to call read and write directly. Instead, usbcmd issues a
USB control request to the device d (not to be confused with a usb(3) control request sent to its
control file). Usbcmd retries the control request several times upon failure because some devices
require it. The format of requests is fixed per the USB standard: type is the type of request and
req identifies the request. Arguments value and index are parameters to the request and the last
two arguments, data and count, are similar to read and write arguments. However, data may be
nil if no transfer (other than the control request) has to take place. The library header file
includes numerous symbols defined to help writing the type and arguments for a request.

The return value from usbcmd is the number of bytes transferred, zero to indicate a stall and -1 to
indicate an error.

A common request is to unstall an endpoint that has been stalled due to some reason by the
device (eg., when read or write indicate a count of zero bytes read or written on the endpoint). The
function unstall does this. It is given the device that stalled the endpoint, dev, the stalled end
point, ep, and the direction of the stall (one of Ein or Eout). The function takes care of notifying
the device of the unstall as well as notifying the kernel.

Tools
Class returns the class part of the number given, representing a CSP. Subclass does the same for
the device subclass and Proto for the protocol. The counterpart is CSP, which builds a CSP from

562

NUSB(2) NUSB(2)

the device class, subclass, and protocol. For some classes, classname knows the name (for those
with constants in the library header file).

The macros GET2 and PUT2 get and put a (little-endian) two-byte value and are useful to parse
descriptors and replies for control requests.

Functions emallocz and estrdup are similar to mallocz and strdup but abort program operation
upon failure.

The function Ufmt is a format routine suitable for fmtinstall(2) to print a Dev data structure. The
auxiliary hexstr returns a string representing a dump (in hexadecimal) of n bytes starting at a. The
string is allocated using malloc(2) and memory must be released by the caller.

Loaddevstr returns the string obtained by reading the device string descriptor number sid.

SOURCE
/sys/src/cmd/nusb/lib

SEE ALSO
usb(3), nusb(4).

BUGS
Not heavily exercised yet.

563

OBJECT(2) OBJECT(2)

NAME
objtype, readobj, objtraverse, isar, nextar, readar � object file interpretation functions

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <bio.h>
#include <mach.h>

int objtype(Biobuf *bp, char **name)

int readobj(Biobuf *bp, int objtype)

void objtraverse(void(*)(Sym*, void*), void*)

int isar(Biobuf *bp)

int nextar(Biobuf *bp, int offset, char *buf)

int readar(Biobuf *bp, int objtype, vlong end, int doautos)

DESCRIPTION
These functions provide machine-independent access to object files in a directory or an archive.
Mach(2) and symbol(2) describe additional library functions for interpreting executable files and
executing images.

Object files contain no formal symbol table; instead, references to symbols must be extracted from
the encoded object representation and resolved. The resulting symbol information is loaded into a
dummy symbol table where it is available for processing by an application. The organization of
the dummy symbol table is identical to that produced by the loader and described in symbol(2)
and a.out(6): a vector of Sym data structures defining the name, type and relative offset of each
symbol.

Objtype reads the header at the current position of the file associated with bp (see Bio(2)) to see if
it is an intermediate object file. If it is, a code indicating the architecture type of the file is
returned and the second argument, if it is non-zero, is set pointing to a string describing the type
of the file. If the header does not indicate an object file, �1 is returned. The header may be at the
start of an object file or at the beginning of an archive member. The file is rewound to its starting
position after decoding the header.

Readobj constructs a symbol table for the object file associated with bp. The second argument
contains the type code produced by function objtype . The file must be positioned at the start of
the object file. Each invocation of readobj destroys the symbol definitions for any previous file.

Objtraverse scans the symbol table previously built by readobj or readar. Objtraverse requires
two arguments: the address of a call-back function and a generic pointer. The call-back function
is invoked once for each symbol in the symbol table with the address of a Sym data structure as
the first argument and the generic pointer as the second.

Isar reads the header at the current point in the file associated with bp and returns 1 if it is an
archive or zero otherwise. The file is positioned at the end of the archive header and at the begin
ning of the first member of the archive.

Nextar extracts information describing the archive member stored at offset in the file associated
with bp. If the header describing the member can be extracted and decoded, the size of the mem
ber is returned. Adding this value to offset yields the offset of the beginning of the next member
in the archive. On return the input file is positioned at the end of the member header and the
name of the member is stored in buf, a buffer of SARNAME characters. If there are no more mem
bers, nextar returns zero; a negative return indicates a missing or malformed header.

Readar constructs the symbol table of the object file stored at the current position in the archive
associated with bp. This function operates exactly as readobj ; the only difference is the extra argu
ment, end, specifying the offset to the beginning of the next member in the archive. Readar
leaves the file positioned at that point.

SOURCE
/sys/src/libmach

564

OBJECT(2) OBJECT(2)

SEE ALSO
mach(2), symbol(2), bio(2), a.out(6)

DIAGNOSTICS
These routines set errstr.

565

OPEN(2) OPEN(2)

NAME
open, create, close � open a file for reading or writing, create file

SYNOPSIS
#include <u.h>
#include <libc.h>

int open(char *file, int omode)

int create(char *file, int omode, ulong perm)

int close(int fd)

DESCRIPTION
Open opens the file for I/O and returns an associated file descriptor. Omode is one of OREAD,
OWRITE, ORDWR, or OEXEC, asking for permission to read, write, read and write, or execute,
respectively. In addition, there are three values that can be ORed with the omode: OTRUNC says to
truncate the file to zero length before opening it; OCEXEC says to close the file when an exec(2) or
execl system call is made; and ORCLOSE says to remove the file when it is closed (by everyone
who has a copy of the file descriptor). Open fails if the file does not exist or the user does not
have permission to open it for the requested purpose (see stat(2) for a description of permissions).
The user must have write permission on the file if the OTRUNC bit is set. For the open system call
(unlike the implicit open in exec(2)), OEXEC is actually identical to OREAD.

Create creates a new file or prepares to rewrite an existing file, opens it according to omode (as
described for open), and returns an associated file descriptor. If the file is new, the owner is set to
the userid of the creating process group; the group to that of the containing directory; the permis
sions to perm ANDed with the permissions of the containing directory. If the file already exists, it
is truncated to 0 length, and the permissions, owner, and group remain unchanged. The created
file is a directory if the DMDIR bit is set in perm, an exclusive-use file if the DMEXCL bit is set,
and an append-only file if the DMAPPEND bit is set. Exclusive-use files may be open for I/O by
only one client at a time, but the file descriptor may become invalid if no I/O is done for an
extended period; see open(5).

Create fails if the path up to the last element of file cannot be evaluated, if the user doesn�t have
write permission in the final directory, if the file already exists and does not permit the access
defined by omode, or if there are no free file descriptors. In the last case, the file may be created
even when an error is returned. If the file is new and the directory in which it is created is a union
directory (see intro(2)) then the constituent directory where the file is created depends on the
structure of the union: see bind(2).

Since create may succeed even if the file exists, a special mechanism is necessary for those appli
cations that require an atomic create operation. If the OEXCL (0x1000) bit is set in the mode for
a create, the call succeeds only if the file does not already exist; see open(5) for details.

Close closes the file associated with a file descriptor. Provided the file descriptor is a valid open
descriptor, close is guaranteed to close it; there will be no error. Files are closed automatically
upon termination of a process; close allows the file descriptor to be reused.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
intro(2), bind(2), stat(2)

DIAGNOSTICS
These functions set errstr.

566

PERROR(2) PERROR(2)

NAME
perror, syslog, sysfatal � system error messages

SYNOPSIS
#include <u.h>
#include <libc.h>

void perror(char *s)

void syslog(int cons, char *logname, char *fmt, ...)

void sysfatal(char *fmt, ...)

DESCRIPTION
Perror produces a short error message on the standard error file describing the last error encoun
tered during a call to the system. First the argument string s is printed, then a colon, then the
message and a newline. If s is nil, only the error message and newline are printed.

Syslog logs messages in the file named by logname in the directory /sys/log; the file must
already exist and should be append-only. Logname must contain no slashes. The message is a
line with several fields: the name of the machine writing the message; the date and time; the mes
sage specified by the print(2) format fmt and any following arguments; and a final newline. If cons
is set or the log file cannot be opened, the message is also printed on the system console. Syslog
can be used safely in multi-threaded programs.

Sysfatal prints to standard error the name of the running program, a colon and a space, the mes
sage described by the print(2) format string fmt and subsequent arguments, and a newline. It
then calls exits(2) with the formatted message as argument. The program�s name is the value of
argv0, which will be set if the program uses the arg(2) interface to process its arguments. If
argv0 is null, it is ignored and the following colon and space are suppressed.

SOURCE
/sys/src/libc/port/perror.c
/sys/src/libc/9sys/syslog.c
/sys/src/libc/9sys/sysfatal.c

SEE ALSO
intro(2), errstr(2), the %r format in print(2)

BUGS
Perror is a holdover; the %r format in print(2) is preferred.

567

PIPE(2) PIPE(2)

NAME
pipe � create an interprocess channel

SYNOPSIS
#include <u.h>
#include <libc.h>

int pipe(int fd[2])

DESCRIPTION
Pipe creates a buffered channel for interprocess I/O communication. Two file descriptors are
returned in fd. Data written to fd[1] is available for reading from fd[0] and data written to
fd[0] is available for reading from fd[1].

After the pipe has been established, cooperating processes created by subsequent fork(2) calls
may pass data through the pipe with read and write calls. The bytes placed on a pipe by one write
are contiguous even if many processes are writing. Write boundaries are preserved: each read ter
minates when the read buffer is full or after reading the last byte of a write, whichever comes first.

The number of bytes available to a read(2) is reported in the Length field returned by fstat or
dirfstat on a pipe (see stat(2)).

When all the data has been read from a pipe and the writer has closed the pipe or exited, read(2)
will return 0 bytes. Writes to a pipe with no reader will generate a note sys: write on
closed pipe.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
intro(2), read(2), pipe(3)

DIAGNOSTICS
Sets errstr.

BUGS
If a read or a write of a pipe is interrupted, some unknown number of bytes may have been trans
ferred.
When a read from a pipe returns 0 bytes, it usually means end of file but is indistinguishable from
reading the result of an explicit write of zero bytes.

568

PLUMB(2) PLUMB(2)

NAME
eplumb, plumbfree, plumbopen, plumbsend, plumbsendtext, plumblookup, plumbpack, plumb
packattr, plumbaddattr, plumbdelattr, plumbrecv, plumbunpack, plumbunpackpartial, plumbun
packattr, Plumbmsg � plumb messages

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <plumb.h>

int plumbopen(char *port, int omode)

int plumbsend(int fd, Plumbmsg *m)

int plumbsendtext(int fd, char *src, char *dst, char *wdir,
char *data)

void plumbfree(Plumbmsg *m)

Plumbmsg* plumbrecv(int fd)

char* plumbpack(Plumbmsg *m, int *np)

Plumbmsg* plumbunpack(char *buf, int n)

Plumbmsg* plumbunpackpartial(char *buf, int n, int *morep)

char* plumbpackattr(Plumbattr *a)

Plumbattr* plumbunpackattr(char *a)

char* plumblookup(Plumbattr *a, char *name)

Plumbattr* plumbaddattr(Plumbattr *a, Plumbattr *new)

Plumbattr* plumbdelattr(Plumbattr *a, char *name)

int eplumb(int key, char *port)

DESCRIPTION
These routines manipulate plumb(6) messages, transmitting them, receiving them, and converting
them between text and these data structures:

typedef
struct Plumbmsg
{

char *src;
char *dst;
char *wdir;
char *type;
Plumbattr *attr;
int ndata;
char *data;

} Plumbmsg;

typedef
struct Plumbattr
{

char *name;
char *value;
Plumbattr *next;

} Plumbattr;

Plumbopen opens the named plumb port, using open(2) mode omode. If port begins with a slash,
it is taken as a literal file name; otherwise plumbopen searches for the location of the plumber(4)
service and opens the port there.

For programs using the event(2) interface, eplumb registers, using the given key, receipt of mes
sages from the named port.

569

PLUMB(2) PLUMB(2)

Plumbsend formats and writes message m to the file descriptor fd, which will usually be the result
of plumbopen("send", OWRITE). Plumbsendtext is a simplified version for text-only mes
sages; it assumes type is text, sets attr to nil, and sets ndata to strlen(data).

Plumbfree frees all the data associated with the message m, all the components of which must
therefore have been allocated with malloc(2).

Plumbrecv returns the next message available on the file descriptor fd, or nil for error.

Plumbpack encodes message m as a character string in the format of plumb(6), setting *np to the
length in bytes of the string. Plumbunpack does the inverse, translating the n bytes of buf into a
Plumbmsg.

Plumbunpackpartial enables unpacking of messages that arrive in pieces. The first call to
plumbunpackpartial for a given message must be sufficient to unpack the header; subsequent
calls permit unpacking messages with long data sections. For each call, buf points to the begin
ning of the complete message received so far, and n reports the total number of bytes received for
that message. If the message is complete, the return value will be as in plumbunpack. If not, and
morep is not null, the return value will be nil and *morep will be set to the number of bytes
remaining to be read for this message to be complete (recall that the byte count is in the header).
Those bytes should be read by the caller, placed at location buf+n, and the message unpacked
again. If an error is encountered, the return value will be nil and *morep will be zero.

Plumbpackattr converts the list a of Plumbattr structures into a null-terminated string. If an
attribute value contains white space, quote characters, or equal signs, the value will be quoted
appropriately. A newline character will terminate processing. Plumbunpackattr converts the null-
terminated string a back into a list of Plumbattr structures.

Plumblookup searches the Plumbattr list a for an attribute with the given name and returns the
associated value. The returned string is the original value, not a copy. If the attribute has no
value, the returned value will be the empty string; if the attribute does not occur in the list at all,
the value will be nil.

Plumbaddattr appends the new Plumbattr (which may be a list) to the attribute list a and
returns the new list. Plumbdelattr searches the list a for the first attribute with name name and
deletes it from the list, returning the resulting list. Plumbdelattr is a no-op if no such attribute
exists.

SOURCE
/sys/src/libplumb

SEE ALSO
plumb(1), event(2), plumber(4), plumb(6)

DIAGNOSTICS
When appropriate, including when a plumbsend fails, these routine set errstr.

570

POOL(2) POOL(2)

NAME
poolalloc, poolallocalign, poolfree, poolmsize, poolisoverlap, poolrealloc, poolcompact, poolcheck,
poolblockcheck, pooldump � general memory management routines

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <pool.h>

void* poolalloc(Pool* pool, ulong size)

void* poolallocalign(Pool *pool, ulong size,
ulong align, long offset, ulong span)

void poolfree(Pool* pool, void* ptr)

ulong poolmsize(Pool* pool, void* ptr)

int poolisoverlap(Pool* pool, void* ptr, ulong len)

void* poolrealloc(Pool* pool, void* ptr, ulong size)

int poolcompact(Pool* pool)

void poolcheck(Pool *pool)

void poolblockcheck(Pool *pool, void *ptr)

void pooldump(Pool *pool);

DESCRIPTION
These routines provide a general memory management facility. Memory is retrieved from a
coarser allocator (e.g. sbrk or the kernel�s xalloc) and then allocated to callers. The routines are
locked and thus may safely be used in multiprocess programs.

Poolalloc attempts to allocate a block of size size; it returns a pointer to the block when success
ful and nil otherwise. The call poolalloc(0) returns a non-nil pointer. Poolfree returns an
allocated block to the pool. It is an error to free a block more than once or to free a pointer not
returned by poolalloc. The call poolfree(nil) is legal and is a no-op.

Poolallocalign attempts to allocate a block of size size with the given alignment constraints. If
align is non-zero, the returned pointer is aligned to be equal to offset modulo align. If span is
non-zero, the n byte block allocated will not span a span-byte boundary.

Poolrealloc attempts to resize to nsize bytes the block associated with ptr, which must have
been previously returned by poolalloc or poolrealloc. If the block�s size can be adjusted, a (possibly
different) pointer to the new block is returned. The contents up to the lesser of the old and new
sizes are unchanged. After a successful call to poolrealloc, the return value should be used rather
than ptr to access the block. If the request cannot be satisfied, poolrealloc returns nil, and the
old pointer remains valid.

When blocks are allocated, there is often some extra space left at the end that would usually go
unused. Poolmsize grows the block to encompass this extra space and returns the new size.

Poolisoverlap checks if the byte span [ptr,ptr+len) overlaps the arenas of the specified
pool, returning non-zero when there is overlap or zero if none.

The poolblockcheck and poolcheck routines validate a single allocated block or the entire pool,
respectively. They call panic (see below) if corruption is detected. Pooldump prints a summary
line for every block in the pool, using the print function (see below).

The Pool structure itself provides much of the setup interface.

typedef struct Pool Pool;
struct Pool {

char* name;
uintptr maxsize;/* of entire Pool */
uintptr cursize;/* of Pool */
uintptr curfree;/* total free bytes in Pool */
uintptr curalloc;/* total allocated bytes in Pool */

571

POOL(2) POOL(2)

ulong minarena; /* smallest size of new arena */
ulong quantum; /* allocated blocks should be multiple of */
ulong minblock; /* smallest newly allocated block */
int flags;
int nfree; /* number of calls to free */
int lastcompact; /* nfree at time of last poolcompact */
void* (*alloc)(ulong);
int (*merge)(void*, void*);
void (*move)(void* from, void* to);
void (*lock)(Pool*);
void (*unlock)(Pool*);
void (*print)(Pool*, char*, ...);
void (*panic)(Pool*, char*, ...);
void (*logstack)(Pool*);
void* private;

};
enum { /* flags */

POOL_ANTAGONISM = 1<<0,
POOL_PARANOIA = 1<<1,
POOL_VERBOSITY = 1<<2,
POOL_DEBUGGING = 1<<3,
POOL_LOGGING = 1<<4,
POOL_TOLERANCE = 1<<5,
POOL_NOREUSE = 1<<6,

};

The pool obtains arenas of memory to manage by calling the given alloc routine. The total
number of requested bytes will not exceed maxsize. Each allocation request will be for at least
minarena bytes.

When a new arena is allocated, the pool routines try to merge it with the surrounding arenas, in an
attempt to combat fragmentation. If merge is non-nil, it is called with the addresses of two
blocks from alloc that the pool routines suspect might be adjacent. If they are not mergeable,
merge must return zero. If they are mergeable, merge should merge them into one block in its
own bookkeeping and return non-zero.

To ease fragmentation and make block reuse easier, the sizes requested of the pool routines are
rounded up to a multiple of quantum before the carrying out requests. If, after rounding, the
block size is still less than minblock bytes, minblock will be used as the block size.

Poolcompact defragments the pool, moving blocks in order to aggregate the free space. Each time
it moves a block, it notifies the move routine that the contents have moved. At the time that
move is called, the contents have already moved, so from should never be dereferenced. If no
move routine is supplied (i.e. it is nil), then calling poolcompact is a no-op.

When the pool routines need to allocate a new arena but cannot, either because alloc has
returned nil or because doing so would use more than maxsize bytes, poolcompact is called once
to defragment the memory and the request is retried.

Pools are protected by the pool routines calling lock (when non-nil) before modifying the pool,
and calling unlock when finished.

When internal corruption is detected, panic is called with a print(2) style argument that specifies
what happened. It is assumed that panic never returns. When the pool routines wish to convey
a message to the caller (usually because logging is turned on; see below), print is called, also
with a print(2) style argument.

Flags is a bit vector that tweaks the behavior of the pool routines in various ways. Most are use
ful for debugging in one way or another. When POOL_ANTAGONISM is set, poolalloc fills blocks
with non-zero garbage before releasing them to the user, and poolfree fills the blocks on receipt.
This tickles both user programs and the innards of the allocator. Specifically, each 32-bit word of
the memory is marked with a pointer value exclusive-or�ed with a constant. The pointer value is
the pointer to the beginning of the allocated block and the constant varies in order to distinguish
different markings. Freed blocks use the constant 0xF7000000, newly allocated blocks

572

POOL(2) POOL(2)

0xF9000000, and newly created unallocated blocks 0xF1000000. For example, if
POOL_ANTAGONISM is set and poolalloc returns a block starting at 0x00012345, each word of
the block will contain the value 0xF90012345. Recognizing these numbers in memory-related
crashes can help diagnose things like double-frees or dangling pointers.

Setting POOL_PARANOIA causes the allocator to walk the entire pool whenever locking or unlock
ing itself, looking for corruption. This slows runtime by a few orders of magnitude when many
blocks are in use. If POOL_VERBOSITY is set, the entire pool structure is printed (via print)
each time the pool is locked or unlocked. POOL_DEBUGGING enables internal debugging output,
whose format is unspecified and volatile. It should not be used by most programs. When
POOL_LOGGING is set, a single line is printed via print at the beginning and end of each pool
call. If logstack is not nil, it will be called as well. This provides a mechanism for external pro
grams to search for leaks. (See leak(1) for one such program.)

The pool routines are strict about the amount of space callers use. If even a single byte is written
past the end of the allotted space of a block, they will notice when that block is next used in a call
to poolrealloc or free (or at the next entry into the allocator, when POOL_PARANOIA is set), and
panic will be called. Since forgetting to allocate space for the terminating NUL on strings is such
a common error, if POOL_TOLERANCE is set and a single NUL is found written past the end of a
block, print will be called with a notification, but panic will not be.

When POOL_NOREUSE is set, poolfree fills the passed block with garbage rather than return it
to the free pool.

SOURCE
/sys/src/libc/port/pool.c

SEE ALSO
malloc(2), brk(2)

/sys/src/libc/port/malloc.c is a complete example.

573

POSTNOTE(2) POSTNOTE(2)

NAME
postnote � send a note to a process or process group

SYNOPSIS
#include <u.h>
#include <libc.h>

int postnote(int who, int pid, char *note)

DESCRIPTION
Postnote sends a note to a process or process group. If who is PNPROC, then note is written to
/proc/pid/note. If who is PNGROUP, the note is delivered to the process group by writing
note to /proc/pid/notepg. For PNGROUP only, if the calling process is in the target group,
the note is not delivered to that process.

If the write is successful, zero is returned. Otherwise �1 is returned.

SOURCE
/sys/src/libc/9sys/postnote.c

SEE ALSO
notify(2), intro(2), proc(3)

DIAGNOSTICS
Sets errstr.

574

PRIME(2) PRIME(2)

NAME
genprime, gensafeprime, genstrongprime, DSAprimes, probably_prime, smallprimetest � prime
number generation

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>

int smallprimetest(mpint *p)

int probably_prime(mpint *p, int nrep)

void genprime(mpint *p, int n, int nrep)

void gensafeprime(mpint *p, mpint *alpha, int n, int accuracy)

void genstrongprime(mpint *p, int n, int nrep)

void DSAprimes(mpint *q, mpint *p, uchar seed[SHA1dlen])

DESCRIPTION
Public key algorithms abound in prime numbers. The following routines generate primes or test
numbers for primality.

Smallprimetest checks for divisibility by the first 10000 primes. It returns 0 if p is not divisible by
the primes and �1 if it is.

Probably_prime uses the Miller-Rabin test to test p. It returns non-zero if P is probably prime.
The probability of it not being prime is 1/4**nrep.

Genprime generates a random n bit prime. Since it uses the Miller-Rabin test, nrep is the repeti
tion count passed to probably_prime . Gensafegprime generates an n-bit prime p and a generator
alpha of the multiplicative group of integers mod p; there is a prime q such that p−1=2*q.
Genstrongprime generates a prime, p, with the following properties:

� (p-1)/2 is prime. Therefore p-1 has a large prime factor, p�.

� p�-1 has a large prime factor

� p+1 has a large prime factor

DSAprimes generates two primes, q and p, using the NIST recommended algorithm for DSA
primes. q divides p-1. The random seed used is also returned, so that skeptics can later confirm
the computation. Be patient; this is a slow algorithm.

SOURCE
/sys/src/libsec

SEE ALSO
aes(2) blowfish(2), des(2), elgamal(2), rsa(2)

575

PRINT(2) PRINT(2)

NAME
print, fprint, sprint, snprint, seprint, smprint, runesprint, runesnprint, runeseprint, runesmprint,
vfprint, vsnprint, vseprint, vsmprint, runevsnprint, runevseprint, runevsmprint � print formatted
output

SYNOPSIS
#include <u.h>
#include <libc.h>

int print(char *format, ...)

int fprint(int fd, char *format, ...)

int sprint(char *s, char *format, ...)

int snprint(char *s, int len, char *format, ...)

char* seprint(char *s, char *e, char *format, ...)

char* smprint(char *format, ...)

int runesprint(Rune *s, char *format, ...)

int runesnprint(Rune *s, int len, char *format, ...)

Rune* runeseprint(Rune *s, Rune *e, char *format, ...)

Rune* runesmprint(char *format, ...)

int vfprint(int fd, char *format, va_list v)

int vsnprint(char *s, int len, char *format, va_list v)

char* vseprint(char *s, char *e, char *format, va_list v)

char* vsmprint(char *format, va_list v)

int runevsnprint(Rune *s, int len, char *format, va_list v)

Rune* runevseprint(Rune *s, Rune *e, char *format, va_list v)

Rune* runevsmprint(char *format, va_list v)

DESCRIPTION
Print writes text to the standard output. Fprint writes to the named output file descriptor; a buf
fered form is described in bio(2). Sprint places text followed by the NUL character (\0) in consecu
tive bytes starting at s; it is the user�s responsibility to ensure that enough storage is available.
Each function returns the number of bytes transmitted (not including the NUL in the case of
sprint), or a negative value if an output error was encountered.

Snprint is like sprint, but will not place more than len bytes in s. Its result is always NUL-
terminated and holds the maximal number of complete UTF-8 characters that can fit. Seprint is
like snprint, except that the end is indicated by a pointer e rather than a count and the return
value points to the terminating NUL of the resulting string. Smprint is like sprint, except that it
prints into and returns a string of the required length, which is allocated by malloc(2).

The routines runesprint, runesnprint, runeseprint, and runesmprint are the same as sprint,
snprint, seprint and smprint except that their output is rune strings instead of byte strings.

Finally, the routines vfprint, vsnprint, vseprint, vsmprint, runevsnprint, runevseprint, and
runevsmprint are like their v−less relatives except they take as arguments a va_list parame
ter, so they can be called within a variadic function. The Example section shows a representative
usage.

Each of these functions converts, formats, and prints its trailing arguments under control of a
format string. The format contains two types of objects: plain characters, which are simply copied
to the output stream, and conversion specifications, each of which results in fetching of zero or
more arguments. The results are undefined if there are arguments of the wrong type or too few
arguments for the format. If the format is exhausted while arguments remain, the excess is
ignored.

576

PRINT(2) PRINT(2)

Each conversion specification has the following format:

% [flags] verb

The verb is a single character and each flag is a single character or a (decimal) numeric string. Up
to two numeric strings may be used; the first is called width, the second precision. A period can be
used to separate them, and if the period is present then width and precision are taken to be zero if
missing, otherwise they are �omitted�. Either or both of the numbers may be replaced with the
character *, meaning that the actual number will be obtained from the argument list as an integer.
The flags and numbers are arguments to the verb described below.

The numeric verbs d, o, b, x, and X format their arguments in decimal, octal, binary, hexadecimal,
and upper case hexadecimal. Each interprets the flags 0, h, hh, l, ll, u, +, −, ,, and # to mean
pad with zeros, short, byte, long, vlong, unsigned, always print a sign, left justified, commas every
three digits, and alternate format. Also, a space character in the flag position is like +, but prints a
space instead of a plus sign for non-negative values. If neither short nor long is specified, then
the argument is an int. If unsigned is specified, then the argument is interpreted as a positive
number and no sign is output. If precision is not omitted, the number is padded on the left with
zeros until at least precision digits appear. Then, if alternate format is specified, for o conversion,
the number is preceded by a 0 if it doesn�t already begin with one; for x conversion, the number is
preceded by 0x; for X conversion, the number is preceded by 0X. Finally, if width is not omitted,
the number is padded on the left (or right, if left justification is specified) with enough blanks to
make the field at least width characters long.

The floating point verbs f, e, E, g, and G take a double argument. Each interprets the flags +,
−, and # to mean always print a sign, left justified, and alternate format. Width is the minimum
field width and, if the converted value takes up less than width characters, it is padded on the left
(or right, if �left justified�) with spaces. Precision is the number of digits that are converted after
the decimal place for e, E, and f conversions, and precision is the maximum number of significant
digits for g and G conversions. The f verb produces output of the form [−]digits[.digits].
E conversion appends an exponent E[−]digits, and e conversion appends an exponent
e[−]digits. The g verb will output the argument in either e or f with the goal of producing the
smallest output. Also, trailing zeros are omitted from the fraction part of the output, and a trailing
decimal point appears only if it is followed by a digit. The G verb is similar, but uses E format
instead of e. When alternate format is specified, the result will always contain a decimal point, and
for g and G conversions, trailing zeros are not removed.

The s verb copies a nul-terminated string (pointer to char) to the output. The number of charac
ters copied (n) is the minimum of the size of the string and precision. These n characters are justi
fied within a field of width characters as described above. If a precision is given, it is safe for the
string not to be nul-terminated as long as it is at least precision characters (not bytes!) long. The
S verb is similar, but it interprets its pointer as an array of runes (see utf(6)); the runes are con
verted to UTF before output.

The c verb copies a single char (promoted to int) justified within a field of width characters as
described above. The C verb is similar, but works on runes.

The p verb formats a single pointer or pointer-sized integer (uintptr, see intro(2)) in hexadeci
mal.

The r verb takes no arguments; it copies the error string returned by a call to errstr(2).

Custom verbs may be installed using fmtinstall(2).

EXAMPLE
This function prints an error message with a variable number of arguments and then quits.

void fatal(char *msg, ...)
{

char buf[1024], *out;
va_list arg;

out = seprint(buf, buf+sizeof(buf), "Fatal error: ");
va_start(arg, msg);
out = vseprint(out, buf+sizeof(buf), msg, arg);
va_end(arg);

577

PRINT(2) PRINT(2)

write(2, buf, out−buf);
exits("fatal error");

}

SOURCE
/sys/src/libc/fmt

SEE ALSO
fmtinstall(2), fprintf(2), utf(6), errstr(2)

DIAGNOSTICS
Routines that write to a file descriptor or call malloc set errstr.

BUGS
The formatting is close to that specified for ANSI fprintf(2); the main difference is that b is not in
ANSI and u is a flag here instead of a verb. Also, and distinctly not a bug, print and friends gener
ate UTF rather than ASCII.

There is no runeprint, runefprint, etc. because runes are byte-order dependent and
should not be written directly to a file; use the UTF output of print or fprint instead. Also, sprint is
deprecated for safety reasons; use snprint, seprint, or smprint instead. Safety also precludes the
existence of runesprint.

578

PRIVALLOC(2) PRIVALLOC(2)

NAME
privalloc � per-process private storage management

SYNOPSIS
#include <u.h>
#include <libc.h>

void** privalloc(void)

DESCRIPTION
Privalloc returns a pointer to a per-process private storage location. The location is not shared
among processes, even if they share the same data segments. It returns nil if there are no free
slots available.

SOURCE
/sys/src/libc/9sys/privalloc.c

SEE ALSO
exec(2)

579

PROCSETNAME(2) PROCSETNAME(2)

NAME
procsetname � set process arguments

SYNOPSIS
#include <u.h>
#include <libc.h>

void procsetname(char *fmt, ...)

DESCRIPTION
Procsetname overrides the current process arguments by writing to its /proc/pid/args file.
The process arguments are informational only.

SOURCE
/sys/src/libc/9sys/procsetname.c

SEE ALSO
thread(2), proc(3)

580

PROTO(2) PROTO(2)

NAME
rdproto � parse and process a proto file listing

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <disk.h>

typedef void Protoenum(char *new, char *old, Dir *d, void *a)

typedef void Protowarn(char *msg, void *a)

int rdproto(char *proto, char *root, Protoenum *enm,
Protowarn *warn, void *a)

DESCRIPTION
Rdproto reads and interprets the named proto file relative to the root directory root.

Each line of the proto file specifies a file to copy except lines in the form of attr=val which sets an
attribute (see below). Blank lines and lines beginning with # are ignored. Indentation (usually
tabs) is significant, with each level of indentation corresponding to a level in the file tree. Fields
within a line are separated by white space. The first field is the last path element in the destina
tion file tree. The second field specifies the permissions. The third field is the owner of the file,
and the fourth is the group owning the file. The fifth field is the name of the file from which to
copy; this file is read from the current name space, not the source file tree. All fields except the
first are optional. Specifying − for permissions, owner, or group causes rdproto to fetch the corre
sponding information from the file rather than override it. (This is the default behavior when the
fields are not present; explicitly specifying − is useful when one wishes to set, say, the file owner
without setting the permissions.)

Names beginning with a $ are expanded as environment variables. If the first file specified in a
directory is *, all of the files in that directory are considered listed. If the first file is +, all of the
files are copied, and all subdirectories are recursively considered listed. All files are considered
relative to root.

Attributes, lines in the form of attr=val, apply to all files in the current indention level after the
attribute line. Attributes are inherited to deeper levels but each level can override them individu
aly. The attribute skip=regexp skips all file names matching the regular expression regexp for *
and + operations using regexp(2). If owner or group is left unspecified on a file, the attributes
uid=owner and gid=group will override these fields. The mode=mode attribute adds, sets or
masks file permission bits if permissions where not explicitly specified on the file. If multiple
mode= lines are given and mode is not a set operation (forced by ! character) the modes are com
bined. Except for the special ! character, mode has the same syntax as in chmod(1).

For each file named by the proto, enm is called with new pointing at the name of the file (without
the root prefix), old pointing at the name of the source file (with the root prefix, when applicable),
and Dir at the desired directory information for the new file. Only the name, uid, gid, mode,
mtime, and length fields are guaranteed to be valid. The argument a is the same argument
passed to rdproto; typically it points at some extra state used by the enumeration function.

When files or directories do not exist or cannot be read by rdproto, it formats a warning message,
calls warn, and continues processing; if warn is nil, rdproto prints the warning message to stan
dard error.

Rdproto returns zero if proto was processed, �1 if it could not be opened.

FILES
/sys/lib/sysconfig/proto/ directory of prototype files.
/sys/lib/sysconfig/proto/portproto generic prototype file.

SOURCE
/sys/src/libdisk/proto.c

SEE ALSO
mk9660(8), mkfs(8), regexp(2), chmod(1).

581

PUSHSSL(2) PUSHSSL(2)

NAME
pushssl � attach SSL version 2 encryption to a communication channel

SYNOPSIS
#include <u.h>
#include <libc.h>

int pushssl(int fd, char *alg, char *secin, char *secout, int *cfd)

DESCRIPTION
Pushssl opens an ssl(3) device, connects it to the communications channel fd, and starts up
encryption and message authentication as specified in alg. The algorithms are separated by a
space and either can be first. See ssl(3) for the possible algorithms. Secin and secout contain the
encryption keys for the two directions. If either is nil, the other is used in both directions. If cfd is
non-nil, the SSL control channel is opened and its fd returned.

Pushssl returns a file descriptor for the SSL data channel. Anything written to this descriptor will
get encrypted and authenticated and then written to the file descriptor, fd. Pushssl closes the origi
nal file descriptor fd on success.

SOURCE
/sys/src/libc/9sys

SEE ALSO
dial(2), ssl(3),

DIAGNOSTICS
return �1 on failure.

582

PUSHTLS(2) PUSHTLS(2)

NAME
pushtls, tlsClient, tlsServer, initThumbprints, freeThumbprints, okThumbprint, okCertificate, read
cert, readcertchain � attach TLS1 or SSL3 encryption to a communication channel

SYNOPSIS
#include <u.h>
#include <libc.h>

int pushtls(int fd, char *hashalg, char *encalg,
int isclient, char *secret, char *dir)

#include <mp.h>
#include <libsec.h>

int tlsClient(int fd, TLSconn *conn)

int tlsServer(int fd, TLSconn *conn)

uchar *readcert(char *filename, int *pcertlen)

PEMchain *readcertchain(char *filename)

Thumbprint *initThumbprints(char *ok, char *crl, char *tag)

void freeThumbprints(Thumbprint *table)

int okThumbprint(uchar *hash, int len, Thumbprint *table)

int okCertificate(uchar *cert, int len, Thumbprint *table)

DESCRIPTION
Transport Layer Security (TLS) comprises a record layer protocol, doing message digesting and
encrypting in the kernel, and a handshake protocol, doing initial authentication and secret creation
at user level and then starting a data channel in the record protocol. TLS is nearly the same as SSL
3.0, and the software should interoperate with implementations of either standard.

To use just the record layer, as described in tls(3), call pushtls to open the record layer device,
connect to the communications channel fd, and start up encryption and message authentication as
specified in hashalg, encalg, and secret. These parameters must have been arranged at the two
ends of the conversation by other means. For example, hashalg could be sha1, encalg could be
rc4_128, and secret could be the base-64 encoding of two (client-to-server and server-to-
client) 20-byte digest keys and two corresponding 16-byte encryption keys. Pushtls returns a file
descriptor for the TLS data channel. Anything written to this descriptor will get encrypted and
authenticated and then written to the file descriptor, fd. Pushtls , tlsClient and tlsServer close the
original file descriptor on success. If dir is non-zero, the path name of the connection directory is
copied into dir. This path name is guaranteed to be less than 40 bytes long.

Certificates
Alternatively, call tlsClient to speak the full handshake protocol, negotiate the algorithms and
secrets, and return a new data file descriptor for the data channel. Conn points to a (caller-
allocated) struct:

typedef struct TLSconn {
char dir[40]; /* OUT connection directory */
uchar *cert; /* IN/OUT certificate */
uchar *sessionID; /* IN/OUT session ID */
uchar *psk; /* opt IN pre−shared key */
int certlen, sessionIDlen, psklen;
int (*trace)(char*fmt, ...);
PEMChain *chain;
char *sessionType; /* opt IN session type */
uchar *sessionKey; /* opt IN/OUT session key */
int sessionKeylen; /* opt IN session key length */
char *sessionConst; /* opt IN session constant */
char *serverName; /* opt IN server name */
char *pskID; /* opt IN pre−shared key ID */

} TLSconn;

583

PUSHTLS(2) PUSHTLS(2)

defined in libsec.h. On input, the caller can provide options such as cert, the local certificate, and
sessionID, used by a client to resume a previously negotiated security association. On output, the
connection directory is set, as with listen (see dial(2)). The input cert is freed and a freshly allo
cated copy of the remote�s certificate is returned in conn, to be checked by the caller according to
its needs. One way to check the remote certificate is to use initThumbprints and freeThumbprints
which allocate and free, respectively, a table of hashes from files of known trusted and revoked
certificates. okThumbprint confirms that a particular hash is in the table.

TlsClient will optionally compute a session key for use by higher-level protocols. To compute a
session key, the caller must set sessionType to a known session type; sessionKeylen to the desired
key length; sessionKey to a buffer of length sessionKeylen ; and sessionConst to the desired salting
constant. The only supported session type is ttls, as used by 802.1x.

TlsServer executes the server side of the handshake. The caller must initialize conn−>cert, usu
ally by calling readcert to read and decode the PEM-encoded certificate from filename, return a
pointer to malloced storage containing the certificate, and store its length through pcertlen. The
private key corresponding to cert.pem should have been previously loaded into factotum. (See
rsa(8) for more about key generation.)

Readcertchain will read a PEM-encoded chain of certificates from filename and return a pointer to
a linked list of malloced PEMChain structures, defined in libsec.h:

typedef struct PEMChain PEMChain;
struct PEMChain {

PEMChain*next;
uchar *pem;
int pemlen;

};

By setting

conn−>chain = readcertchain("intermediate−certs.pem");

the server can present extra certificate evidence to establish the chain of trust to a root authority
known to the client.

Conn is not required for the ongoing conversation and may be freed by the application whenever
convenient.

EXAMPLES
Start the client half of TLS and check the remote certificate:

conn = (TLSconn*)mallocz(sizeof *conn, 1);
fd = tlsClient(fd, conn);
if(!okCertificate(conn−>cert, conn−>certlen, table))

sysfatal("suspect server: %r");

Run the server side:

fd = accept(lcfd, ldir);
conn = (TLSconn*)mallocz(sizeof *conn, 1);
conn−>cert = readcert("cert.pem", &conn−>certlen);
fd = tlsServer(fd, conn);

FILES
/sys/lib/tls thumbprints of trusted services
/sys/lib/ssl PEM certificate files

SOURCE
/sys/src/libc/9sys/pushtls.c
/sys/src/libsec/port

SEE ALSO
dial(2), tls(3), factotum(4), thumbprint(6)

DIAGNOSTICS
Return �1 on failure.

BUGS
Client certificates and client sessionIDs are not yet implemented.

584

PUSHTLS(2) PUSHTLS(2)

Note that pushtls, tlsClient and tlsServer do not close the original file descriptor on failure, only on
success.

The sessionID and cert pointers in the TLSconn structure have to be freed by the caller.

Note that in the TLS protocol sessionID itself is public; it is used as a pointer to secrets stored in
factotum.

585

QBALL(2) QBALL(2)

NAME
qball � 3-d rotation controller

SYNOPSIS
#include <draw.h>
#include <geometry.h>

void qball(Rectangle r, Mouse *mousep,
Quaternion *orientation,
void (*redraw)(void), Quaternion *ap)

DESCRIPTION
Qball is an interactive controller that allows arbitrary 3-space rotations to be specified with the
mouse. Imagine a sphere with its center at the midpoint of rectangle r, and diameter the smaller
of r�s dimensions. Dragging from one point on the sphere to another specifies the endpoints of a
great-circle arc. (Mouse points outside the sphere are projected to the nearest point on the
sphere.) The axis of rotation is normal to the plane of the arc, and the angle of rotation is twice
the angle of the arc.

Argument mousep is a pointer to the mouse event that triggered the interaction. It should have
some button set. Qball will read more events into mousep, and return when no buttons are down.

While qball is reading mouse events, it calls out to the caller-supplied routine redraw, which is
expected to update the screen to reflect the changing orientation. Argument orientation is the ori
entation that redraw should examine, represented as a unit Quaternion (see quaternion(2)). The
caller may set it to any orientation. It will be updated before each call to redraw (and on return) by
multiplying by the rotation specified with the mouse.

It is possible to restrict qball’s attention to rotations about a particular axis. If ap is null, the rota
tion is unconstrained. Otherwise, the rotation will be about the same axis as *ap. This is accom
plished by projecting points on the sphere to the nearest point also on the plane through the
sphere�s center and normal to the axis.

SOURCE
/sys/src/libgeometry/qball.c

SEE ALSO
quaternion(2)
Ken Shoemake, ��Animating Rotation with Quaternion Curves��, SIGGRAPH ’85 Conference Proceed
ings.

586

QSORT(2) QSORT(2)

NAME
qsort � quicker sort

SYNOPSIS
#include <u.h>
#include <libc.h>

void qsort(void *base, long nel, long width,
int (*compar)(void*, void*))

DESCRIPTION
Qsort (quicker sort) sorts an array into nondecreasing order. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of a comparison routine to be called with pointers to elements being
compared. The routine must return an integer less than, equal to, or greater than 0 according as
the first argument is to be considered less than, equal to, or greater than the second.

SOURCE
/sys/src/libc/port/qsort.c

SEE ALSO
sort(1)

587

QUATERNION(2) QUATERNION(2)

NAME
qtom, mtoq, qadd, qsub, qneg, qmul, qdiv, qunit, qinv, qlen, slerp, qmid, qsqrt � Quaternion arith
metic

SYNOPSIS
#include <draw.h>
#include <geometry.h>

Quaternion qadd(Quaternion q, Quaternion r)

Quaternion qsub(Quaternion q, Quaternion r)

Quaternion qneg(Quaternion q)

Quaternion qmul(Quaternion q, Quaternion r)

Quaternion qdiv(Quaternion q, Quaternion r)

Quaternion qinv(Quaternion q)

double qlen(Quaternion p)

Quaternion qunit(Quaternion q)

void qtom(Matrix m, Quaternion q)

Quaternion mtoq(Matrix mat)

Quaternion slerp(Quaternion q, Quaternion r, double a)

Quaternion qmid(Quaternion q, Quaternion r)

Quaternion qsqrt(Quaternion q)

DESCRIPTION
The Quaternions are a non-commutative extension field of the Real numbers, designed to do for
rotations in 3-space what the complex numbers do for rotations in 2-space. Quaternions have a
real component r and an imaginary vector component v=(i,j,k). Quaternions add componentwise
and multiply according to the rule (r,v)(s,w)=(rs-v.w, rw+vs+v×w), where . and × are the ordinary
vector dot and cross products. The multiplicative inverse of a non-zero quaternion (r,v) is (r,−
v)/(r

2
-v.v).

The following routines do arithmetic on quaternions, represented as

typedef struct Quaternion Quaternion;
struct Quaternion{

double r, i, j, k;
};

Name Description
qadd Add two quaternions.
qsub Subtract two quaternions.
qneg Negate a quaternion.
qmul Multiply two quaternions.
qdiv Divide two quaternions.
qinv Return the multiplicative inverse of a quaternion.
qlen Return sqrt(q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k), the length of a quater

nion.
qunit Return a unit quaternion (length=1) with components proportional to q�s.

A rotation by angle θ about axis A (where A is a unit vector) can be represented by the unit quater
nion q=(cos θ/2, Asin θ/2). The same rotation is represented by −q; a rotation by −θ about −A is
the same as a rotation by θ about A. The quaternion q transforms points by (0,x’,y’,z’) =
q

-1
(0,x,y,z)q. Quaternion multiplication composes rotations. The orientation of an object in 3-

space can be represented by a quaternion giving its rotation relative to some �standard� orienta
tion.

The following routines operate on rotations or orientations represented as unit quaternions:

mtoq Convert a rotation matrix (see matrix(2)) to a unit quaternion.

588

QUATERNION(2) QUATERNION(2)

qtom Convert a unit quaternion to a rotation matrix.
slerp Spherical lerp. Interpolate between two orientations. The rotation that carries q to r is

q
-1

r, so slerp(q, r, t) is q(q
-1

r)
t
.

qmid slerp(q, r, .5)
qsqrt The square root of q. This is just a rotation about the same axis by half the angle.

SOURCE
/sys/src/libgeometry/quaternion.c

SEE ALSO
matrix(2), qball(2)

589

QUOTE(2) QUOTE(2)

NAME
quotestrdup, quoterunestrdup, unquotestrdup, unquoterunestrdup, quotestrfmt, quoterunestrfmt,
quotefmtinstall, doquote, needsrcquote � quoted character strings

SYNOPSIS
#include <u.h>
#include <libc.h>

char *quotestrdup(char *s)

Rune *quoterunestrdup(Rune *s)

char *unquotestrdup(char *s)

Rune *unquoterunestrdup(Rune *s)

int quotestrfmt(Fmt*)

int quoterunestrfmt(Fmt*)

void quotefmtinstall(void)

int (*doquote)(int c)

int needsrcquote(int c)

DESCRIPTION
These routines manipulate character strings, either adding or removing quotes as necessary. In
the quoted form, the strings are in the style of rc(1), with single quotes surrounding the string.
Embedded single quotes are indicated by a doubled single quote. For instance,

Don’t worry!

when quoted becomes

’Don’’t worry!’

The empty string is represented by two quotes, ’’.

The first four functions act as variants of strdup (see strcat(2)). Each returns a freshly allocated
copy of the string, created using malloc(2). Quotestrdup returns a quoted copy of s, while
unquotestrdup returns a copy of s with the quotes evaluated. The rune versions of these functions
do the same for strings (see runestrcat(2)).

The string returned by quotestrdup or quoterunestrdup has the following properties:

1. If the original string s is empty, the returned string is ’’.

2. If s contains no quotes, blanks, or control characters, the returned string is identical to s.

3. If s needs quotes to be added, the first character of the returned string will be a quote. For
example, hello world becomes ’hello world’ not hello’ ’world.

The function pointer doquote is nil by default. If it is non-nil, characters are passed to that func
tion to see if they should be quoted. This mechanism allows programs to specify that characters
other than blanks, control characters, or quotes be quoted. Regardless of the return value of
*doquote, blanks, control characters, and quotes are always quoted. Needsrcquote is provided as
a doquote function that flags any character special to rc(1).

Quotestrfmt and quoterunestrfmt are print(2) formatting routines that produce quoted strings as
output. They may be installed by hand, but quotefmtinstall installs them under the standard for
mat characters q and Q. (They are not installed automatically.) If the format string includes the
alternate format character #, for example %#q, the printed string will always be quoted; otherwise
quotes will only be provided if necessary to avoid ambiguity. In <libc.h> there are #pragma
statements so the compiler can type-check uses of %q and %Q in print(2) format strings.

SOURCE
/sys/src/libc/port/quote.c
/sys/src/libc/fmt/fmtquote.c

SEE ALSO
rc(1), malloc(2), print(2), strcat(2)

590

RAND(2) RAND(2)

NAME
rand, lrand, frand, nrand, lnrand, srand, truerand, ntruerand, genrandom, prng, fastrand, nfas
trand � random number generators

SYNOPSIS
#include <u.h>
#include <libc.h>

int rand(void)

long lrand(void)

double frand(void)

int nrand(int val)

long lnrand(long val)

void srand(long seed)

ulong truerand(void)

ulong ntruerand(ulong val)

#include <libsec.h>

void genrandom(uchar *buf, int nbytes)

void prng(uchar *buf, int nbytes)

ulong fastrand(void)

ulong nfastrand(ulong val)

DESCRIPTION
Rand returns a uniform pseudo-random number x, 0d x <2

15
.

Lrand returns a uniform long x, 0d x <2
31

.

Frand returns a uniform double x, 0.0dx<1.0, This function calls lrand twice to generate a num
ber with as many as 62 significant bits of mantissa.

Nrand returns a uniform integer x, 0dx<val. Lnrand is the same, but returns a long.

The algorithm is additive feedback with:

x[n] = (x[n−273] + x[n−607]) mod 2
31

giving a period of 2
30

× (2
607

� 1).

The generators are initialized by calling srand with whatever you like as argument. To get a differ
ent starting value each time,

srand(time(0))

will work as long as it is not called more often than once per second. Calling

srand(1)

will initialize the generators to their starting state.

Truerand returns a random unsigned long read from /dev/random.

Ntruerand returns a uniform random integer x, 0d x < val d 2
32

-1.

Genrandom fills a buffer with bytes from the cryptographic pseudo-random number generator.
The generator is automatically seeded by truerand.

Prng uses the native rand(2) pseudo-random number generator to fill the buffer. Used with
srand, this function can produce a reproducible stream of pseudo random numbers useful in test
ing.

Both genrandom and prng may be passed to mprand (see mp(2)).

Fastrand uses genrandom to return a uniform unsigned long x, 0d x <2
32

-1.

591

RAND(2) RAND(2)

Nfastrand uses genrandom to return a uniform unsigned long x, 0d x < val d 2
32

-1.

SOURCE
/sys/src/libc/port/*rand.c
/sys/src/libc/9sys/truerand.c
/sys/src/libsec/port/genrandom.c
/sys/src/libsec/port/prng.c
/sys/src/libsec/port/*fastrand.c

SEE ALSO
cons(3), mp(2)

BUGS
Truerand and ntruerand maintain a static file descriptor.

592

RC4(2) RC4(2)

NAME
setupRC4state, rc4, rc4skip, rc4back - alleged rc4 encryption

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>

void setupRC4state(RC4state *s, uchar *seed, int slen)

void rc4(RC4state *s, uchar *data, int dlen)

void rc4skip(RC4state *s, int nbytes)

void rc4back(RC4state *s, int nbytes)

DESCRIPTION
This is an algorithm alleged to be Rivest�s RC4 encryption function. It is a pseudo-random number
generator with a 256 byte state and a long cycle. The input buffer is XOR�d with the output of the
generator both to encrypt and to decrypt. The seed, entered using setupRC4state, can be any
length. The generator can be run forward using rc4, skip over bytes using rc4skip to account lost
transmissions, or run backwards using rc4back to cover retransmitted data. The RC4state struc
ture keeps track of the algorithm.

SOURCE
/sys/src/libsec

SEE ALSO
mp(2), aes(2), blowfish(2), des(2), dsa(2), elgamal(2), rsa(2), sechash(2), prime(2), rand(2)

593

READ(2) READ(2)

NAME
read, readn, write, pread, pwrite � read or write file

SYNOPSIS
#include <u.h>
#include <libc.h>

long read(int fd, void *buf, long nbytes)

long readn(int fd, void *buf, long nbytes)

long write(int fd, void *buf, long nbytes)

long pread(int fd, void *buf, long nbytes, vlong offset)

long pwrite(int fd, void *buf, long nbytes, vlong offset)

DESCRIPTION
Read reads nbytes bytes of data from the offset in the file associated with fd into memory at buf.
The offset is advanced by the number of bytes read. It is not guaranteed that all nbytes bytes will
be read; for example if the file refers to the console, at most one line will be returned. In any
event the number of bytes read is returned. A return value of 0 is conventionally interpreted as
end of file.

Readn is just like read, but does successive read calls until nbytes have been read, or a read sys
tem call returns a non-positive count.

Write writes nbytes bytes of data starting at buf to the file associated with fd at the file offset. The
offset is advanced by the number of bytes written. The number of characters actually written is
returned. It should be regarded as an error if this is not the same as requested.

Pread and Pwrite are equivalent to a seek(2) to offset followed by a read or write. By combining
the operations in a single atomic call, they more closely match the 9P protocol (see intro(5)) and,
more important, permit multiprocess programs to execute multiple concurrent read and write
operations on the same file descriptor without interference.

SOURCE
/sys/src/libc/9syscall
/sys/src/libc/port/readn.c

SEE ALSO
intro(2), dirread(2), dup(2), open(2), pipe(2), readv(2)

DIAGNOSTICS
These functions set errstr.

594

READCOLMAP(2) READCOLMAP(2)

NAME
RGB, readcolmap, writecolmap � access display color map

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>

void readcolmap(Display *d, RGB *map)

void writecolmap(Display *d, RGB *map)

DESCRIPTION
Colors are described by their red, green, and blue light intensities, in an RGB datum:

typedef
struct RGB {

ulong red;
ulong green;
ulong blue;

} RGB;

Black is represented by zero in all three positions and white has the maximum unsigned long
value in all three positions.

A color map is an array of RGBs, of length 2
depth

, giving the colors for pixels 0, 1, 2, etc. On dis
plays with color mapped pixels (typically 8-bit displays), one retrieves RGB color information by
treating the pixel data as an offset into the color map.

Readcolmap reads the color map for the given display into the provided map, which must have
enough space to hold it. Writecolmap associates the given color map with the given display, if
possible. (The hardware might not allow this.) Both return 0 on success, or �1 on error, setting
errstr.

Changing the hardware color map does not change the color map used by the draw(2) operator to
convert between mapped and true color or greyscale images, which is described in color(6).

SOURCE
/sys/src/libdraw

SEE ALSO
graphics(2), draw(3), color(6)

595

READV(2) READV(2)

NAME
readv, writev, preadv, pwritev � scatter/gather read and write

SYNOPSIS
#include <u.h>
#include <libc.h>

typedef
struct IOchunk
{

void *addr;
ulong len;

} IOchunk;

long readv(int fd, IOchunk *io, int nio)

long preadv(int fd, IOchunk *io, int nio, vlong off)

long writev(int fd, IOchunk *io, int nio)

long pwritev(int fd, IOchunk *io, int nio, vlong off)

DESCRIPTION
These functions supplement the standard read and write operations of read(2) with facilities for
scatter/gather I/O. The set of I/O buffers is collected into an array of IOchunk structures passed
as an argument.

Readv reads data from fd and returns the total number of bytes received. The received data is
stored in the successive nio elements of the IOchunk array, storing io[0].len bytes at
io[0].addr, the next io[1].len at io[1].addr, and so on. Preadv does the same, but
implicitly seeks to I/O offset off by analogy with readv.

Writev and pwritev are the analogous write routines.

SOURCE
/sys/src/libc/9sys/readv.c
/sys/src/libc/9sys/writev.c

SEE ALSO
intro(2), read(2)

DIAGNOSTICS
These functions set errstr.

BUGS
The implementations use malloc(2) to build a single buffer for a standard call to read or write.
They are placeholders for possible future system calls.

596

REGEXP(2) REGEXP(2)

NAME
regcomp, regcomplit, regcompnl, regexec, regsub, rregexec, rregsub, regerror � regular expres
sion

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <regexp.h>

Reprog *regcomp(char *exp)

Reprog *regcomplit(char *exp)

Reprog *regcompnl(char *exp)

int regexec(Reprog *prog, char *string, Resub *match, int msize)

void regsub(char *source, char *dest, int dlen, Resub *match, int msize)

int rregexec(Reprog *prog, Rune *string, Resub *match, int msize)

void rregsub(Rune *source, Rune *dest, int dlen, Resub *match, int msize)

void regerror(char *msg)

DESCRIPTION
Regcomp compiles a regular expression and returns a pointer to the generated description. The
space is allocated by malloc(2) and may be released by free. Regular expressions are exactly as in
regexp(6).

Regcomplit is like regcomp except that all characters are treated literally. Regcompnl is like
regcomp except that the . metacharacter matches all characters, including newlines.

Regexec matches a null-terminated string against the compiled regular expression in prog. If it
matches, regexec returns 1 and fills in the array match with character pointers to the substrings of
string that correspond to the parenthesized subexpressions of exp: match[i].sp points to the
beginning and match[i].ep points just beyond the end of the ith substring. (Subexpression i
begins at the ith left parenthesis, counting from 1.) Pointers in match[0] pick out the substring
that corresponds to the whole regular expression. Unused elements of match are filled with zeros.
Matches involving *, +, and ? are extended as far as possible. The number of array elements in
match is given by msize. The structure of elements of match is:

typedef struct {
union {

char *sp;
Rune *rsp;

};
union {

char *ep;
Rune *rep;

};
} Resub;

If match[0].sp is nonzero on entry, regexec starts matching at that point within string. If
match[0].ep is nonzero on entry, the last character matched is the one preceding that point.

Regsub places in dest a substitution instance of source in the context of the last regexec performed
using match. Each instance of \n, where n is a digit, is replaced by the string delimited by
match[n].sp and match[n].ep. Each instance of & is replaced by the string delimited by
match[0].sp and match[0].ep. The substitution will always be null terminated and
trimmed to fit into dlen bytes.

Regerror, called whenever an error is detected in regcomp, writes the string msg on the standard
error file and exits. Regerror can be replaced to perform special error processing. If the user sup
plied regerror returns rather than exits, regcomp will return 0.

Rregexec and rregsub are variants of regexec and regsub that use strings of Runes instead of
strings of chars. With these routines, the rsp and rep fields of the match array elements should

597

REGEXP(2) REGEXP(2)

be used.

SOURCE
/sys/src/libregexp

SEE ALSO
grep(1)

DIAGNOSTICS
Regcomp returns 0 for an illegal expression or other failure. Regexec returns 0 if string is not
matched.

BUGS
There is no way to specify or match a NUL character; NULs terminate patterns and strings. The
size of a character class and the number of sub-expression matches are hard-coded limits. The
library uses the worst-case space estimate for allocating VM runtime threads.

HISTORY
Regexp(2) first appeared in Plan 9 from Bell Labs. This implementation was written from scratch for
9front (May, 2016).

598

REMOVE(2) REMOVE(2)

NAME
remove � remove a file

SYNOPSIS
#include <u.h>
#include <libc.h>

int remove(char *file)

DESCRIPTION
Remove removes file from the directory containing it and discards the contents of the file. The
user must have write permission in the containing directory. If file is a directory, it must be empty.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
intro(2), remove(5), the description of ORCLOSE in open(2).

DIAGNOSTICS
Sets errstr.

599

RENDEZVOUS(2) RENDEZVOUS(2)

NAME
rendezvous � user level process synchronization

SYNOPSIS
#include <u.h>
#include <libc.h>

void* rendezvous(void* tag, void* value)

DESCRIPTION
The rendezvous system call allows two processes to synchronize and exchange a value. In con
junction with the shared memory system calls (see segattach(2) and fork(2)), it enables parallel
programs to control their scheduling.

Two processes wishing to synchronize call rendezvous with a common tag, typically an address in
memory they share. One process will arrive at the rendezvous first; it suspends execution until a
second arrives. When a second process meets the rendezvous the value arguments are exchanged
between the processes and returned as the result of the respective rendezvous system calls. Both
processes are awakened when the rendezvous succeeds.

The set of tag values which two processes may use to rendezvous�their tag space�is inherited
when a process forks, unless RFREND is set in the argument to rfork; see fork(2).

If a rendezvous is interrupted the return value is ~0, so that value should not be used in normal
communication.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
fork(2), lock(2), segattach(2)

DIAGNOSTICS
Sets errstr.

600

RSA(2) RSA(2)

NAME
asn1dump, asn1toRSApriv, asn1encodeRSApriv, asn1encodeRSApub, decodePEM, rsadecrypt,
rsaencrypt, rsafill, rsagen, rsaprivalloc, rsaprivfree, rsaprivtopub, rsapuballoc, rsapubfree,
X509toRSApub, X509rsagen, X509rsareq, X509rsaverify, X509rsaverifydigest � RSA encryption
algorithm

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>

RSApriv* rsagen(int nlen, int elen, int nrep)

RSApriv* rsafill(mpint *n, mpint *e, mpint *d, mpint *p, mpint *q)

mpint* rsaencrypt(RSApub *k, mpint *in, mpint *out)

mpint* rsadecrypt(RSApriv *k, mpint *in, mpint *out)

RSApub* rsapuballoc(void)

void rsapubfree(RSApub*)

RSApriv* rsaprivalloc(void)

void rsaprivfree(RSApriv*)

RSApub* rsaprivtopub(RSApriv*)

RSApub* X509toRSApub(uchar *cert, int ncert, char *name, int
nname)

RSApriv* asn1toRSApriv(uchar *priv, int npriv)

int asn1encodeRSApriv(RSApriv *k, uchar *buf, int len)

int asn1encodeRSApub(RSApub *pk, uchar *buf, int len)

void asn1dump(uchar *der, int len)

uchar* decodePEM(char *s, char *type, int *len, char **new_s)

uchar* X509rsagen(RSApriv *priv, char *subj, ulong valid[2], int
*certlen);

uchar* X509rsareq(RSApriv *priv, char *subj, int *certlen);

char* X509rsaverify(uchar *cert, int ncert, RSApub *pk)

char* X509rsaverifydigest(uchar *sig, int siglen, uchar *edi
gest, int edigestlen, RSApub *pk)

DESCRIPTION
RSA is a public key encryption algorithm. The owner of a key publishes the public part of the key:

struct RSApub
{

mpint *n; /* modulus */
mpint *ek; /* exp (encryption key) */

};

This part can be used for encrypting data (with rsaencrypt) to be sent to the owner. The owner
decrypts (with rsadecrypt) using his private key:

struct RSApriv
{

RSApub pub;
mpint *dk; /* exp (decryption key) */

/* precomputed crt values */
mpint *p;

601

RSA(2) RSA(2)

mpint *q;
mpint *kp; /* k mod p−1 */
mpint *kq; /* k mod q−1 */
mpint *c2; /* for converting residues to number */

};

Keys are generated using rsagen. Rsagen takes both bit length of the modulus, the bit length of
the public key exponent, and the number of repetitions of the Miller-Rabin primality test to run. If
the latter is 0, it does the default number of rounds. Rsagen returns a newly allocated structure
containing both public and private keys. Rsafill returns a newly allocated private key by recomput
ing kp, kq, and c2. Rsaprivtopub returns a newly allocated copy of the public key corresponding to
the private key.

The routines rsaalloc, rsafree, rsapuballoc, rsapubfree, rsaprivalloc, and rsaprivfree are provided
to aid in user provided key I/O.

Given a binary X.509 cert, the routine X509toRSApub returns the public key and, if name is not
nil, the CN part of the Distinguished Name of the certificate�s Subject. (This is conventionally a
userid or a host DNS name.) No verification is done of the certificate signature; the caller should
check the fingerprint, sha1(cert) , against a table or check the certificate by other means. X.509
certificates are often stored in PEM format; use dec64 to convert to binary before computing the
fingerprint or calling X509toRSApub. For the special case of certificates signed by a known trusted
key (in a single step, without certificate chains), X509rsaverify checks the signature on cert. It
returns nil if successful, else an error string.

X509rsaverifydigest takes a encoded PKCS #1 signature as used in X.509 as sig[siglen] and veri
fies it against the expected cryptographic hash edigest[edigestlen] of the signed data; returning
nil on success or an error string.

X509rsagen creates a self-signed X.509 certificate, given an RSA keypair priv, a issuer/subject
string subj, and the starting and ending validity dates, valid. Length of the allocated binary certifi
cate is stored in certlen. The subject line is conventionally of the form

C=US ST=NJ L=07922 O=Lucent OU=’Bell Labs’ CN=Eric

using the quoting conventions of tokenize in getfields(2).

Asn1toRSApriv converts an ASN1 formatted RSA private key into the corresponding RSApriv
structure.

Asn1encodeRSApriv and asn1encodeRSApub export a RSApriv or RSApub structure to ASN1 for
mat. On success, buf is filled and the encoded byte length is returned. Otherwise −1 is returned
and error string is set.

Asn1dump prints an ASN1 object to standard output.

DecodePEM takes a zero terminated string, s, and decodes the PEM (privacy-enhanced mail) for
matted section for type within it. If successful, it returns malloced storage containing the decoded
section, which the caller must free, and sets *len to its decoded length. Otherwise nil is
returned and *len is undefined. If not nil, new_s is set to the first character beyond the type sec
tion.

SOURCE
/sys/src/libsec

SEE ALSO
mp(2), aes(2), blowfish(2), des(2), dsa(2), elgamal(2), rc4(2), sechash(2), prime(2), rand(2), rsa(8)

602

RUNE(2) RUNE(2)

NAME
runetochar, chartorune, runelen, runenlen, fullrune, utfecpy, utflen, utfnlen, utfrune, utfrrune,
utfutf � rune/UTF conversion

SYNOPSIS
#include <u.h>
#include <libc.h>

int runetochar(char *s, Rune *r)

int chartorune(Rune *r, char *s)

int runelen(long r)

int runenlen(Rune *r, int n)

int fullrune(char *s, int n)

char* utfecpy(char *s1, char *es1, char *s2)

int utflen(char *s)

int utfnlen(char *s, long n)

char* utfrune(char *s, long c)

char* utfrrune(char *s, long c)

char* utfutf(char *s1, char *s2)

DESCRIPTION
These routines convert to and from a UTF byte stream and runes.

Runetochar copies one rune at r to at most UTFmax bytes starting at s and returns the number of
bytes copied. UTFmax, defined as 4 in <libc.h>, is the maximum number of bytes required to
represent a rune.

Chartorune copies at most UTFmax bytes starting at s to one rune at r and returns the number of
bytes copied. If the input is not exactly in UTF format, chartorune will convert to Runeerror
(0xFFFD) and return 1.

Runelen returns the number of bytes required to convert r into UTF.

Runenlen returns the number of bytes required to convert the n runes pointed to by r into UTF.

Fullrune returns 1 if the string s of length n is long enough to be decoded by chartorune and 0
otherwise. This does not guarantee that the string contains a legal UTF encoding. This routine is
used by programs that obtain input a byte at a time and need to know when a full rune has
arrived.

The following routines are analogous to the corresponding string routines with utf substituted
for str and rune substituted for chr.

Utfecpy copies UTF sequences until a null sequence has been copied, but writes no sequences
beyond es1. If any sequences are copied, s1 is terminated by a null sequence, and a pointer to that
sequence is returned. Otherwise, the original s1 is returned.

Utflen returns the number of runes that are represented by the UTF string s.

Utfnlen returns the number of complete runes that are represented by the first n bytes of UTF

string s. If the last few bytes of the string contain an incompletely coded rune, utfnlen will not
count them; in this way, it differs from utflen, which includes every byte of the string.

Utfrune (utfrrune) returns a pointer to the first (last) occurrence of rune c in the UTF string s, or 0
if c does not occur in the string. The NUL byte terminating a string is considered to be part of the
string s.

Utfutf returns a pointer to the first occurrence of the UTF string s2 as a UTF substring of s1, or 0 if
there is none. If s2 is the null string, utfutf returns s1.

SOURCE
/sys/src/libc/port/rune.c
/sys/src/libc/port/utfecpy.c

603

RUNE(2) RUNE(2)

/sys/src/libc/port/utfrune.c
/sys/src/libc/port/utfrrune.c
/sys/src/libc/port/utflen.c
/sys/src/libc/port/utfnlen.c
/sys/src/libc/port/utfutf.c

SEE ALSO
utf(6), tcs(1)

BUGS
When re-encoding UTF strings with chartorune and runetochar one has to consider that encoding
a Runeerror (0xFFFD) that resulted from invalid encoded input can yield a longer UTF sequence on
the output.

604

RUNESTRCAT(2) RUNESTRCAT(2)

NAME
runestrcat, runestrncat, runestrcmp, runestrncmp, runestrcpy, runestrncpy, runestrecpy, runes
trlen, runestrchr, runestrrchr, runestrdup, runestrstr � rune string operations

SYNOPSIS
#include <u.h>
#include <libc.h>

Rune* runestrcat(Rune *s1, Rune *s2)

Rune* runestrncat(Rune *s1, Rune *s2, long n)

int runestrcmp(Rune *s1, Rune *s2)

int runestrncmp(Rune *s1, Rune *s2, long n)

Rune* runestrcpy(Rune *s1, Rune *s2)

Rune* runestrncpy(Rune *s1, Rune *s2, long n)

Rune* runestrecpy(Rune *s1, Rune *es1, Rune *s2)

long runestrlen(Rune *s)

Rune* runestrchr(Rune *s, Rune c)

Rune* runestrrchr(Rune *s, Rune c)

Rune* runestrdup(Rune *s)

Rune* runestrstr(Rune *s1, Rune *s2)

DESCRIPTION
These functions are rune string analogues of the corresponding functions in strcat(2).

SOURCE
/sys/src/libc/port

SEE ALSO
memory(2), rune(2), strcat(2)

BUGS
The outcome of overlapping moves varies among implementations.

605

SALSA(2) SALSA(2)

NAME
setupSalsastate, salsa_setblock, salsa_setiv, salsa_encrypt, salsa_encrypt2, hsalsa � salsa20 encryp
tion

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <libsec.h>

void setupSalsastate(Salsastate *s, uchar key[], ulong keylen,
uchar *iv, ulong ivlen, int rounds)

void salsa_encrypt(uchar *data, ulong len, Salsastate *s)

void salsa_encrypt2(uchar *src, uchar *dst, ulong len, Salsastate
*s)

void salsa_setblock(Salsastate *s, u64int blockno)

void salsa_setiv(Salsastate *s, uchar *iv);

void hsalsa(uchar h[32], uchar *key, ulong keylen, uchar nonce[16],
int rounds);

DESCRIPTION
Salsa20 is a stream cipher designed by D J Berstein. It has an underlying block size of 64 bytes
(named as constant SalsaBsize). It supports key sizes of 128 and 256-bit (recommended).

SetupSalsastate takes a reference to a Salsastate structure, a key of keylen bytes, which
should normally be SalsaKeylen=32, a iv or nonce of ivlen bytes (can be SalsaIVlen=8 or
XSalsaIVlen=24, set to all zeros if the iv argument is nil), and the number of rounds (set to
the default of 20 if the argument is zero).

Salsa_encrypt encrypts len bytes of buf in place using the Salsastate in s. Len can be any byte
length. Encryption and decryption are the same operation given the same starting state s.

Salsa_encrypt2 is similar, but encrypts len bytes of src into dst without modifying src.

Salsa_setblock sets the Salsa block counter for the next encryption to blockno, allowing seeking in
an encrypted stream.

Salsa_setiv sets the the initialization vector (nonce) to iv.

Hsalsa is a key expansion function that takes a 128 or 256-bit key and a 128-bit nonce and pro
duces a new 256-bit key.

SOURCE
/sys/src/libsec/port/salsa.c

SEE ALSO
chacha(2)
http://cr.yp.to/snuffle.html#specification

606

SAT(2) SAT(2)

NAME
satnew, satadd1, sataddv, satrange1, satrangev, satsolve, satmore, satval, satreset, satfree �

boolean satisfiability (SAT) solver

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <sat.h>

struct SATParam {
void (*errfun)(char *msg, void *erraux);
void *erraux;
long (*randfn)(void *randaux);
void *randaux;
/* + finetuning parameters, see sat.h */

};

struct SATSolve {
SATParam;
/* + internals */

};

SATSolve* satnew(void);
void satfree(SATSolve *s);
SATSolve* satadd1(SATSolve *s, int *lit, int nlit);
SATSolve* sataddv(SATSolve *s, ...);
SATSolve* satrange1(SATSolve *s, int *lit, int nlit,

int min, int max);
SATSolve* satrangev(SATSolve *s, int min, int max, ...);
int satsolve(SATSolve *s);
int satmore(SATSolve *s);
int satval(SATSolve *s, int lit);
int satget(SATSolve *s, int i, int *lit, int nlit);
void satreset(SATSolve *s);

DESCRIPTION
Libsat is a solver for the boolean satisfiability problem, i.e. given a boolean formula it will either
find an assignment to the variables that makes it true, or report that this is impossible. The input
formula must be in conjunctive normal form (CNF), i.e. of the form

(x
1

(x
2

(x
3

(&) ' (y
1

(y
2

(y
3

(&) ' &,

where each x
i
or y

i
can optionally be negated.

For example, consider

(x
1

(x
2

(x
3
) ' (¬x

1
(¬x

2
) ' (¬x

2
(¬x

3
) ' (¬x

1
(¬x

3
).

This formula encodes the constraint that exactly one of the three variables be true. To represent
this as input for libsat we assign positive integers to each variable. Negation is represented by the
corresponding negative number, hence our example corresponds to the set of "clauses"

1, 2, 3
-1, -2
-1, -3
-2, -3

To actually solve this problem we would create a SATSolve structure and add clauses one by one
using satadd1 or sataddv (the former takes an int array, the latter a variadic list terminated by
0). The SATSolve is modified inplace but returned for convenience. Passing nil as a first argu
ment will create and return a new structure. Alternatively, satnew will create an empty structure.

Once clauses have been added, satsolve will invoke the actual solver. It returns 1 if it found an
assignment and 0 if there is no assignment (the formula is unsatisfiable). If an assignment has
been found, further clauses can be added to constrain it further and satsolve rerun. Satmore per
forms this automatically, excluding the current values of the variables. It is equivalent to satsolve

607

SAT(2) SAT(2)

if no variables have assigned values.

Once a solution has been found, satval returns the value of literal lit. It returns 1 for true, 0 for
false and -1 for undetermined. If the formula is satisfiable, an undetermined variable is one where
either value will satisfy the formula. If the formula is unsatisfiable, all variables are undetermined.

Satrange1 and satrangev function like their satadd brethren but rather than adding a single clause
they add multiple clauses corresponding to the constraint that at least min and at most max liter
als from the provided array be true. For example, the clause from above corresponds to

satrangev(s, 1, 1, 1, 2, 3, 0);

For debugging purposes, clauses can be retrieved using satget. It stores the literals of the clause
with index i (starting from 0) at location lit. If there are more than nlit literals, only the first nlit lit
erals are stored. If it was successful, it returns the total number of literals in the clause (which
may exceed nlit). Otherwise (if idx was out of bounds) it returns -1.

Satreset resets all solver state, deleting all learned clauses and variable assignments. It retains all
user provided clauses. Satfree deletes a solver structure and frees all associated storage.

There are a number of user-adjustable parameters in the SATParam structure embedded in
SATSolve. Randfun is called with argument randaux to generate random numbers between 0
and 2

31
-1; it defaults to lrand (see rand(2)). Errfun is called on fatal errors (see DIAGNOSTICS).

Additionally, a number of finetuning parameters are defined in sat.h. By tweaking their values,
the run-time for a given problem can be reduced.

EXAMPLE
Find all solutions to the example clause from above:

SATSolve *s;

s = nil;
s = sataddv(s, 1, 2, 3, 0);
s = sataddv(s, −1, −2, 0);
s = sataddv(s, −1, −3, 0);
s = sataddv(s, −2, −3, 0);
while(satmore(s) > 0)

print("x1=%d x2=%d x3=%d\n",
satval(s, 1),
satval(s, 2),
satval(s, 3));

satfree(s);

SOURCE
/sys/src/libsat

SEE ALSO
Donald Knuth, ��The Art of Computer Programming��, Volume 4, Fascicle 6.

DIAGNOSTICS
Satnew returns nil on certain fatal error conditions (such as malloc(2) failure). Other routines
will call errfun with an error string and erraux. If no errfun is provided or if it returns, sysfatal
(see perror(2)) is called. It is permissible to use setjmp(2) to return from an error condition. Call
satfree to clean up the SATSolve structure in this case. Note that calling the satadd or satrange
routines with nil first argument will invoke sysfatal on error, since no errfun has been defined
yet.

BUGS
Variable numbers should be consecutive numbers starting from 1, since variable data is kept in
arrays internally.

Large clauses of several thousand literals are probably inefficient and should be split up using aux
iliary variables. Very large clauses exceeding about 16,000 literals will not work at all.

There is no way to remove clauses (since it�s unclear what the semantics should be).

The details about the tuning parameters are subject to change.

608

SAT(2) SAT(2)

Calling satadd or satrange after satsolve or satmore may reset variable values.

Satmore will always return 1 when there are no assigned variables in the solution.

Some debugging routines called under "shouldn�t happen" conditions are non-reentrant.

HISTORY
Libsat first appeared in 9front in March, 2018.

609

SCRIBBLE(2) SCRIBBLE(2)

NAME
scribblealloc, recognize � character recognition

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>
#include <scribble.h>

Scribble*scribblealloc(void);
Rune recognize(Scribble *);

DESCRIPTION
The scribble library implements simple character recognition. All characters are drawn using a sin
gle stroke of the pen (mouse button 1) as on a palmtop computer.

The library is not really intended for standalone use. Its primary use is by the scribble graphical
control (see control(2)).

Scribblealloc allocates and returns an appropriately initialized Scribble structure:

#define CS_LETTERS 0
#define CS_DIGITS 1
#define CS_PUNCTUATION 2

struct Scribble {
/* private state */
Point *pt;
int ppasize;
Stroke ps;
Graffiti *graf;
int capsLock;
int puncShift;
int tmpShift;
int ctrlShift;
int curCharSet;

};

This structure encodes the points making up the stroke to be recognized, as well as the character
group in which the stroke should be searched.

There are three such groups: letters, digits, and punctuation. The current group is encoded in the
curCharSet field of the Scribble structure. Special strokes are recognized to switch
between groups. In addition, the charater recognized is influenced by mode parameters and modi
fies them. These are identified by the capsLock, puncShift, tmpShift, and ctrlShift
fields of the Scribble structure. When puncShift is non-zero, the character is recognized in
the punctuation character set. Similarly, when the character recognized is printable and
ctrlShift is set, the associated control character is returned as if the control key were
depressed, and when the character is a letter and capsLock or tmpShift is set, the upper-
case version is returned. The puncShift and tmpShift flags are turned off once a character
has been recognized; the others are left set.

The character to be recognized is encoded as an array of pen_points in the ps field. To allow easy
drawing of the stroke as it is drawn, the pt and ppasize fields are available to the application code
for storing an array of points for a call to poly (see draw(2)).

Recognize recognizes the character provided in the ps field of the Scribble structure; it returns
the rune or zero if nothing was recognized.

FILES
/sys/lib/scribble/classifiers contains the stroke definitions.

SOURCE
/sys/src/libscribble

610

SCRIBBLE(2) SCRIBBLE(2)

This library is adapted from software reproduced by permission:

Graffiti.c is based on the file Scribble.c copyrighted by Keith Packard:

Copyright © 1999 Keith Packard

Permission to use, copy, modify, distribute, and sell this software and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission notice appear in supporting docu
mentation, and that the name of Keith Packard not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. Keith Packard makes no
representations about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Portions of the software Copyright © 1994 by Sun Microsystems Computer Company.

Portions of the software Copyright © 2000 by Compaq Computer Corporation.

SEE ALSO
Keyboard and prompter in bitsyload(1), draw(2), control(2)

611

SCSI(2) SCSI(2)

NAME
openscsi, closescsi, scsiready, scsi, scsicmd, scsierror � SCSI device operations

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <disk.h>

typedef struct Scsi {
char *inquire;
int rawfd;
int nchange;
ulong changetime;

};

Scsi* openscsi(char *devdir)

void closescsi(Scsi *s)

int scsiready(Scsi *s)

int scsi(Scsi *s, uchar *cmd, int ncmd,
void *data, int ndata, int dir)

int scsicmd(Scsi *s, uchar *cmd, int ncmd,
void *data, int ndata, int dir)

char* scsierror(int asc, int ascq)

int scsiverbose;

DESCRIPTION
These routines provide an interface to a SCSI or ATAPI device via sd(3).

Openscsi attempts to open the file devdir/raw and use it to send raw SCSI commands. On suc
cess, it reads the device�s inquiry string and stores it in inquire in the returned Scsi structure.
Closescsi closes the connection and frees the Scsi structure.

Scsiready sends the ��unit ready�� command up to three times, returning zero if the unit responds
that it is ready, or �1 on error.

Scsierror returns a textual description of the SCSI status denoted by the ASC and ASCQ sense
codes. The description is found by consulting /sys/lib/scsicodes. The returned string will
be overwritten by the next call to scsierror.

Scsi and scsicmd execute a single SCSI command on the named device. There should be ncmd
bytes of command data in cmd; if dir is Sread, a successful operation will store up to ndata bytes
into data, returning the number of bytes stored. If dir is Swrite, the ndata bytes beginning at
data are transmitted as the data argument to the command, and the number of bytes written is
returned. If dir is Snone, data and ndata are ignored. On error, scsi and scsicmd return �1.
Scsicmd simply issues the command and returns the result; scsi works a bit harder and is the more
commonly used routine. Scsi attempts to send the command; if it is successful, scsi returns what
scsicmd returned. Otherwise, scsi sends a request sense command to obtain the reason for the
failure, sends a unit ready command in an attempt to bring the unit out of any inconsistent states,
and tries again. If the second try fails, scsi sends the request sense and unit ready commands
again and then uses scsierror to set errstr with a reason for failure.

The nchange and changetime fields in the Scsi structure record the number of times a
media change has been detected, and the time when the current media was inserted into the drive
(really the first time a SCSI command was issued after it was inserted). They are maintained by
scsi.

If scsiverbose is set, these commands will produce a fair amount of debugging output on file
descriptor 2 when SCSI commands fail.

FILES
/sys/lib/scsicodes

List of textual messages corresponding to SCSI error codes; consulted by scsierror.

612

SCSI(2) SCSI(2)

SOURCE
/sys/src/libdisk/scsi.c

SEE ALSO
sd(3), scuzz(8)

613

SECHASH(2) SECHASH(2)

NAME
md4, md5, ripemd160, sha1, sha2_224, sha2_256, sha2_384, sha2_512, hmac_x, hmac_md5,
hmac_sha1, hmac_sha2_224, hmac_sha2_256, hmac_sha2_384, hmac_sha2_512, poly1305 � cryp
tographically secure hashes

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <mp.h>
#include <libsec.h>
#define DS DigestState /* only to abbreviate SYNOPSIS */

DS* md4(uchar *data, ulong dlen, uchar *digest, DS *state)

DS* md5(uchar *data, ulong dlen, uchar *digest, DS *state)

DS* ripemd160(uchar *data, ulong dlen, uchar *digest, DS *state)

DS* sha1(uchar *data, ulong dlen, uchar *digest, DS *state)

DS* sha2_224(uchar *data, ulong dlen, uchar *digest, DS *state)

DS* sha2_256(uchar *data, ulong dlen, uchar *digest, DS *state)

DS* sha2_384(uchar *data, ulong dlen, uchar *digest, DS *state)

DS* sha2_512(uchar *data, ulong dlen, uchar *digest, DS *state)

DS* hmac_x(uchar *p, ulong len, uchar *key, ulong klen, uchar
*digest, DS *s, DS*(*x)(uchar*, ulong, uchar*, DS*), int
xlen)

DS* hmac_md5(uchar *data, ulong dlen, uchar *key, ulong klen, uchar
*digest, DS *state)

DS* hmac_sha1(uchar *data, ulong dlen, uchar *key, ulong klen,
uchar *digest, DS *state)

DS* hmac_sha2_224(uchar *data, ulong dlen, uchar *key, ulong klen,
uchar *digest, DS *state)

DS* hmac_sha2_256(uchar *data, ulong dlen, uchar *key, ulong klen,
uchar *digest, DS *state)

DS* hmac_sha2_384(uchar *data, ulong dlen, uchar *key, ulong klen,
uchar *digest, DS *state)

DS* hmac_sha2_512(uchar *data, ulong dlen, uchar *key, ulong klen,
uchar *digest, DS *state)

DS* poly1305(uchar *p, ulong len, uchar *key, ulong klen, uchar
*digest, DS *state)

DESCRIPTION
The output of a hash is called a digest. A hash is secure if, given the hashed data and the digest, it
is difficult to predict the change to the digest resulting from some change to the data without
rehashing the whole data. Therefore, if a secret is part of the hashed data, the digest can be used
as an integrity check of the data by anyone possessing the secret.

The routines md4, md5, ripemd160, sha1, sha2_224, sha2_256, sha2_384, sha2_512, differ only
in the length of the resulting digest and in the security of the hash. Sha2_* and hmac_sha2_* are
the SHA-2 functions; the number after the final underscore is the number of bits in the resulting
digest. Usage for each is the same. The first call to the routine should have nil as the state
parameter. This call returns a state which can be used to chain subsequent calls. The last call
should have digest non-nil. Digest must point to a buffer of at least the size of the digest pro
duced. This last call will free the state and copy the result into digest.

The constants MD4dlen, MD5dlen, RIPEMD160dlen , SHA1dlen , SHA2_224dlen , SHA2_256dlen ,
SHA2_384dlen , SHA2_512dlen and Poly1305dlen define the lengths of the digests.

614

SECHASH(2) SECHASH(2)

Hmac_md5, hmac_sha1, hmac_sha2_224, hmac_sha2_256, hmac_sha2_384, hmac_sha2_512
and poly1305 are used slightly differently. These hash algorithms are keyed and require a key to
be specified on every call. The digest lengths for these hashes are the obvious ones from the
above list of length constants. The hmac_* routines all call hmac_x internally, but hmac_x is not
intended for general use.

Poly1305 is a one-time authenticator designed by D. J. Bernstein is documented in RFC8439. It
takes a 32-byte one-time key and a message and produces a 16-byte tag.

EXAMPLES
To hash a single buffer using md5:

uchar digest[MD5dlen];

md5(data, len, digest, nil);

To chain a number of buffers together, bounded on each end by some secret:

char buf[256];
uchar digest[MD5dlen];
DigestState *s;

s = md5("my password", 11, nil, nil);
while((n = read(fd, buf, 256)) > 0)

md5(buf, n, nil, s);
md5("drowssap ym", 11, digest, s);

SOURCE
/sys/src/libsec

SEE ALSO
blowfish(2), des(2), elgamal(2), rc4(2), rsa(2)
/lib/rfc/rfc2104 HMAC specification

615

SEEK(2) SEEK(2)

NAME
seek � change file offset

SYNOPSIS
#include <u.h>
#include <libc.h>

vlong seek(int fd, vlong n, int type)

DESCRIPTION
Seek sets the offset for the file associated with fd as follows:

If type is 0, the offset is set to n bytes.

If type is 1, the pointer is set to its current location plus n.

If type is 2, the pointer is set to the size of the file plus n.

The new file offset value is returned.

Seeking in a directory is not allowed. Seeking in a pipe is a no-op.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
intro(2), open(2)

DIAGNOSTICS
Sets errstr.

616

SEGATTACH(2) SEGATTACH(2)

NAME
segattach, segdetach, segfree � map/unmap a segment in virtual memory

SYNOPSIS
#include <u.h>
#include <libc.h>

void*segattach(int attr, char *class, void *va, ulong len)

int segdetach(void *addr)

int segfree(void *va, ulong len)

DESCRIPTION
Segattach creates a new memory segment, adds it to the calling process�s address space, and
returns its lowest address. Segments belong to system-dependent classes. Segment classes
memory (plain memory) and shared (shared memory) are available on all systems.

Shared segments are inherited by the children of the attaching process and remain untouched
across a fork(2). An exec(2) will release a shared segment if it overlaps the segments in the file
being exec’ed ; otherwise the segment will be inherited.

Some machines provide a segment class lock. Lock segments allow access to special lock hard
ware provided by some multiprocessors, in particular the SGI Power Series machines.

Systems may also provide interfaces to special hardware devices like frame buffers through the
segattach interface. Device memory mapped by this method is typically uncached by default.

If the specified class is unknown, segattach draws an error.

Attr specifies the new segment�s attributes. The only attributes implemented on all classes of seg
ment is SG_RONLY, which allows only read access on the segment, and SG_CEXEC, which causes
the segment to be detached when the process does an exec(2). Specific devices may implement
attributes to control caching and allocation, but these will vary between devices.

Va and len specify the position of the segment in the process�s address space. Va is rounded
down to the nearest page boundary and va+len is rounded up. The system does not permit seg
ments to overlap. If va is zero, the system will choose a suitable address.

Segdetach removes a segment from a process�s address space. Memory used by the segment is
freed. Addr may be any address within the bounds of the segment.

The system will not permit the initial stack segment to be detached from the address space.

Segfree tells the system that it may free any physical memory within the span [va, va+len), but
leaves that portion of the process�s address space valid. The system will not free any memory out
side that span, and may not free all or even any of the specified memory. If free�d memory is later
referenced, it will be initialized as appropriate for the segment type. For example data and text
segments will be read from the executable file, and bss segments will be filled with zero bytes.

The MIPS R2000 and R3000 have no hardware instructions to implement locks. The following
method can be used to build them from software. First, try to segattach a segment of class lock.
If this succeeds, the machine is an SGI Power Series and the memory contains hardware locks.
Each 4096-byte page has 64 long words at its beginning; each word implements a test-and-set
semaphore when read; the low bit of the word is zero on success, one on failure. If the segattach
fails, there is no hardware support but the operating system helps: Any COP3 instruction will be
trapped by the kernel and interpreted as a test-and-set. In the trap, R1 points to a long; on
return, R1 is greater or equal zero on success, negative on failure. The following assembly lan
guage implements such a test-and-set.

/*
* MIPS test and set
*/

TEXT tas(SB), $0
MOVW R1, sema+0(FP) /* save arg on stack */

btas:
MOVW sema+0(FP), R1
MOVB R0, 1(R1)

617

SEGATTACH(2) SEGATTACH(2)

NOR R0, R0, R0 /* NOP */
WORD $(023<<26) /* MFC3 R0, R0 */
BLTZ R1, btas
RET

SOURCE
/sys/src/libc/9syscall

SEE ALSO
lock(2), segbrk(2), segflush(2)
/proc/*/segment

DIAGNOSTICS
These functions set errstr. Segattach returns (void*)−1 on error.

BUGS
There is a small fixed limit on the number of segments that may be attached, as well as a maxi
mum segment size.

618

SEGBRK(2) SEGBRK(2)

NAME
segbrk � change memory allocation

SYNOPSIS
#include <u.h>
#include <libc.h>

void* segbrk(void *saddr, void *addr)

DESCRIPTION
Segbrk sets the system�s idea of the lowest unused location of a segment to addr rounded up to
the next multiple of a page size, typically 4096 bytes. The segment is identified by saddr which
may be any valid address within the segment.

A call to segbrk with a zero addr argument returns the base address of the segment without alter
ing its size.

The system will prevent segments from overlapping and will not allow the length of the text, data,
or stack segment to be altered.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
brk(2), segattach(2), segflush(2)
/proc/*/segment

DIAGNOSTICS
Sets errstr. Segbrk returns (void*)−1 on error.

BUGS
The segbrk system call may go away or be re-implemented to give more general segment control,
subsuming the functions of brk(2), segflush(2) and segfree in segattach(2).

619

SEGFLUSH(2) SEGFLUSH(2)

NAME
segflush � flush instruction and data caches

SYNOPSIS
#include <u.h>
#include <libc.h>

int segflush(void *va, ulong len)

DESCRIPTION
Segflush invalidates any instruction cache and writes back any data cache associated with pages
contained in a segment. All subsequent new pages in the segment will also be flushed when first
referenced.

Va is an address within the segment to be flushed; it is rounded down to the nearest page bound
ary. Len specifies the length in bytes of the memory to flush; va+len is rounded up to the nearest
page boundary. Segflush works correctly when the memory straddles multiple segments.

Correct use of segflush depends on an understanding of the cache architecture of the specific
machine.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
segattach(2), segbrk(2)
/proc/*/segment

DIAGNOSTICS
Sets errstr.

620

SEMACQUIRE(2) SEMACQUIRE(2)

NAME
semacquire, tsemacquire, semrelease - user level semaphores

SYNOPSIS
#include <u.h>
#include <libc.h>

int semacquire(long *addr, int block);

int tsemacquire(long *addr, ulong ms);

long semrelease(long *addr, long count);

DESCRIPTION
Semacquire, tsemacquire, and semrelease facilitate scheduling between processes sharing mem
ory. Processes arrange to share memory by using rfork with the RFMEM flag (see fork(2)),
segattach(2), or thread(2).

The semaphore�s value is the integer pointed at by addr. Semacquire atomically waits until the
semaphore has a positive value and then decrements that value. If block is zero and the sema
phore is not immediately available, semacquire returns 0 instead of waiting. Tsemacquire only
waits ms milliseconds for the semaphore to attain a positive value and, if available in that time,
decrements that value. It returns 0 otherwise. Both functions return 1 if the semaphore was
acquired and -1 on error (e.g., if they were interrupted). Semrelease adds count to the
semaphore�s value and returns the new value.

Semacquire (and analogously for tsemacquire) and semrelease can be thought of as efficient, cor
rect replacements for:

int
semacquire(long *addr, int block)
{

while(*addr == 0){
if(!block)

return 0;
if(interrupted)

return −1;
}
−−*addr;
return 1;

}

int
semrelease(long *addr, int count)
{

return *addr += count;
}

Like rendezvous (2), semacquire, tsemacquire, and semrelease are not typically used directly.
Instead, they are intended to be used to coordinate scheduling in higher-level abstractions such as
locks, rendezvous points, and channels (see lock(2) and thread(2)). Also like rendezvous ,
semacquire, tsemacquire, and semrelease cannot be used to coordinate between threads in a sin
gle process. Use locks, rendezvous points, or channels instead.

SOURCE
/sys/src/9/port/sysproc.c

SEE ALSO
fork(2), lock(2), rendezvous (2), segattach(2), thread(2)

DIAGNOSTICS
These functions set errstr.

621

SETJMP(2) SETJMP(2)

NAME
setjmp, longjmp, notejmp � non-local goto

SYNOPSIS
#include <u.h>
#include <libc.h>

int setjmp(jmp_buf env)

void longjmp(jmp_buf env, int val)

void notejmp(void *uregs, jmp_buf env, int val)

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level subrou
tine of a program.

Setjmp saves its stack environment in env for later use by longjmp. It returns value 0.

Longjmp restores the environment saved by the last call of setjmp. It then causes execution to con
tinue as if the call of setjmp had just returned with value val. The invoker of setjmp must not itself
have returned in the interim. All accessible data have values as of the time longjmp was called.

Notejmp is the same as longjmp except that it is to be called from within a note handler (see
notify(2)). The uregs argument should be the first argument passed to the note handler.

Setjmp and longjmp can also be used to switch stacks. Several macros are defined in
/$objtype/include/u.h that can be used to build jmp_bufs by hand. The following code
establishes a jmp_buf that may be called by longjmp to begin execution in a function f with
1024 bytes of stack:

#include <u.h>
#include <libc.h>

jmp_buf label;
#define NSTACK 1024
char stack[NSTACK];

void
setlabel(void)
{

label[JMPBUFPC] = ((ulong)f+JMPBUFDPC);
/* −2 leaves room for old pc and new pc in frame */
label[JMPBUFSP] =

(ulong)(&stack[NSTACK−2*sizeof(ulong*)]);
}

SOURCE
/sys/src/libc/$objtype/setjmp.s
/sys/src/libc/$objtype/notejmp.c

SEE ALSO
notify(2)

BUGS
Notejmp cannot recover from an address trap or bus error (page fault) on the 680x0 architectures.

622

SIN(2) SIN(2)

NAME
sin, cos, tan, asin, acos, atan, atan2 � trigonometric functions

SYNOPSIS
#include <u.h>
#include <libc.h>

double sin(double x)

double cos(double x)

double tan(double x)

double asin(double x)

double acos(double x)

double atan(double x)

double atan2(double y, double x)

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments. The magnitude of the argu
ment should be checked by the caller to make sure the result is meaningful.

Asin returns the arc sine in the range �À/2 to À/2.

Acos returns the arc cosine in the range 0 to À.

Atan returns the arc tangent in the range �À/2 to À/2.

Atan2 returns the arc tangent of y/x in the range �À to À.

SOURCE
/sys/src/libc/port

SEE ALSO
intro(2)

BUGS
The value of tan for arguments greater than about 2

31
is garbage.

623

SINH(2) SINH(2)

NAME
sinh, cosh, tanh � hyperbolic functions

SYNOPSIS
#include <u.h>
#include <libc.h>

double sinh(double x)

double cosh(double x)

double tanh(double x)

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

SOURCE
/sys/src/libc/port

SEE ALSO
intro(2)

624

SLEEP(2) SLEEP(2)

NAME
sleep, alarm � delay, ask for delayed note

SYNOPSIS
#include <u.h>
#include <libc.h>

int sleep(long millisecs)

long alarm(ulong millisecs)

DESCRIPTION
Sleep suspends the current process for the number of milliseconds specified by the argument. The
actual suspension time may be a little more or less than the requested time. If millisecs is 0, the
process gives up the CPU if another process is waiting to run, returning immediately if not. Sleep
returns �1 if interrupted, 0 otherwise.

Alarm causes an alarm note (see notify(2)) to be sent to the invoking process after the number of
milliseconds given by the argument. Successive calls to alarm reset the alarm clock. A zero argu
ment clears the alarm. The return value is the amount of time previously remaining in the alarm
clock.

SOURCE
/sys/src/libc/9syscall

SEE ALSO
intro(2)

DIAGNOSTICS
These functions set errstr.

625

STAT(2) STAT(2)

NAME
stat, fstat, wstat, fwstat, dirstat, dirfstat, dirwstat, dirfwstat, nulldir � get and put file status

SYNOPSIS
#include <u.h>
#include <libc.h>

int stat(char *name, uchar *edir, int nedir)

int fstat(int fd, uchar *edir, int nedir)

int wstat(char *name, uchar *edir, int nedir)

int fwstat(int fd, uchar *edir, int nedir)

Dir* dirstat(char *name)

Dir* dirfstat(int fd)

int dirwstat(char *name, Dir *dir)

int dirfwstat(int fd, Dir *dir)

void nulldir(Dir *d)

DESCRIPTION
Given a file�s name, or an open file descriptor fd, these routines retrieve or modify file status infor
mation. Stat, fstat, wstat, and fwstat are the system calls; they deal with machine-independent
directory entries. Their format is defined by stat(5). Stat and fstat retrieve information about name
or fd into edir, a buffer of length nedir, defined in <libc.h>. Wstat and fwstat write informa
tion back, thus changing file attributes according to the contents of edir. The data returned from
the kernel includes its leading 16-bit length field as described in intro(5). For symmetry, this field
must also be present when passing data to the kernel in a call to wstat and fwstat, but its value is
ignored.

Dirstat, dirfstat, dirwstat, and dirfwstat are similar to their counterparts, except that they operate
on Dir structures:

typedef
struct Dir {

/* system−modified data */
uint type; /* server type */
uint dev; /* server subtype */
/* file data */
Qid qid; /* unique id from server */
ulong mode; /* permissions */
ulong atime; /* last read time */
ulong mtime; /* last write time */
vlong length; /* file length: see <u.h> */
char *name; /* last element of path */
char *uid; /* owner name */
char *gid; /* group name */
char *muid; /* last modifier name */

} Dir;

The returned structure is allocated by malloc(2); freeing it also frees the associated strings.

This structure and the Qid structure are defined in <libc.h>. If the file resides on permanent
storage and is not a directory, the length returned by stat is the number of bytes in the file. For
directories, the length returned is zero. For files that are streams (e.g., pipes and network connec
tions), the length is the number of bytes that can be read without blocking.

Each file is the responsibility of some server: it could be a file server, a kernel device, or a user
process. Type identifies the server type, and dev says which of a group of servers of the same
type is the one responsible for this file. Qid is a structure containing path and vers fields:
path is guaranteed to be unique among all path names currently on the file server, and vers
changes each time the file is modified. The path is a long long (64 bits, vlong) and the
vers is an unsigned long (32 bits, ulong). Thus, if two files have the same type, dev,

626

STAT(2) STAT(2)

and qid they are the same file.

The bits in mode are defined by

0x80000000 directory
0x40000000 append only
0x20000000 exclusive use (locked)

0400 read permission by owner
0200 write permission by owner
0100 execute permission (search on directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

There are constants defined in <libc.h> for these bits: DMDIR, DMAPPEND, and DMEXCL for
the first three; and DMREAD, DMWRITE, and DMEXEC for the read, write, and execute bits for oth
ers.

The two time fields are measured in seconds since the epoch (Jan 1 00:00 1970 GMT). Mtime is
the time of the last change of content. Similarly, atime is set whenever the contents are
accessed; also, it is set whenever mtime is set.

Uid and gid are the names of the owner and group of the file; muid is the name of the user that
last modified the file (setting mtime). Groups are also users, but each server is free to associate a
list of users with any user name g, and that list is the set of users in the group g. When an initial
attachment is made to a server, the user string in the process group is communicated to the
server. Thus, the server knows, for any given file access, whether the accessing process is the
owner of, or in the group of, the file. This selects which sets of three bits in mode is used to
check permissions.

Only some of the fields may be changed with the wstat calls. The name can be changed by any
one with write permission in the parent directory. The mode and mtime can be changed by the
owner or the group leader of the file�s current group. The gid can be changed: by the owner if also
a member of the new group; or by the group leader of the file�s current group if also leader of the
new group (see intro(5) for more information about permissions and users(6) for users and
groups). The length can be changed by anyone with write permission, provided the operation is
implemented by the server. (See intro(5) for permission information, and users(6) for user and
group information).

Special values in the fields of the Dir passed to wstat indicate that the field is not intended to be
changed by the call. The values are the maximum unsigned integer of appropriate size for integral
values (usually ~0, but beware of conversions and size mismatches when comparing values) and
the empty or nil string for string values. The routine nulldir initializes all the elements of d to
these ��don�t care�� values. Thus one may change the mode, for example, by using nulldir to ini
tialize a Dir, then setting the mode, and then doing wstat; it is not necessary to use stat to
retrieve the initial values first.

SOURCE
/sys/src/libc/9syscall for the non-dir routines
/sys/src/libc/9sys for the routines prefixed dir

SEE ALSO
intro(2), fcall(2), dirread(2), stat(5)

DIAGNOSTICS
The dir functions return a pointer to the data for a successful call, or nil on error. The others
return the number of bytes copied on success, or �1 on error. All set errstr.

If the buffer for stat or fstat is too short for the returned data, the return value will be BIT16SZ
(see fcall(2)) and the two bytes returned will contain the initial count field of the returned data;
retrying with nedir equal to that value plus BIT16SZ (for the count itself) should succeed.

627

STRCAT(2) STRCAT(2)

NAME
strcat, strncat, strcmp, strncmp, cistrcmp, cistrncmp, strcpy, strncpy, strecpy, strlen, strchr, str
rchr, strpbrk, strspn, strcspn, strtok, strdup, strstr, cistrstr � string operations

SYNOPSIS
#include <u.h>
#include <libc.h>

char* strcat(char *s1, char *s2)

char* strncat(char *s1, char *s2, long n)

int strcmp(char *s1, char *s2)

int strncmp(char *s1, char *s2, long n)

int cistrcmp(char *s1, char *s2)

int cistrncmp(char *s1, char *s2, int n)

char* strcpy(char *s1, char *s2)

char* strecpy(char *s1, char *es1, char *s2)

char* strncpy(char *s1, char *s2, long n)

long strlen(char *s)

char* strchr(char *s, int c)

char* strrchr(char *s, int c)

char* strpbrk(char *s1, char *s2)

long strspn(char *s1, char *s2)

long strcspn(char *s1, char *s2)

char* strtok(char *s1, char *s2)

char* strdup(char *s)

char* strstr(char *s1, char *s2)

char* cistrstr(char *s1, char *s2)

DESCRIPTION
The arguments s1, s2 and s point to null-terminated strings. The functions strcat, strncat, strcpy,
strecpy, and strncpy all alter s1. Strcat and strcpy do not check for overflow of the array pointed
to by s1.

Strcat appends a copy of string s2 to the end of string s1. Strncat appends at most n bytes. Each
returns a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer less than, equal to, or greater than 0,
according as s1 is lexicographically less than, equal to, or greater than s2. Strncmp makes the
same comparison but examines at most n bytes. Cistrcmp and cistrncmp ignore ASCII case dis
tinctions when comparing strings. The comparisons are made with unsigned bytes.

Strcpy copies string s2 to s1, stopping after the null byte has been copied. Strncpy copies exactly
n bytes, truncating s2 or adding null bytes to s1 if necessary. The result will not be null-
terminated if the length of s2 is n or more. Each function returns s1.

Strecpy copies bytes until a null byte has been copied, but writes no bytes beyond es1. If any bytes
are copied, s1 is terminated by a null byte, and a pointer to that byte is returned. Otherwise, the
original s1 is returned.

Strlen returns the number of bytes in s, not including the terminating null byte.

Strchr (strrchr) returns a pointer to the first (last) occurrence of byte c in string s, or 0 if c does
not occur in the string. The null byte terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of any byte from string s2, 0 if no
byte from s2 exists in s1.

628

STRCAT(2) STRCAT(2)

Strspn (strcspn) returns the length of the initial segment of string s1 which consists entirely of
bytes from (not from) string s2.

Strtok considers the string s1 to consist of a sequence of zero or more text tokens separated by
spans of one or more bytes from the separator string s2. The first call, with pointer s1 specified,
returns a pointer to the first byte of the first token, and will have written a null byte into s1 imme
diately following the returned token. The function keeps track of its position in the string between
separate calls; subsequent calls, signified by s1 being 0, will work through the string s1 immedi
ately following that token. The separator string s2 may be different from call to call. When no
token remains in s1, 0 is returned.

Strdup returns a pointer to a distinct copy of the null-terminated string s in space obtained from
malloc(2) or 0 if no space can be obtained.

Strstr returns a pointer to the first occurrence of s2 as a substring of s1, or 0 if there is none. If
s2 is the null string, strstr returns s1. Cistrstr operates analogously, but ignores ASCII case differ
ences when comparing strings.

SOURCE
All these routines have portable C implementations in /sys/src/libc/port. Many also have
machine-dependent assembly language implementations in /sys/src/libc/$objtype.

SEE ALSO
memory(2), rune(2), runestrcat(2), string(2)

BUGS
These routines know nothing about UTF. Use the routines in rune(2) as appropriate. Note, how
ever, that the definition of UTF guarantees that strcmp compares UTF strings correctly.

The outcome of overlapping moves varies among implementations.

629

STRING(2) STRING(2)

NAME
s_alloc, s_append, s_array, s_copy, s_error, s_free, s_incref, s_memappend, s_nappend, s_new,
s_newalloc, s_parse, s_reset, s_restart, s_terminate, s_tolower, s_putc, s_unique, s_grow, s_read,
s_read_line, s_getline � extensible strings

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <String.h>

String* s_new(void)
void s_free(String *s)
String* s_newalloc(int n)
String* s_array(char *p, int n)
String* s_grow(String *s, int n)

void s_putc(String *s, int c)
void s_terminate(String *s)
String* s_reset(String *s)
String* s_restart(String *s)
String* s_append(String *s, char *p)
String* s_nappend(String *s, char *p, int n)
String* s_memappend(String *s, char *p, int n)
String* s_copy(char *p)
String* s_parse(String *s1, String *s2)

void s_tolower(String *s)

String* s_incref(String *s)
String* s_unique(String *s)

#include <bio.h>

int s_read(Biobuf *b, String *s, int n)
char* s_read_line(Biobuf *b, String *s)
char* s_getline(Biobuf *b, String *s)

DESCRIPTION
These routines manipulate extensible strings. The basic type is String, which points to an array
of characters. The string maintains pointers to the beginning and end of the allocated array. In
addition a finger pointer keeps track of where parsing will start (for s_parse) or new characters will
be added (for s_putc, s_append , and s_nappend). The structure, and a few useful macros are:

typedef struct String {
Lock;
char *base; /* base of String */
char *end; /* end of allocated space+1 */
char *ptr; /* ptr into String */
...

} String;

#define s_to_c(s) ((s)−>base)
#define s_len(s) ((s)−>ptr−(s)−>base)
#define s_clone(s) s_copy((s)−>base)

S_to_c is used when code needs a reference to the character array. Using s−>base directly is
frowned upon since it exposes too much of the implementation.

allocation and freeing
A string must be allocated before it can be used. One normally does this using s_new, giving the
string an initial allocation of 128 bytes. If you know that the string will need to grow much longer,
you can use s_newalloc instead, specifying the number of bytes in the initial allocation.

S_free causes both the string and its character array to be freed.

630

STRING(2) STRING(2)

S_grow grows a string�s allocation by a fixed amount. It is useful if you are reading directly into a
string�s character array but should be avoided if possible.

S_array is used to create a constant array, that is, one whose contents won�t change. It points
directly to the character array given as an argument. Tread lightly when using this call.

Filling the string
After its initial allocation, the string points to the beginning of an allocated array of characters
starting with NUL.

S_putc writes a character into the string at the pointer and advances the pointer to point after it.

S_terminate writes a NUL at the pointer but doesn�t advance it.

S_restart resets the pointer to the begining of the string but doesn�t change the contents.

S_reset is equivalent to s_restart followed by s_terminate.

S_append and s_nappend copy characters into the string at the pointer and advance the pointer.
They also write a NUL at the pointer without advancing the pointer beyond it. Both routines stop
copying on encountering a NUL. S_memappend is like s_nappend but doesn�t stop at a NUL.

If you know the initial character array to be copied into a string, you can allocate a string and copy
in the bytes using s_copy. This is the equivalent of a s_new followed by an s_append .

S_parse copies the next white space terminated token from s1 to the end of s2. White space is
defined as space, tab, and newline. Both single and double quoted strings are treated as a single
token. The bounding quotes are not copied. There is no escape mechanism.

S_tolower converts all ASCII characters in the string to lower case.

Multithreading
S_incref is used by multithreaded programs to avoid having the string memory released until the
last user of the string performs an s_free. S_unique returns a unique copy of the string: if the ref
erence count it 1 it returns the string, otherwise it returns an s_clone of the string.

Bio interaction
S_read reads the requested number of characters through a Biobuf into a string. The string is
grown as necessary. An eof or error terminates the read. The number of bytes read is returned.
The string is null terminated.

S_read_line reads up to and including the next newline and returns a pointer to the beginning of
the bytes read. An eof or error terminates the read. The string is null terminated.

S_getline reads up to the next newline and returns a pointer to the beginning of the bytes read.
Leading spaces and tabs and the trailing newline are all discarded. S_getline will recursively read
through files included with #include and discard all other lines beginning with #.

SOURCE
/sys/src/libString

SEE ALSO
bio(2)

631

STRINGSIZE(2) STRINGSIZE(2)

NAME
stringsize, stringwidth, stringnwidth, runestringsize, runestringwidth, runestringnwidth � graphical
size of strings

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>

Point stringsize(Font *f, char *s)

int stringwidth(Font *f, char *s)

int stringnwidth(Font *f, char *s, int n)

Point runestringsize(Font *f, Rune *s)

int runestringwidth(Font *f, Rune *s)

int runestringnwidth(Font *f, Rune *s, int n)

DESCRIPTION
These routines compute the geometrical extent of character strings when drawn on the display.
The most straightforward, stringsize, returns a Point representing the vector from upper
left to lower right of the NUL-terminated string s drawn in font f. Stringwidth returns just the
x component. Stringnwidth returns the width of the first n characters of s.

The routines beginning with rune are analogous, but accept an array of runes rather than UTF-
encoded bytes.

FILES
/lib/font/bit directory of fonts

SOURCE
/sys/src/libdraw

SEE ALSO
addpt(2), cachechars(2), subfont(2), draw(2), draw(3), image(6), font(6)

DIAGNOSTICS
Because strings are loaded dynamically, these routines may generate I/O to the server and produce
calls to the graphics error function.

632

SUBFONT(2) SUBFONT(2)

NAME
allocsubfont, freesubfont, installsubfont, lookupsubfont, uninstallsubfont, subfontname, readsub
font, readsubfonti, writesubfont, stringsubfont, strsubfontwidth, mkfont � subfont manipulation

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>

Subfont* allocsubfont(char *name, int n, int height, int ascent,
Fontchar *info, Image *i)

void freesubfont(Subfont *f)

void installsubfont(char *name, Subfont *f)

Subfont* lookupsubfont(Display *d, char *name)

void uninstallsubfont(Subfont *f)

Subfont* readsubfont(Display *d, char *name, int fd, int dolock)

Subfont* readsubfonti(Display *d, char *name, int fd, Image *im,
int dolock)

int writesubfont(int fd, Subfont *f)

Point stringsubfont(Image *dst, Point p, Image *src,
Subfont *f, char *str)

Point strsubfontwidth(Subfont *f, char *s)

Font* mkfont(Subfont *f, Rune min)

DESCRIPTION
Subfonts are the components of fonts that hold the character images. A font comprises an array of
subfonts; see cachechars(2). A new Subfont is allocated and initialized with allocsubfont. See
cachechars(2) for the meaning of n, height, ascent, and info, and the arrangement of characters in
image i. The name is used to identify the subfont in the subfont cache; see the descriptions
lookupsubfont and installsubfont (q.v.). The appropriate fields of the returned Subfont struc
ture are set to the passed arguments, and the image is registered as a subfont with the graphics
device draw(3). Allocsubfont returns 0 on failure.

Freesubfont frees a subfont and all its associated structure including the associated image. Since
freesbufont calls free on f−>info, if f−>info was not allocated by malloc(2) it should be
zeroed before calling subffree.

A number of subfonts are kept in external files. The convention for naming subfont files is:

/lib/font/bit/name/class.size.depth

where size is approximately the height in pixels of the lower case letters (without ascenders or
descenders). If there is only one version of the subfont, the .depth extension is elided. Class
describes the range of runes encoded in the subfont: ascii, latin1, greek, etc.

Subfonts are cached within the program, so a subfont shared between fonts will be loaded only
once. Installsubfont stores subfont f under the given name, typically the file name from which it
was read. Uninstallsubfont removes the subfont from the cache. Finally, lookupsubfont searches
for a subfont with the given name in the cache and returns it, or nil if no such subfont exists.

Subfontname is used to locate subfonts given their names within the fonts. The default version
constructs a name given the cfname, its name within the font, fname, the name of the font, and
the maximum depth suitable for this subfont. This interface allows a partially specified name
within a font to be resolved at run-time to the name of a file holding a suitable subfont. Although
it is principally a routine internal to the library, subfontname may be substituted by the application
to provide a less file-oriented subfont naming scheme.

The format of a subfont file is described in font(6). Briefly, it contains a image with all the charac
ters in it, followed by a subfont header, followed by character information. Readsubfont reads a
subfont from the file descriptor fd. The name is used to identify the font in the cache. The dolock

633

SUBFONT(2) SUBFONT(2)

argument specifies whether the routine should synchronize use of the Display with other pro
cesses; for single-threaded applications it may always be zero. Readsubfonti does the same for a
subfont whose associated image is already in memory; it is passed as the argument im. In other
words, readsubfonti reads only the header and character information from the file descriptor.

Writesubfont writes on fd the part of a subfont file that comes after the image. It should be pre
ceded by a call to writeimage (see allocimage(2)).

Stringsubfont is analogous to string (see draw(2)) for subfonts. Rather than use the underlying
font caching primitives, it calls draw for each character. It is intended for stand-alone environ
ments such as operating system kernels. Strsubfontwidth returns the width of the string s in as it
would appear if drawn with stringsubfont in Subfont f.

Mkfont takes as argument a Subfont s and returns a pointer to a Font that maps the character
images in s into the Runes min to min+s−>n−1.

FILES
/lib/font/bit bitmap font file tree

SOURCE
/sys/src/libdraw

SEE ALSO
graphics(2), allocimage(2), draw(2), cachechars(2), image(6), font(6)

DIAGNOSTICS
All of the functions use the graphics error function (see graphics(2)).

634

SYMBOL(2) SYMBOL(2)

NAME
syminit, getsym, symbase, pc2sp, pc2line, textseg, line2addr, lookup, findlocal, getauto, findsym,
localsym, globalsym, textsym, file2pc, fileelem, filesym, fileline, fnbound � symbol table access
functions

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <bio.h>
#include <mach.h>

int syminit(int fd, Fhdr *fp)

Sym *getsym(int index)

Sym *symbase(long *nsyms)

int fileelem(Sym **fp, uchar *encname, char *buf, int n)

int filesym(int index, char *buf, int n)

uvlong pc2sp(uvlong pc)

long pc2line(uvlong pc)

void textseg(uvlong base, Fhdr *fp)

uvlong line2addr(long line, uvlong basepc, uvlong endpc)

int lookup(char *fn, char *var, Symbol *s)

int findlocal(Symbol *s1, char *name, Symbol *s2)

int getauto(Symbol *s1, int off, int class, Symbol *s2)

int findsym(uvlong addr, int class, Symbol *s)

int localsym(Symbol *s, int index)

int globalsym(Symbol *s, int index)

int textsym(Symbol *s, int index)

uvlong file2pc(char *file, long line)

long fileline(char *str, int n, uvlong addr)

int fnbound(uvlong addr, uvlong *bounds)

DESCRIPTION
These functions provide machine-independent access to the symbol table of an executable file or
executing process. The latter is accessible by opening the device /proc/pid/text as described
in proc(3). Mach(2) and object(2) describe additional library functions for processing executable
and object files.

Syminit, getsym, symbase, fileelem, pc2sp, pc2line, and line2addr process the symbol table con
tained in an executable file or the text image of an executing program. The symbol table is
stored internally as an array of Sym data structures as defined in a.out(6).

Syminit uses the data in the Fhdr structure filled by crackhdr (see mach(2)) to read the raw sym
bol tables from the open file descriptor fd. It returns the count of the number of symbols or �1 if
an error occurs.

Getsym returns the address of the ith Sym structure or zero if index is out of range.

Symbase returns the address of the first Sym structure in the symbol table. The number of entries
in the symbol table is returned in nsyms.

Fileelem converts a file name, encoded as described in a.out(6), to a character string. Fp is the
base of an array of pointers to file path components ordered by path index. Encname is the
address of an array of encoded file path components in the form of a z symbol table entry. Buf
and n specify the address of a receiving character buffer and its length. Fileelem returns the
length of the null-terminated string that is at most n�1 bytes long.

635

SYMBOL(2) SYMBOL(2)

Filesym is a higher-level interface to fileelem. It fills buf with the name of the ith file and returns
the length of the null-terminated string that is at most n�1 bytes long. File names are retrieved in
no particular order, although the order of retrieval does not vary from one pass to the next. A
zero is returned when index is too large or too small or an error occurs during file name conver
sion.

Pc2sp returns an offset associated with a given value of the program counter. Adding this offset to
the current value of the stack pointer gives the address of the current stack frame. This approach
only applies to the 68020 architecture; other architectures use a fixed stack frame offset by a con
stant contained in a dummy local variable (called .frame) in the symbol table.

Pc2line returns the line number of the statement associated with the instruction address pc. The
line number is the absolute line number in the source file as seen by the compiler after pre-
processing; the original line number in the source file may be derived from this value using the
history stacks contained in the symbol table.

Pc2sp and pc2line must know the start and end addresses of the text segment for proper opera
tion. These values are calculated from the file header by function syminit. If the text segment
address is changed, the application program must invoke textseg to recalculate the boundaries of
the segment. Base is the new base address of the text segment and fp points to the Fhdr data
structure filled by crackhdr.

Line2addr converts a line number to an instruction address. The first argument is the absolute
line number in a file. Since a line number does not uniquely identify an instruction location (e.g.,
every source file has line 1), a second argument specifies a text address from which the search
begins. Usually this is the address of the first function in the file of interest.

Pc2sp, pc2line, and line2addr return �1 in the case of an error.

Lookup , findlocal, getauto, findsym, localsym, globalsym, textsym, file2pc, and fileline operate on
data structures riding above the raw symbol table. These data structures occupy memory and
impose a startup penalty but speed retrievals and provide higher-level access to the basic symbol
table data. Syminit must be called prior to using these functions. The Symbol data structure:

typedef struct {
void *handle; /* private */
struct {

char *name;
long value;
char type;
char class;

};
} Symbol;

describes a symbol table entry. The value field contains the offset of the symbol within its
address space: global variables relative to the beginning of the data segment, text beyond the start
of the text segment, and automatic variables and parameters relative to the stack frame. The
type field contains the type of the symbol as defined in a.out(6). The class field assigns the
symbol to a general class; CTEXT, CDATA, CAUTO, and CPARAM are the most popular.

Lookup fills a Symbol structure with symbol table information. Global variables and functions are
represented by a single name; local variables and parameters are uniquely specified by a function
and variable name pair. Arguments fn and var contain the name of a function and variable,
respectively. If both are non-zero, the symbol table is searched for a parameter or automatic vari
able. If only var is zero, the text symbol table is searched for function fn. If only fn is zero, the
global variable table is searched for var.

Findlocal fills s2 with the symbol table data of the automatic variable or parameter matching name.
S1 is a Symbol data structure describing a function or a local variable; the latter resolves to its
owning function.

Getauto searches the local symbols associated with function s1 for an automatic variable or param
eter located at stack offset off. Class selects the class of variable: CAUTO or CPARAM. S2 is the
address of a Symbol data structure to receive the symbol table information of the desired sym
bol.

636

SYMBOL(2) SYMBOL(2)

Findsym returns the symbol table entry of type class stored near addr. The selected symbol is a
global variable or function with address nearest to and less than or equal to addr. Class specifica
tion CDATA searches only the global variable symbol table; class CTEXT limits the search to the
text symbol table. Class specification CANY searches the text table first, then the global table.

Localsym returns the ith local variable in the function associated with s. S may reference a function
or a local variable; the latter resolves to its owning function. If the ith local symbol exists, s is
filled with the data describing it.

Globalsym loads s with the symbol table information of the ith global variable.

Textsym loads s with the symbol table information of the ith text symbol. The text symbols are
ordered by increasing address.

File2pc returns a text address associated with line in file file, or -1 on an error.

Fileline converts text address addr to its equivalent line number in a source file. The result, a null
terminated character string of the form file:line, is placed in buffer str of n bytes.

Fnbound returns the start and end addresses of the function containing the text address supplied
as the first argument. The second argument is an array of two unsigned longs; fnbound places the
bounding addresses of the function in the first and second elements of this array. The start
address is the address of the first instruction of the function; the end address is the address of the
start of the next function in memory, so it is beyond the end of the target function. Fnbound
returns 1 if the address is within a text function, or zero if the address selects no function.

Functions file2pc and fileline may produce inaccurate results when applied to optimized code.

Unless otherwise specified, all functions return 1 on success, or 0 on error. When an error occurs,
a message describing it is stored in the system error buffer where it is available via errstr.

SOURCE
/sys/src/libmach

SEE ALSO
mach(2), object(2), errstr(2), proc(3), a.out(6)

637

THREAD(2) THREAD(2)

NAME
alt, chanclose, chancreate, chanfree, chanclosing, chanprint, mainstacksize, proccreate, procdata,
procexec, procexecl, procrfork, recv, recvp, recvul, send, sendp, sendul, nbrecv, nbrecvp,
nbrecvul, nbsend, nbsendp, nbsendul, threadcreate, threaddata, threadexits, threadexitsall,
threadgetgrp, threadgetname, threadint, threadintgrp, threadkill, threadkillgrp, threadmain,
threadnotify, threadid, threadpid, threadsetgrp, threadsetname, threadwaitchan, yield � thread and
proc management

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <thread.h>

typedef enum {
CHANEND,
CHANSND,
CHANRCV,
CHANNOP,
CHANNOBLK,

} ChanOp;

typedef struct Alt Alt;
struct Alt {

Channel *c; /* channel */
void *v; /* pointer to value */
ChanOp op; /* operation */
char *err; /* did the op fail? */
/*
* the next variables are used internally to alt
* they need not be initialized
*/
Channel **tag; /* pointer to rendez−vous tag */
int entryno; /* entry number */

};

void threadmain(int argc, char *argv[])
int mainstacksize
int proccreate(void (*fn)(void*), void *arg, uint stacksize)
int procrfork(void (*fn)(void*), void *arg, uint stacksize,

int rforkflag)
int threadcreate(void (*fn)(void*), void *arg, uint stacksize)
void threadexits(char *status)
void threadexitsall(char *status)
void yield(void)

int threadid(void)
int threadgetgrp(void)
int threadsetgrp(int group)
int threadpid(int id)

void threadint(int id)
void threadintgrp(int group)
void threadkill(int id)
void threadkillgrp(int group)

void threadsetname(char *fmt, ...)
char* threadgetname(void)

void** threaddata(void)
void** procdata(void)

Channel* chancreate(int elsize, int nel)

638

THREAD(2) THREAD(2)

void chanfree(Channel *c)

int alt(Alt *alts)
int recv(Channel *c, void *v)
void* recvp(Channel *c)
ulong recvul(Channel *c)
int nbrecv(Channel *c, void *v)
void* nbrecvp(Channel *c)
ulong nbrecvul(Channel *c)
int send(Channel *c, void *v)
int sendp(Channel *c, void *v)
int sendul(Channel *c, ulong v)
int nbsend(Channel *c, void *v)
int nbsendp(Channel *c, void *v)
int nbsendul(Channel *c, ulong v)
int chanprint(Channel *c, char *fmt, ...)
int chanclose(Channel *c);
int chanclosing(Channel *c);

void procexecl(Channel *cpid, char *file, ...)
void procexec(Channel *cpid, char *file, char *args[])
Channel* threadwaitchan(void)

int threadnotify(int (*f)(void*, char*), int in)

DESCRIPTION
The thread library provides parallel programming support similar to that of the languages Alef and
Newsqueak. Threads and procs occupy a shared address space, communicating and synchroniz
ing through channels and shared variables.

A proc is a Plan 9 process that contains one or more cooperatively-scheduled threads. Programs
using threads must replace main by threadmain. The thread library provides a main function that
sets up a proc with a single thread executing threadmain on a stack of size mainstacksize (default
eight kilobytes). To set mainstacksize, declare a global variable initialized to the desired value
(e.g. , int mainstacksize = 1024).

Creation
Threadcreate creates a new thread in the calling proc, returning a unique integer identifying the
thread; the thread executes fn(arg) on a stack of size stacksize. Thread stacks are allocated in
shared memory, making it valid to pass pointers to stack variables between threads and procs.
Procrfork creates a new proc, and inside that proc creates a single thread as threadcreate would,
returning the id of the created thread. Procrfork creates the new proc by calling rfork (see
fork(2)) with flags RFPROC|RFMEM|RFNOWAIT|rforkflag. (The thread library depends on all its
procs running in the same rendezvous group. Do not include RFREND in rforkflag.) Proccreate is
identical to procrfork with rforkflag set to zero. Be aware that the calling thread may continue
execution before the newly created proc and thread are scheduled. Because of this, arg should not
point to data on the stack of a function that could return before the new process is scheduled.

Threadexits terminates the calling thread. If the thread is the last in its proc, threadexits also ter
minates the proc, using status as the exit status. Threadexitsall terminates all procs in the pro
gram, using status as the exit status.

Scheduling
The threads in a proc are coroutines, scheduled non-preemptively in a round-robin fashion. A
thread must explicitly relinquish control of the processor before another thread in the same proc is
run. Calls that do this are yield, proccreate, procexec, procexecl, threadexits, alt, send, and recv
(and the calls related to send and recv�see their descriptions further on), plus these from lock(2):
qlock, rlock, wlock, rsleep. Procs are scheduled by the operating system. Therefore, threads in
different procs can preempt one another in arbitrary ways and should synchronize their actions
using qlocks (see lock(2)) or channel communication. System calls such as read(2) block the
entire proc; all threads in a proc block until the system call finishes.

As mentioned above, each thread has a unique integer thread id. Thread ids are not reused; they
are unique across the life of the program. Threadid returns the id for the current thread. Each
thread also has a thread group id. The initial thread has a group id of zero. Each new thread

639

THREAD(2) THREAD(2)

inherits the group id of the thread that created it. Threadgetgrp returns the group id for the cur
rent thread; threadsetgrp sets it. Threadpid returns the pid of the Plan 9 process containing the
thread identified by id, or �1 if no such thread is found.

Threadint interrupts a thread that is blocked in a channel operation or system call. Threadintgrp
interrupts all threads with the given group id. Threadkill marks a thread to die when it next relin
quishes the processor (via one of the calls listed above). If the thread is blocked in a channel oper
ation or system call, it is also interrupted. Threadkillgrp kills all threads with the given group id.
Note that threadkill and threadkillgrp will not terminate a thread that never relinquishes the pro
cessor.

Names and per−thread data
Primarily for debugging, threads can have string names associated with them. Threadgetname
returns the current thread�s name; threadsetname sets it. The pointer returned by threadgetname
is only valid until the next call to threadsetname.

Threaddata returns a pointer to a per-thread pointer that may be modified by threaded programs
for per-thread storage. Similarly, procdata returns a pointer to a per-proc pointer.

Executing new programs
Procexecl and procexec are threaded analogues of exec and execl (see exec(2)); on success, they
replace the calling thread (which must be the only thread in its proc) and invoke the external pro
gram, never returning. On error, they return and set errstr. If cpid is not null, the pid of the
invoked program will be sent along cpid once the program has been started, or �1 will be sent if an
error occurs. Procexec and procexecl will not access their arguments after sending a result along
cpid. Thus, programs that malloc the argv passed to procexec can safely free it once they have
received the cpid response.

Threadwaitchan returns a channel of pointers to Waitmsg structures (see wait(2)). When an
exec�ed process exits, a pointer to a Waitmsg is sent to this channel. These Waitmsg struc
tures have been allocated with malloc(2) and should be freed after use.

Channels
A Channel is a buffered or unbuffered queue for fixed-size messages. Procs and threads send
messages into the channel and recv messages from the channel. If the channel is unbuffered, a
send operation blocks until the corresponding recv operation occurs and vice versa. Chancreate
allocates a new channel for messages of size elsize and with a buffer holding nel messages. If nel
is zero, the channel is unbuffered. Chanfree frees a channel that is no longer used. Chanfree can
be called by either sender or receiver after the last item has been sent or received. Freeing the
channel will be delayed if there is a thread blocked on it until that thread unblocks (but chanfree
returns immediately).

Send sends the element pointed at by v to the channel c. If v is null, zeros are sent. Recv receives
an element from c and stores it in v. If v is null, the received value is discarded. Send and recv
return 1 on success, �1 if interrupted. Nbsend and nbrecv behave similarly, but return 0 rather
than blocking.

Sendp, nbsendp, sendul, and nbsendul send a pointer or an unsigned long; the channel must have
been initialized with the appropriate elsize. Recvp, nbrecvp, recvul, and nbrecvul receive a pointer
or an unsigned long; they return zero when a zero is received, when interrupted, or (for nbrecvp
and nbrecvul) when the operation would have blocked. To distinguish between these three cases,
use recv or nbrecv.

Alt can be used to recv from or send to one of a number of channels, as directed by an array of
Alt structures, each of which describes a potential send or receive operation. In an Alt struc
ture, c is the channel; v the value pointer (which may be null); and op the operation: CHANSND
for a send operation, CHANRCV for a recv operation; CHANNOP for no operation (useful when alt
is called with a varying set of operations). The array of Alt structures is terminated by an entry
with op CHANEND or CHANNOBLK. If at least one Alt structure can proceed, one of them is cho
sen at random to be executed. Alt returns the index of the chosen structure. If no operations can
proceed and the list is terminated with CHANNOBLK, alt returns the index of the terminating
CHANNOBLK structure. Otherwise, alt blocks until one of the operations can proceed, eventually
returning the index of the structure it executes. Alt returns �1 when interrupted. The tag and
entryno fields in the Alt structure are used internally by alt and need not be initialized. They
are not used between alt calls.

640

THREAD(2) THREAD(2)

Chanprint formats its arguments in the manner of print(2) and sends the result to the channel c.
The string delivered by chanprint is allocated with malloc(2) and should be freed upon receipt.

Chanclose prevents further elements being sent to the channel c. After closing a channel, send and
recv never block. Send always returns �1. Recv returns �1 if the channel is empty. Alt may choose
a CHANSND or CHANRCV that failed because the channel was closed. In this case, the err field
of the Alt entry points to an error string stating that the channel was closed and the operation
was completed with failure. If all entries have been selected and failed because they were closed,
alt returns �1.

Errors, notes and resources
Thread library functions do not return on failure; if errors occur, the entire program is aborted.

Chanclosing returns �1 if no one called chanclose on the channel, and otherwise the number of ele
ments still in the channel.

Threaded programs should use threadnotify in place of atnotify (see notify(2)).

It is safe to use sysfatal (see perror(2)) in threaded programs. Sysfatal will print the error
string and call threadexitsall.

It is safe to use rfork (see fork(2)) to manage the namespace, file descriptors, note group, and
environment of a single process. That is, it is safe to call rfork with the flags RFNAMEG, RFFDG,
RFCFDG, RFNOTEG, RFENVG, and RFCENVG. (To create new processes, use proccreate and
procrfork.) As mentioned above, the thread library depends on all procs being in the same ren
dezvous group; do not change the rendezvous group with rfork.

FILES
/sys/lib/acid/thread useful acid(1) functions for debugging threaded programs.
/sys/src/libthread/example.c

a full example program.

SOURCE
/sys/src/libthread

SEE ALSO
intro(2), ioproc(2), lock(2)

641

TIME(2) TIME(2)

NAME
time, nsec � time in seconds and nanoseconds since epoch

SYNOPSIS
#include <u.h>
#include <libc.h>

long time(long *tp)

vlong nsec(void)

DESCRIPTION
Both time and nsec return the time since the epoch 00:00:00 GMT, Jan. 1, 1970. The return value
of the former is in seconds and the latter in nanoseconds. For time, if tp is not zero then *tp is
also set to the answer.

These functions work by reading /dev/bintime.

SOURCE
/sys/src/libc/9sys/time.c
/sys/src/libc/9sys/nsec.c

SEE ALSO
cputime(2), cons(3)

DIAGNOSTICS
Sets errstr.

642

TMDATE(2) TMDATE(2)

NAME
tmnow, tzload, tmtime, tmparse, tmfmt, tmnorm - convert date and time

SYNOPSIS
#include <u.h>
#include <libc.h>

typedef struct Tm Tm;
typedef struct Tmfmt Tmfmt;
typedef struct Tzone Tzone;

struct Tm {
int nsec; /* nanoseconds (range 0..1e9) */
int sec; /* seconds (range 0..59) */
int min; /* minutes (0..59) */
int hour; /* hours (0..23) */
int mday; /* day of the month (1..31) */
int mon; /* month of the year (0..11) */
int year; /* C.E year − 1900 */
int wday; /* day of week (0..6, Sunday = 0) */
int yday; /* day of year (0..365) */
char zone[]; /* time zone name */
int tzoff; /* time zone delta from GMT, seconds */
Tzone *tz; /* the time zone (optional) */

};

Tzone *tzload(char *name);
Tm *tmnow(Tm *tm, Tzone *tz);
Tm *tmtime(Tm *tm, vlong abs, Tzone *tz);
Tm *tmtimens(Tm *tm, vlong abs, int ns, Tzone *tz);
Tm *tmparse(Tm *dst, char *fmt, char *tm, Tzone *zone, char **ep);
vlong tmnorm(Tm *tm);
Tmfmt tmfmt(Tm *tm, char *fmt);
void tmfmtinstall(void);

DESCRIPTION
This family of functions handles simple date and time manipulation.

Time zones are loaded by name. They can be specified as the abbreviated timezone name, the full
timezone name, the path to a timezone file, or an absolute offset in the HHMM form.

When given as a timezone, any instant-dependent adjustments such as leap seconds and daylight
savings time will be applied to the derived fields of struct Tm, but will not affect the absolute time.
The time zone name local always refers to the time in /env/timezone. The nil timezone always
refers to GMT.

Tzload loads a timezone by name. The returned timezone is cached for the lifetime of the pro
gram, and should not be freed. Loading a timezone repeatedly by name loads from the cache, and
does not leak.

Tmnow gets the current time of day in the requested time zone.

Tmtime converts the second resolution timestamp �abs� into a Tm struct in the requested time
zone. Tmtimens does the same, but with a nanosecond accuracy.

Tmtimens is identical to tmtime, but accepts a nanosecond argument.

Tmparse parses a time from a string according to the format argument. Leading whitespace is
ignored. The point at which the parsing stopped is returned in ep. If ep is nil, trailing garbage is
ignored. The result is returned in the timezone requested. If there is a timezone in the date, and
a timezone is provided when parsing, then the zone is shifted to the provided timezone. Parsing is
case-insensitive

The format argument contains zero or more of the following components:

643

TMDATE(2) TMDATE(2)

Y, YY, YYYY
Represents the year. YY prints the year in 2 digit form.

M, MM, MMM, MMMM
The month of the year, in unpadded numeric, padded numeric, short name, or long name,
respectively.

D, DD
The day of month in unpadded or padded numeric form, respectively.

W, WW, WWW
The day of week in numeric, short or long name form, respectively.

h, hh
The hour in unpadded or padded form, respectively

m, mm
The minute in unpadded or padded form, respectively

s, ss
The second in unpadded or padded form, respectively

t, tt
The milliseconds in unpadded and padded form, respectively. u, uu, uuu, uuuu The
microseconds in unpadded. padded form modulo milliseconds, or unpadded, padded forms
of the complete value, respectively. n, nn, nnn, nnnn, nnnnn, nnnnnn The
nanoseconds in unpadded and padded form modulo milliseconds, the unpadded and pad
ded form modulo microseconds, and the unpadded and padded complete value, respec
tively.

Z, ZZ, ZZZ
The timezone in [+-]HHMM and [+-]HH:MM, and named form, respectively. If the named
timezone matches the name of the local zone, then the local timezone will be used. Other
wise, we will attempt to use the named zones listed in RFC5322.

a, A Lower and uppercase �am� and �pm� specifiers, respectively.

[...]
Quoted text, copied directly to the output.

_ When formatting, this inserts padding into the date format. The padded width of a field is
the sum of format and specifier characters combined. When For example, __h will format to
a width of 3. When parsing, this acts as whitespace.

? When parsing, all formats of the following argument are tried from most to least specific.
For example, ?M will match January , Jan, 01, and 1, in that order. When formatting, ? is
ignored.

~ When parsing a date, this slackens range enforcement, accepting out of range values such
as January 32, which would get normalized to February 1st.

Any characters not specified above are copied directly to output, without modification.

Tmfmt produces a format description structure suitable for passing to fmtprint(2) . If fmt is nil, we
default to the format used in ctime(2). The format of the format string is identical to tmparse.

When parsing, any amount of whitespace is treated as a single token. All string matches are case
insensitive, and zero padding is optional.

Tmnorm takes a manually adjusted Tm structure, and normalizes it, returning the absolute times
tamp that the date represents. Normalizing recomputes the year, mon, mday, hr, min, sec and
tzoff fields. If tz is non-nil, then tzoff will be recomputed, taking into account daylight savings for
the absolute time. The values not used in the computation are recomputed for the resulting abso
lute time. All out of range values are wrapped. For example, December 32 will roll over to Jan 1 of
the following year.

644

TMDATE(2) TMDATE(2)

Tmfmtinstall installs a time format specifier %Ä. The time format behaves as in tmfmt

EXAMPLES
All examples assume tmfmtinstall has been called.

Get the current date in the local timezone, UTC, and US_Pacific time. Print it using the default for
mat.

Tm t;
Tzone *zl, *zp;
if((zl = tzload("local") == nil)

sysfatal("load zone: %r");
if((zp = tzload("US_Pacific") == nil)

sysfatal("load zone: %r");
print("local: %τ\n", tmfmt(tmnow(&t, zl), nil));
print("gmt: %τ\n", tmfmt(tmnow(&t, nil), nil));
print("eastern: %τ\n", tmfmt(tmnow(&t, zp), nil));

Compare if two times are the same, regardless of timezone. Done with full, strict error checking.

#define Fmt "?WWW, ?MM ?DD hh:mm:ss ?Z YYYY"
Tm a, b;
char *e, *est, *pst;

pst = "Tue Dec 10 12:36:00 PST 2019";
est = "Tue Dec 10 15:36:00 EST 2019";
f(tmparse(&a, Fmt, pst, nil, &e) == nil)

sysfatal("failed to parse: %r");
if(*e != ’\0’)

sysfatal("trailing junk %s", e);
if(tmparse(&b, Fmt, est, nil, &e) == nil)

sysfatal("failed to parse: %r");
if(*e != ’\0’)

sysfatal("trailing junk %s", e);
if(tmnorm(a) == tmnorm(b) && a.nsec == b.nsec)

print("same\n");
else

print("different\n");

Convert from one timezone to another.

Tm here, there;
Tzone *zl, *zp;
if((zl = tzload("local")) == nil)

sysfatal("load zone: %r");
if((zp = tzload("US_Pacific")) == nil)

sysfatal("load zone: %r");
if(tmnow(&here, zl) == nil)

sysfatal("get time: %r");
if(tmtime(&there, tmnorm(&here), zp) == nil)

sysfatal("shift time: %r");

Add a day. Because cross daylight savings, only 23 hours are added.

Tm t;
char *date = "Sun Nov 2 13:11:11 PST 2019";
if(tmparse(&t, "W MMM D hh:mm:ss z YYYY, date, nil) == nil)

print("failed to parse");

645

TMDATE(2) TMDATE(2)

t.day++;
tmnorm(&t);
print("%τ", tmfmt(&t, nil)); /* Mon Nov 3 13:11:11 PST 2019 */

BUGS
Checking the timezone name against the local timezone is a dirty hack. The same date string may
parse differently for people in different timezones.

Tmparse and ctime don�t mix. Tmparse preserves timezone names, including names like �+0200�.
Ctime expects timezone names to be exactly three characters. Use the %τ format character instead
of ctime.

The timezone information that we ship is out of date.

The Plan 9 timezone format has no way to express leap seconds.

We provide no way to manipulate timezones.

646

TMPFILE(2) TMPFILE(2)

NAME
tmpfile, tmpnam � Stdio temporary files

SYNOPSIS
#include <u.h>
#include <stdio.h>

FILE *tmpfile(void)

char *tmpnam(char *s)

DESCRIPTION
Tmpfile creates a temporary file that will automatically be removed when the file is closed or the
program exits. The return value is a Stdio FILE* opened in update mode (see fopen(2)).

Tmpnam generates a string that is a valid file name and that is not the same as the name of an
existing file. If s is zero, it returns a pointer to a string which may be overwritten by subsequent
calls to tmpnam. If s is non-zero, it should point to an array of at least L_tmpnam (defined in
<stdio.h>) characters, and the answer will be copied there.

FILES
/tmp/tf000000000000 template for tmpfile file names.
/tmp/tn000000000000 template for tmpnam file names.

SOURCE
/sys/src/libstdio

BUGS
The files created by tmpfile are not removed until exits(2) is executed; in particular, they are not
removed on fclose or if the program terminates abnormally.

647

TTF(2) TTF(2)

NAME
ttfopen, ttfscale, ttfclose, ttffindchar, ttfenumchar, ttfgetglyph, ttfputglyph, ttfgetcontour, ttfren
der, ttfrunerender, ttfnewbitmap, ttffreebitmap, ttfblit � TrueType renderer

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <bio.h>
#include <ttf.h>

struct TTBitmap {
u8int *bit;
int width, height, stride;

};

struct TTGlyph {
TTBitmap;
int xminpx, xmaxpx, yminpx, ymaxpx, advanceWidthpx;
/* + internals */

};

struct TTFont {
int ppem, ascentpx, descentpx;
/* + internals */

};

TTFont* ttfopen(char *filename, int size, int flags);
TTFont* ttfscale(TTFont *f, int size, int flags);
void ttfclose(TTFont *f);

int ttffindchar(TTFont *f, Rune r);
int ttfenumchar(TTFont *f, Rune r, Rune *rp);

TTGlyph* ttfgetglyph(TTFont *f, int glyphidx, int render);
void ttfputglyph(TTGlyph *g);
int ttfgetcontour(TTGlyph *g, int idx, float **fp, int *nfp);

TTBitmap* ttfrender(TTFont *f, char *s, char *e, int w, int h,
int flags, char **pp);

TTBitmap* ttfrunerender(TTFont *f, Rune *s, Rune *e, int w, int h,
int flags, Rune **pp);

TTBitmap* ttfnewbitmap(int w, int h);
void ttfblit(TTBitmap *dst, int dstx, int dsty, TTBitmap *src,

int srcx, int srcy, int w, int h);
void ttffreebitmap(TTBitmap *);

DESCRIPTION
Libttf is a parser and renderer of TrueType fonts. Given a ttf font file it can produce the ren
dered versions of characters at a given size.

Ttfopen opens the font at filename and initialises it for rendering at size size (specified in pixels
per em). Flags is reserved for future use and should be zero. If rendering at multiple sizes is
desired, ttfscale reopens the font at a different size (internally the size-independent data is
shared). TTfclose closes an opened font. Each instance of a font created by ttfopen and ttfscale
must be closed separately.

A character in a TrueType font is called a glyph. Glyphs are numbered starting from 0 and the
glyph indices do not need to follow any established coding scheme. Ttffindchar finds the glyph
number of a given rune (Unicode codepoint). If the character does not exist in the font, zero is
returned. Note that, in TrueType fonts, glyph 0 conventionally contains the "glyph not found" char
acter. Ttfenumchar is like ttffindchar but will continue searching if the character is not in the font,
returning the rune number for which it found a glyph in *rp. It returns character in ascending
Unicode order and it can be used to enumerate the characters in a font. Zero is returned if there
are no further characters.

648

TTF(2) TTF(2)

Ttfgetglyph interprets the actual data for a glyph specified by its index glyphidx. With render set to
zero, the data is left uninterpreted; currently its only use is ttfgetcontour. With render set to one,
the glyph is also rendered, i.e. a pixel representation is produced and stored in the TTBitmap
embedded in the TTGlyph structure it returns. Although TrueType uses a right handed coordinate
system (y increases going up), the bitmap data returns follows Plan 9 conventions (and is compati
ble with the draw(3) mask argument). The bottom left hand corner is at position (xmin, ymin) in
the TrueType coordinate system. Ttfputglyph should be used to return TTGlyph structures for
cleanup.

Ttfgetcontour can be used to obtain raw contour data for a glyph. Given an index i it returns the
corresponding contour (counting from zero), storing a pointer to a list of (x, y) pairs in *fp. The
array is allocated with malloc(2). The (always odd) number of points is stored in *np. The con
tours correspond to closed quadratic Bézier curves and the points with odd indices are the control
points. For an invalid index, zero is returned and *fp and *np are not accessed. For a valid
index, the number returned is the number of contours with index e i.

Ttfrender and ttfrunerender typeset a string of text (specified as UTF-8 or raw Unicode, respec
tively) and return a bitmap of size w and h. It attempts to typeset text starting from s and up to
and not including e. If e is nil, text is typeset until a null byte is encountered. Flags specifies the
alignment. TTFLALIGN, TTFRALIGN and TTFCENTER specify left-aligned, right-aligned and
centered text, respectively. TTFJUSTIFY can be or�ed with these three options to produce text
where any ��wrapped�� line is justified.

For reasons of efficiency and simplicity, libttf includes its own format for 1 bpp bitmaps. In these
bitmaps, 0 corresponds to transparent and 1 corresponds to opaque. Otherwise, the format is
identical to k1 image(6) bitmaps. Ttfnewbitmap and ttffreebitmap allocate and deallocate such
bitmaps, respectively. TTGlyph structures can be used in place of bitmaps but must be deallocated
with ttfputglyph, not ttffreebitmap. Ttfblit copies part of one bitmap onto another. Note that bits
are or�ed together � blitting a transparent over an opaque pixel does not produce an transparent
pixel.

SOURCE
/sys/src/libttf

SEE ALSO
Apple, ��TrueType" Reference Manual��.
Microsoft, ��OpenType® specification��.
FreeType, source code (the only accurate source).
ttfrender(1).

DIAGNOSTICS
Following standard conventions, routines returning pointers return nil on error and return an
error message in errstr.

BUGS
Both ��standards�� are packages of contradictions and lies.

Apple Advanced Typography and Microsoft OpenType extensions are not supported; similarly
non-TrueType (Postscript, Bitmap) fonts packaged as .ttf files are not supported.

The library is immature and interfaces are virtually guaranteed to change.

Fonts packaged as .ttc files are not supported.

HISTORY
Libttf first appeared in 9front in June, 2018.

649

VENTI(2) VENTI(2)

NAME
venti � archival storage server

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <venti.h>

DESCRIPTION
The Venti library provides support for writing Venti servers and clients. Other manual pages
describe the library functions in detail.

Venti−cache(2) describes a simple in-memory block cache to help clients.

Venti−conn(2) describes routines for manipulating network connections between Venti clients and
servers. Venti−client(2) and venti−server(2) describe routines for writing clients and servers on
top of these.

Venti−fcall(2) describes the C representation of Venti protocol messages and data structures. It
also describes routines that convert between the C representation and the network and disk repre
sentations.

Venti−file(2) describes routines for writing clients that manipulate Venti file trees (see venti(6)).

Venti−log(2) describes routines to access in-memory log buffers as well as the logging that is done
automatically by the library.

Venti−mem(2) describes wrappers around the canonical malloc(2) routines that abort on error.

Venti−packet(2) describes routines for manipulating zero-copy chains of data buffers.

Venti−zero(2) describes routines to zero truncate and zero extend blocks (see venti(6)).

SOURCE
/sys/src/libventi

SEE ALSO
venti(1), venti−cache(2), venti−client(2), venti−fcall(2), venti−file(2) venti−log(2), venti−mem(2),
venti−packet(2), venti−server(2), venti−zero(2), venti(6), venti(8)

650

VENTI-CACHE(2) VENTI-CACHE(2)

NAME
VtBlock, VtCache, vtblockcopy, vtblockdirty, vtblockduplock, vtblockput, vtblockwrite, vtcachealloc,
vtcacheallocblock, vtcacheblocksize, vtcachefree, vtcacheglobal, vtcachelocal, vtcachesetwrite,
vtglobaltolocal, vtlocaltoglobal � Venti block cache

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <venti.h>

typedef struct VtBlock
{

uchar *data;
uchar type;
uchar score[VtScoreSize];
u32int addr;
...

} VtBlock;

VtCache* vtcachealloc(VtConn *z, int blocksize, ulong nblocks);

void vtcachefree(VtCache *c);

u32int vtcacheblocksize(VtCache *c);

u32int vtglobaltolocal(uchar score[VtScoreSize])
void vtlocaltoglobal(u32int local, uchar score[VtScoreSize])

VtBlock* vtcacheallocblock(VtCache *c, int type);

VtBlock* vtcachelocal(VtCache *c, u32int addr, int type);

VtBlock* vtcacheglobal(VtCache *c, uchar[VtScoreSize], int type);

void vtblockput(VtBlock *b);

void vtblockduplock(VtBlock *b);

int vtblockwrite(VtBlock *b);

void vtcachesetwrite(VtCache *c,
int (*write)(VtConn*, uchar[VtScoreSize], uint, uchar*, int));

VtBlock* vtblockcopy(VtBlock *b);

int vtblockdirty(VtBlock *b);

DESCRIPTION
These functions provide access to a simple in-memory cache of blocks already stored on a Venti
server and blocks that will eventually be stored on a Venti server.

A VtBlock represents a venti data block. Blocks stored on a venti server, called global blocks,
are named by the SHA1 hash of their contents. This hash is recorded as the block�s score. Such
blocks are immutable. The cache also stores mutable blocks that have not yet been written to a
venti server. These blocks are called local blocks, and have special scores that are 16 zero bytes
followed by a 4-byte big-endian address. The address is an index into the internal set of cache
blocks.

The user-visible contents of a VtBlock are data, a pointer to the data; type, the venti block
type; score, the block�s score; and addr, the block�s cache address.

Vtcachealloc allocates a new cache using the client connection z (see venti−conn(2) and venti−
client(2)), with room for nblocks of maximum block size blocksize .

Vtcachefree frees a cache and all the associated blocks.

Vtcacheblocksize returns the cache�s maximum block size.

Vtglobaltolocal returns the local address corresponding to the given local score. If passed a global
score, vtglobaltolocal returns the special constant NilBlock (~0). Vtlocaltoglobal is the oppo
site, setting score to the local score for the cache address local.

651

VENTI-CACHE(2) VENTI-CACHE(2)

Vtcacheallocblock allocates a new local block with the given type.

Vtcachelocal retrieves the local block at address addr from the cache. The given type must match
the type of the block found at addr.

Vtcacheglobal retrieves the block with the given score and dtype from the cache, consulting the
Venti server if necessary. If passed a local score, vtcacheglobal invokes vtcachelocal appropriately.

The block references returned by vtcacheallocblock, vtcachelocal, and vtcacheglobal must be
released when no longer needed. Vtblockput releases such a reference.

It is occasionally convenient to have multiple variables refer to the same block. Vtblockduplock
increments the block�s reference count so that an extra vtblockput will be required in order to
release the block.

Vtblockwrite writes a local block to the Venti server, changing the block to a global block. It calls
the cache�s write function to write the block to the server. The default write function is vtwrite
(see venti−client(2)); vtsetcachewrite sets it. Vtsetcachewrite is used by clients to install replace
ment functions that run writes in the background or perform other additional processing.

Vtblockcopy copies a block in preparation for modifying its contents. The old block may be a local
or global block, but the new block will be a local block.

The cache only evicts global blocks. Local blocks can only leave the cache via vtblockwrite, which
turns them into global blocks, making them candidates for eviction.

If a new cache block must be allocated (for vtcacheallocblock, vtcachelocal, vtcacheglobal, or
vtblockcopy), but the cache is filled (with local blocks and blocks that have not yet been released
with vtblockput), the library prints the score and reference count of every block in the cache and
then aborts. A full cache indicates either that the cache is too small, or, more commonly, that
cache blocks are being leaked.

SOURCE
/sys/src/libventi

SEE ALSO
venti(2), venti−client(2), venti−conn(2), venti−file(2), venti(6)

652

VENTI-CLIENT(2) VENTI-CLIENT(2)

NAME
vtconnect, vthello, vtread, vtwrite, vtreadpacket, vtwritepacket, vtsync, vtping, vtrpc, ventidou
blechecksha1 � Venti client

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <venti.h>

Packet* vtrpc(VtConn *z, Packet *p)

int vthello(VtConn *z)

int vtconnect(VtConn *z)

int vtread(VtConn *z, uchar score[VtScoreSize],
uint type, uchar *buf, int n)

int vtwrite(VtConn *z, uchar score[VtScoreSize],
uint type, uchar *buf, int n)

Packet* vtreadpacket(VtConn *z, uchar score[VtScoreSize],
uint type, int n)

int vtwritepacket(VtConn *z, uchar score[VtScoreSize],
uint type, Packet *p)

int vtsync(VtConn *z)

int vtping(VtConn *z)

extern int ventidoublechecksha1; /* default 1 */

DESCRIPTION
These routines execute the client side of the venti(6) protocol.

Vtrpc executes a single Venti RPC transaction, sending the request packet p and then waiting for
and returning the response packet. Vtrpc will set the tag in the packet. Vtrpc frees p, even on
error. Vtrpc is typically called only indirectly, via the functions below.

Vthello executes a hello transaction, setting z−>sid to the name used by the server. Vthello is
typically called only indirectly, via vtconnect.

Vtconnect calls vtversion (see venti−conn(2)) and vthello, in that order, returning success only if
both succeed. This sequence (calling vtversion and then vthello) must be done before the func
tions below can be called.

Vtread reads the block with the given score and type from the server, stores the returned data in
memory at buf, and returns the number of bytes read. If the server�s block has size larger than n,
vtread does not modify buf and returns an error.

Vtwrite writes the n bytes in buf as a block of the given type, setting score.

Vtreadpacket and vtwritepacket are like vtread and vtwrite but return or accept the block contents
in the form of a Packet. They avoid making a copy of the data.

Vtsync causes the server to flush all pending write requests to disk before returning.

Vtping executes a ping transaction with the server.

By default, vtread and vtreadpacket check that the SHA1 hash of the returned data matches the
requested score, and vtwrite and vtwritepacket check that the returned score matches the SHA1
hash of the written data. Setting ventidoublechecksha1 to zero disables these extra checks, mainly
for benchmarking purposes. Doing so in production code is not recommended.

These functions can be called from multiple threads or procs simultaneously to issue requests in
parallel. Programs that issue requests from multiple threads in the same proc should start sepa
rate procs running vtsendproc and vtrecvproc as described in venti−conn(2).

SOURCE
/sys/src/libventi

653

VENTI-CLIENT(2) VENTI-CLIENT(2)

SEE ALSO
venti(2), venti−conn(2), venti−packet(2), venti(6)

DIAGNOSTICS
Vtrpc and vtpacket return nil on error. The other routines return �1 on error.

Vtwrite returns 0 on success: there are no partial writes.

654

VENTI-CONN(2) VENTI-CONN(2)

NAME
VtConn, vtconn, vtdial, vtfreeconn, vtsend, vtrecv, vtversion, vtdebug, vthangup � Venti network
connections

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <venti.h>

typedef struct VtConn {
int debug;
char *version;
char *uid;
char *sid;
char addr[256];
...

} VtConn;

VtConn* vtconn(int infd, int outfd)

int vtreconn(VtConn *z, int infd, int outfd)

VtConn* vtdial(char *addr)

int vtredial(VtConn *z, char *addr)

int vtversion(VtConn *z)

int vtsend(VtConn *z, Packet *p)

Packet* vtrecv(VtConn *z)

void vtrecvproc(void *z)

void vtsendproc(void *z)

void vtdebug(VtConn *z, char *fmt, ...)

void vthangup(VtConn *z)

void vtfreeconn(VtConn *z)

extern int chattyventi;/* default 0 */

DESCRIPTION
A VtConn structure represents a connection to a Venti server (when used by a client) or to a client
(when used by a server). It contains the following user-visible fields: debug, a flag enabling
debugging prints; version, the protocol version in use; uid, the (unverified) name of the client;
sid, the (unverified) name of the server; and addr, the network address of the remote side.

Vtconn initializes a new connection structure using file descriptors infd and outfd (which may be
the same) for reading and writing. Vtdial dials the given network address (see dial(2)) and returns
a corresponding connection. It returns nil if the connection cannot be established.

Vtversion exchanges version information with the remote side as described in venti(6). The negoti
ated version is stored in z−>version.

Vtsend writes a packet (see venti−packet(2)) on the connection z. The packet p should be a format
ted Venti message as might be returned by vtfcallpack; vtsend will add the two-byte length field
(see venti(6)) at the begnning. Vtsend frees p, even on error.

Vtrecv reads a packet from the connection z. Analogous to vtsend, the data read from the connec
tion must start with a two-byte length, but the returned packet will omit them.

By default, vtsend and vtrecv block until the packet can be written or read from the network. In a
threaded program (see thread(2)), this may not be desirable. If the caller arranges for vtsendproc
and vtrecvproc to run in their own procs (typically by calling proccreate), then vtsend and vtrecv
will yield the proc in which they are run to other threads when waiting on the network. The
void* argument to vtsendproc and vtrecvproc must be the connection structure z.

655

VENTI-CONN(2) VENTI-CONN(2)

Vtdebug prints the formatted message to standard error when z−>debug is set. Otherwise it is a
no-op.

Vthangup hangs up a connection. It closes the associated file descriptors and shuts down send
and receive procs if they have been started. Future calls to vtrecv or vtsend will return errors.
Additional calls to vthangup will have no effect.

Vtfreeconn frees the connection structure, hanging it up first if necessary.

If the global variable chattyventi is set, the library prints all Venti RPCs to standard error as they
are sent or received.

SOURCE
/sys/src/libventi

SEE ALSO
venti(1), venti(2), venti−client(2), venti−packet(2), venti−server(2), venti(6)

DIAGNOSTICS
Routines that return pointers return nil on error. Routines returning integers return 0 on success,
�1 on error. All routines set errstr on error.

656

VENTI-FCALL(2) VENTI-FCALL(2)

NAME
VtEntry, VtFcall, VtRoot, vtentrypack, vtentryunpack, vtfcallclear, vtfcallfmt, vtfcallpack, vtfcallun
pack, vtfromdisktype, vttodisktype, vtgetstring, vtputstring, vtrootpack, vtrootunpack, vtpars
escore, vtscorefmt � venti data formats

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <venti.h>

enum
{

VtEntrySize = 40,
VtRootSize = 300,
VtScoreSize = 20,

};

typedef struct VtEntry
{

ulong gen; /* generation number */
ushort psize; /* pointer block size */
ushort dsize; /* data block size */
uchar type;
uchar flags;
uvlong size;
uchar score[VtScoreSize];

} VtEntry;

typedef struct VtRoot
{

char name[128];
char type[128];
uchar score[VtScoreSize]; /* to a Dir block */
ushort blocksize; /* maximum block size */
uchar prev[VtScoreSize]; /* previous root block */

} VtRoot;

void vtentrypack(VtEntry *e, uchar *buf, int index)
int vtentryunpack(VtEntry *e, uchar *buf, int index)

Packet* vtfcallpack(VtFcall *f)
int vtfcallunpack(VtFcall *f, Packet *p)

void vtfcallclear(VtFcall *f)

uint vttodisktype(uint type)
uint vtfromdisktype(uint type)

int vtputstring(Packet *p, char *s)
int vtgetstring(Packet *p, char **s)

void vtrootpack(VtRoot *r, uchar *buf)
int vtrootunpack(VtRoot *r, uchar *buf)

int vtparsescore(char *s, char **prefix, uchar score[VtScoreSize])

int vtfcallfmt(Fmt *fmt)
int vtscorefmt(Fmt *fmt)

DESCRIPTION
These routines convert between C representations of Venti structures and serialized representa
tions used on disk and on the network.

Vtentrypack converts a VtEntry structure describing a Venti file (see venti(6)) into a 40-byte
(VtEntrySize) structure at buf+index*40. Vtentryunpack does the reverse conversion.

657

VENTI-FCALL(2) VENTI-FCALL(2)

Vtfcallpack converts a VtFcall structure describing a Venti protocol message (see venti(6)) into
a packet. Vtfcallunpack does the reverse conversion.

The fields in a VtFcall are named after the protocol fields described in venti(6), except that the
type field is renamed blocktype. The msgtype field holds the one-byte message type:
VtThello, VtRhello, and so on.

Vtfcallclear frees the strings f−>error, f−>version, f−>uid, f−>sid, the buffers
f−>crypto and f−>codec, and the packet f−>data.

The block type enumeration defined in <venti.h> (presented in venti(6)) differs from the one
used on disk and in the network protocol. The disk and network representation uses different con
stants and does not distinguish between VtDataType+n and VtDirType+n blocks.
Vttodisktype converts a <venti.h> enumeration value to the disk value; vtfromdisktype converts
a disk value to the enumeration value, always using the VtDirType pointers. The VtFcall
field blocktype is an enumeration value (vtfcallpack and vtfcallunpack convert to and from the
disk values used in packets automatically), so most programs will not need to call these functions.

Vtputstring appends the Venti protocol representation of the string s to the packet p. Vtgetstring
reads a string from the packet, returning a pointer to a copy of the string in *s. The copy must be
freed by the caller. These functions are used by vtfcallpack and vtfcallunpack; most programs will
not need to call them directly.

Vtrootpack converts a VtRoot structure describing a Venti file tree into the 300-byte
(VtRootSize) buffer pointed to by buf. Vtrootunpack does the reverse conversion.

Vtparsescore parses the 40-digit hexadecimal string s, writing its value into score. If the hexadeci
mal string is prefixed with a text label followed by a colon, a copy of that label is returned in
*prefix. If prefix is nil, the label is ignored.

Vtfcallfmt and vtscorefmt are print(2) formatters to print VtFcall structures and scores.
Vtfcallfmt assumes that vtscorefmt is installed as %V.

SOURCE
/sys/src/libventi

SEE ALSO
venti(1), venti(2), venti(6)

DIAGNOSTICS
Vtentrypack, vtfcallpack, vtrootpack, and vtfcallclear cannot fail.

Vtentryunpack, vtrootunpack, vtputstring, vtgetstring, and vtparsescore return 0 on success, �1
on error.

Vtfcallpack returns a packet on success, nil on error.

Vttodisktype and vtfromdisktype return VtCorruptType (255) when presented with invalid
input.

658

VENTI-FILE(2) VENTI-FILE(2)

NAME
VtFile, vtfileblock, vtfileblockscore, vtfileclose, vtfilecreate, vtfilecreateroot, vtfileflush, vtfileflush
before, vtfilegetdirsize, vtfilegetentry, vtfilegetsize, vtfileincref, vtfilelock, vtfilelock2, vtfileopen,
vtfileopenroot, vtfileread, vtfileremove, vtfilesetdirsize, vtfilesetentry, vtfilesetsize, vtfiletruncate,
vtfileunlock, vtfilewrite � Venti files

SYNOPSIS
VtFile* vtfilecreateroot(VtCache *c, int psize, int dsize, int
type);

VtFile* vtfileopenroot(VtCache *c, VtEntry *e);

VtFile* vtfileopen(VtFile *f, u32int n, int mode);

VtFile* vtfilecreate(VtFile *f, int psize, int dsize, int type);

void vtfileincref(VtFile *f);

void vtfileclose(VtFile *f);

int vtfileremove(VtFile *f);

VtBlock* vtfileblock(VtFile *f, u32int n, int mode);

long vtfileread(VtFile *f, void *buf, long n, vlong offset);

long vtfilewrite(VtFile *f, void *buf, long n, vlong offset);

int vtfileflush(VtFile *f);

int vtfileflushbefore(VtFile *f, vlong offset);

int vtfiletruncate(VtFile *f);

uvlong vtfilegetsize(VtFile *f);

int vtfilesetsize(VtFile *f, vlong size);

u32int vtfilegetdirsize(VtFile *f);

int vtfilesetdirsize(VtFile *f, u32int size);

int vtfilegetentry(VtFile *f, VtEntry *e);

int vtfilesetentry(VtFile *f, VtEntry *e);

int vtfileblockscore(VtFile *f, u32int n, uchar
score[VtScoreSize]);

int vtfilelock(VtFile *f, int mode);

int vtfilelock2(VtFile *f, VtFile *f, int mode);

void vtfileunlock(VtFile *f);

DESCRIPTION
These routines provide a simple interface to create and manipulate Venti file trees (see venti(6)).

Vtfilecreateroot creates a new Venti file. Type must be either VtDataType or VtDirType,
specifying a data or directory file. Dsize is the block size to use for leaf (data or directory) blocks
in the hash tree; psize is the block size to use for internal (pointer) blocks.

Vtfileopenroot opens an existing Venti file described by e.

Vtfileopen opens the Venti file described by the nth entry in the directory f. Mode should be one of
VtOREAD, VtOWRITE, or VtORDWR, indicating how the returned file is to be used. The
VtOWRITE and VtORDWR modes can only be used if f is open with mode VtORDWR.

Vtfilecreate creates a new file in the directory f with block type type and block sizes dsize and
psize (see vtfilecreateroot above).

Each file has an associated reference count and holds a reference to its parent in the file tree.
Vtfileincref increments this reference count. Vtfileclose decrements the reference count. If there
are no other references, vtfileclose releases the reference to f�s parent and then frees the in-
memory structure f. The data stored in f is still accessible by reopening it.

659

VENTI-FILE(2) VENTI-FILE(2)

Vtfileremove removes the file f from its parent directory. It also acts as vtfileclose, releasing the
reference to f and potentially freeing the structure.

Vtfileblock returns the nth block in the file f. If there are not n blocks in the file and mode is
VtOREAD, vtfileblock returns nil. If the mode is VtOWRITE or VtORDWR, vtfileblock grows the
file as needed and then returns the block.

Vtfileread reads at most n bytes at offset offset from f into memory at buf. It returns the number
of bytes read.

Vtfilewrite writes the n bytes in memory at buf into the file f at offset n. It returns the number of
bytes written, or �1 on error. Writing fewer bytes than requested will only happen if an error is
encountered.

Vtfilewrite writes to an in-memory copy of the data blocks (see venti−cache(2)) instead of writing
directly to Venti. Vtfileflush writes all copied blocks associated with f to the Venti server.
Vtfileflushbefore flushes only those blocks corresponding to data in the file before byte offset.
Loops that vtfilewrite should call vtfileflushbefore regularly to avoid filling the block cache with
unwritten blocks.

Vtfiletruncate changes the file f to have zero length.

Vtfilegetsize returns the length (in bytes) of file f.

Vtfilesetsize sets the length (in bytes) of file f.

Vtfilegetdirsize returns the length (in directory entries) of the directory f.

Vtfilesetdirsize sets the length (in directory entries) of the directory f.

Vtfilegetentry fills e with an entry that can be passed to vtfileopenroot to reopen f at a later time.

Vtfilesetentry sets the entry associated with f to be e.

Vtfileblockscore returns in score the score of the nth block in the file f.

Venti files are locked and unlocked via vtfilelock and vtfileunlock to moderate concurrent access.
Only one thread at a time�the one that has the file locked�can read or modify the file. The func
tions that return files (vtfilecreateroot, vtfileopenroot, vtfilecreate, and vtfileopen) return them
unlocked. When files are passed to any of the functions documented in this manual page, it is the
caller�s responsibility to ensure that they are already locked.

Internally, a file is locked by locking the block that contains its directory entry. When two files in
the same directory both need to be locked, vtfilelock2 must be used. It locks both its arguments,
taking special care not to deadlock if their entries are stored in the same directory block.

SOURCE
/sys/src/libventi/file.c

SEE ALSO
venti−cache(2), venti−conn(2), venti−client(2), venti(6)

660

VENTI-LOG(2) VENTI-LOG(2)

NAME
VtLog, VtLogChunk, vtlog, vtlogclose, vtlogdump, vtlognames, vtlogopen, vtlogprint, vtlogremove,
vtlogopen, ventilogging � Venti logs

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <venti.h>

VtLog* vtlogopen(char *name, uint size);

void vtlogprint(VtLog *log, char *fmt, ...);

void vtlogclose(VtLog *log);

void vtlog(char *name, char *fmt, ...);

void vtlogremove(char *name);

char** vtlognames(int *n);

void vtlogdump(int fd, VtLog *log);

extern int ventilogging; /* default 0 */

extern char *VtServerLog; /* "libventi/server" */

DESCRIPTION
These routines provide an in-memory circular log structure used by the Venti library and the Venti
server to record events for debugging purposes. The logs are named by UTF strings.

Vtlogopen returns a reference to the log with the given name . If a log with that name does not
exist and size is non-zero, vtlogopen creates a new log capable of holding at least size bytes and
returns it. Vtlogclose releases the reference returned by vtlogopen.

Vtlogprint writes to log, which must be open.

Vtlog is a convenient packaging of vtlogopen followed by vtlogprint and vtlogclose.

Vtlogremove removes the log with the given name, freeing any associated storage.

Vtlognames returns a list of the names of all the logs. The length of the list is returned in *n.
The list should be freed by calling vtfree on the returned pointer. The strings in the list will be
freed by this call as well. (It is an error to call vtfree on any of the strings in the list.)

Vtlogdump prints log, which must be open, to the file descriptor fd.

If ventilogging is set to zero (the default), vtlognames and vtlogdump can inspect existing logs, but
vtlogopen always returns nil and vtlog is a no-op. The other functions are no-ops when passed nil
log structures.

The server library (see venti−conn(2) and venti−server(2)) writes debugging information to the log
named VtServerLog , which defaults to the string �libventi/server�.

SOURCE
/sys/src/libventi

SEE ALSO
venti(2), venti(8)

661

VENTI-MEM(2) VENTI-MEM(2)

NAME
vtbrk, vtmalloc, vtmallocz, vtrealloc, vtstrdup, vtfree � error-checking memory allocators

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <venti.h>

void* vtbrk(int size)

void* vtmalloc(int size)

void* vtmallocz(int size)

void* vtrealloc(void *ptr, int size)

char* vtstrdup(char *s)

void vtfree(void *ptr)

DESCRIPTION
These routines allocate and free memory. On failure, they print an error message and call sysfatal
(from perror(2)). They do not return.

Vtbrk returns a pointer to a new, permanently allocated block of at least size bytes.

Vtmalloc, vtrealloc, and vtstrdup are like malloc, realloc, and strdup, but, as noted above, do not
return on error. Vtmallocz is like vtmalloc but zeros the block before returning it. Memory allo
cated with all four should be freed with vtfree when no longer needed.

SOURCE
/sys/src/libventi

SEE ALSO
venti(2)

662

VENTI-PACKET(2) VENTI-PACKET(2)

NAME
Packet, packetalloc, packetappend, packetasize, packetcmp, packetconcat, packetconsume, packet
copy, packetdup, packetforeign, packetfragments, packetfree, packetheader, packetpeek, packet
prefix, packetsha1, packetsize, packetsplit, packetstats, packettrailer, packettrim � zero-copy net
work buffers

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <venti.h>

Packet* packetalloc(void);

void packetappend(Packet *p, uchar *buf, int n)

uint packetasize(Packet *p)

int packetcmp(Packet *p, Packet *q)

void packetconcat(Packet *p, Packet *q)

int packetconsume(Packet *p, uchar *buf, int n)

int packetcopy(Packet *p, uchar *buf, int offset, int n)

Packet* packetdup(Packet *p, int offset, int n)

Packet* packetforeign(uchar *buf, int n,
void (*free)(void *a), void *a)

int packetfragments(Packet *p, IOchunk *io, int nio,
int offset)

void packetfree(Packet *p)

uchar* packetheader(Packet *p, int n)

uchar* packetpeek(Packet *p, uchar *buf, int offset, int n)

void packetprefix(Packet *p, uchar *buf, int n)

void packetsha1(Packet *p, uchar sha1[20])

uint packetsize(Packet *p)

Packet* packetsplit(Packet *p, int n)

void packetstats(void)

uchar* packettrailer(Packet *p, int n)

int packettrim(Packet *p, int offset, int n)

DESCRIPTION
A Packet is a chain of blocks of data. Each block, called a fragment, is contiguous in memory,
but the entire packet may not be. This representation helps avoid unnecessary memory copies.

Packetalloc allocates an empty packet.

Packetappend appends the n bytes at buf to the end of p.

Packetasize returns the number of data bytes allocated to p. This may be larger than the number
of bytes stored in p because fragments may not be filled completely.

Packetcmp compares the data sections of two packets as memcmp (see memory(2)) would.

Packetconcat removes all data from q, appending it to p.

Packetconsume removes n bytes from the beginning of p, storing them into buf.

Packetcopy copies n bytes at offset in p to buf.

Packetdup creates a new packet initialized with n bytes from offset in p.

Packetforeign allocates a packet containing �foreign� data: the n bytes pointed to by buf. Once the
bytes are no longer needed, they are freed by calling free(a).

663

VENTI-PACKET(2) VENTI-PACKET(2)

Packetfragments initializes up to nio of the io structures with pointers to the data in p, starting at
offset. It returns the total number of bytes represented by the returned structures.
Packetfragments initializes any unused io structures with nil pointer and zero length.

Packetfree frees the packet p.

Packetheader returns a pointer to the first n bytes of p, making them contiguous in memory if nec
essary.

Packetpeek returns a pointer to the n bytes at offset in p. If the requested bytes are already stored
contiguously in memory, the returned pointer points at the internal data storage for p. Otherwise,
the bytes are copied into buf, and packetpeek returns buf.

Packetprefix inserts a copy of the n bytes at buf at the beginning of p.

Packetsha1 computes the SHA1 hash of the data contained in p.

Packetsize returns the length, in bytes, of the data contained in p.

Packetsplit returns a new packet initialized with n bytes removed from the beginning of p.

Packetstats prints run-time statistics to standard output.

Packettrailer returns a pointer to the last n bytes of p, making them contiguous in memory if nec
essary.

Packettrim deletes all bytes from the packet p except the n bytes at offset offset.

SOURCE
/sys/src/libventi

SEE ALSO
venti(2)

DIAGNOSTICS
These functions return errors only when passed invalid inputs, e.g. , requests for data at negative
offsets or beyond the end of a packet.

Functions returning pointers return nil on error; functions returning integers return �1 on error.
Most functions returning integers return 0 on success. The exceptions are packetfragments and
packetcmp, whose return values are described above.

When these functions run out of memory, they print error messages and call sysfatal.

664

VENTI-SERVER(2) VENTI-SERVER(2)

NAME
vtsrvhello, vtlisten, vtgetreq, vtrespond � Venti server

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <venti.h>

typedef struct VtReq
{

VtFcall tx;
VtFcall rx;
...

} VtReq;

int vtsrvhello(VtConn *z)

VtSrv* vtlisten(char *addr)

VtReq* vtgetreq(VtSrv *srv)

void vtrespond(VtReq *req)

DESCRIPTION
These routines execute the server side of the venti(6) protocol.

Vtsrvhello executes the server side of the initial hello transaction. It sets z−>uid with the user
name claimed by the other side. Each new connection must be initialized by running vtversion and
then vtsrvhello. The framework below takes care of this detail automatically; vtsrvhello is provided
for programs that do not use the functions below.

Vtlisten, vtgetreq, and vtrespond provide a simple framework for writing Venti servers.

Vtlisten announces at the network address addr, returning a fresh VtSrv structure representing
the service.

Vtgetreq waits for and returns the next read, write, sync, or ping request from any client
connected to the service srv. Hello and goodbye messages are handled internally and not
returned to the client. The interface does not distinguish between the different clients that may be
connected at any given time. The request can be found in the tx field of the returned VtReq.

Once a request has been served and a response stored in r−>rx, the server should call vtrespond
to send the response to the client. Vtrespond frees the structure r as well as the packets
r−>tx.data and r−>rx.data.

EXAMPLE
/sys/src/cmd/venti contains two simple Venti servers ro.c and devnull.c written
using these routines. Ro is a read-only Venti proxy (it rejects write requests). Devnull is a dan
gerous write-only Venti server: it discards all blocks written to it and returns error on all reads.

SOURCE
/sys/src/libventi

SEE ALSO
venti(2), venti−conn(2), venti−packet(2), venti(6), venti(8)

665

VENTI-ZERO(2) VENTI-ZERO(2)

NAME
vtzerotruncate, vtzeroextend, vtzeroscore � Venti block truncation

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <venti.h>

uint vtzerotruncate(int type, uchar *buf, uint size)

void vtzeroextend(int type, uchar *buf, uint size, uint newsize)

extern uchar vtzeroscore[VtScoreSize];

DESCRIPTION
These utility functions compute how to truncate or replace trailing zeros (for data blocks) or trail
ing zero scores (for pointer blocks) to canonicalize the blocks before storing them to Venti.

Vtzerotruncate returns the size of the size-byte buffer pointed to by buf ignoring trailing zeros or
zero scores, according to the given type.

Vtzeroextend pads buf with zeros or zero scores, according to the given type, to grow it from size
bytes to newsize bytes.

Vtzeroscore is the score of the zero-length block.

SOURCE
/sys/src/libventi/zero.c
/sys/src/libventi/zeroscore.c

SEE ALSO
venti(2), venti(6)

666

WAIT(2) WAIT(2)

NAME
await, wait, waitpid � wait for a process to exit

SYNOPSIS
#include <u.h>
#include <libc.h>

Waitmsg* wait(void)

int waitpid(void)

int await(char *s, int n)

DESCRIPTION
Wait causes a process to wait for any child process (see fork(2)) to exit. It returns a Waitmsg
holding information about the exited child. A Waitmsg has this structure:

typedef
struct Waitmsg
{

int pid; /* of loved one */
ulong time[3]; /* of loved one & descendants */
char *msg;

} Waitmsg;

Pid is the child�s process id. The time array contains the time the child and its descendants
spent in user code, the time spent in system calls, and the child�s elapsed real time, all in units of
milliseconds. Msg contains the message that the child specified in exits(2). For a normal exit,
msg[0] is zero, otherwise msg is the exit string prefixed by the process name, a blank, the pro
cess id, and a colon.

If there are no more children to wait for, wait returns immediately, with return value nil.

The Waitmsg structure is allocated by malloc(2) and should be freed after use. For programs
that only need the pid of the exiting program, waitpid returns just the pid and discards the rest of
the information.

The underlying system call is await, which fills in the n-byte buffer s with a textual representation
of the pid, times, and exit string. There is no terminal NUL. The return value is the length, in
bytes, of the data.

The buffer filled in by await may be parsed (after appending a NUL) using tokenize (see
getfields(2)); the resulting fields are, in order, pid, the three times, and the exit string, which will
be ’’ for normal exit. If the representation is longer than n bytes, it is truncated but, if possible,
properly formatted. The information that does not fit in the buffer is discarded, so a subsequent
call to await will return the information about the next exiting child, not the remainder of the trun
cated message. In other words, each call to await returns the information about one child, block
ing if necessary if no child has exited.

If the calling process has no living children, await and waitpid return −1.

SOURCE
/sys/src/libc/9syscall
/sys/src/libc/9sys

SEE ALSO
fork(2), exits(2), the wait file in proc(3)

DIAGNOSTICS
These routines set errstr.

667

WINDOW(2) WINDOW(2)

NAME
Screen, allocscreen, publicscreen, freescreen, allocwindow, bottomwindow, bottomnwindows, top
window, topnwindows, originwindow � window management

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <draw.h>

typedef
struct Screen
{

Display *display; /* display holding data */
int id; /* id of system−held Screen */
Image *image; /* unused; for reference only */
Image *fill; /* color to paint behind windows */

} Screen;

Screen* allocscreen(Image *image, Image *fill, int public)

Screen* publicscreen(Display *d, int id, ulong chan)

int freescreen(Screen *s)

Image* allocwindow(Screen *s, Rectangle r, int ref, ulong col)

void bottomwindow(Image *w)

void bottomnwindows(Image **wp, int nw)

void topwindow(Image *w)

void topnwindows(Image **wp, int nw)

int originwindow(Image *w, Point log, Point scr)

enum
{

/* refresh methods */
Refbackup= 0,
Refnone= 1,
Refmesg= 2

};

DESCRIPTION
Windows are represented as Images and may be treated as regular images for all drawing opera
tions. The routines discussed here permit the creation, deletion, and shuffling of windows, facili
ties that do not apply to regular images.

To create windows, it is first necessary to allocate a Screen data structure to gather them
together. A Screen turns an arbitrary image into something that may have windows upon it. It is
created by allocscreen, which takes an image upon which to place the windows (typically
display−>image), a fill image to paint the background behind all the windows on the image,
and a flag specifying whether the result should be publicly visible. If it is public, an arbitrary other
program connected to the same display may acquire a pointer to the same screen by calling
publicscreen with the Display pointer and the id of the published Screen, as well as the
expected channel descriptor, as a safety check. It will usually require some out-of-band coordina
tion for programs to share a screen profitably. Freescreen releases a Screen, although it
may not actually disappear from view until all the windows upon it have also been deallocated.

Unlike allocwindow, allocscreen does not initialize the appearance of the Screen.

Windows are created by allocwindow, which takes a pointer to the Screen upon which to cre
ate the window, a rectangle r defining its geometry, an integer pixel value col to color the window
initially, and a refresh method ref. The refresh methods are Refbackup, which provides back
ing store and is the method used by rio(1) for its clients; Refnone, which provides no refresh and
is designed for temporary uses such as sweeping a display rectangle, for windows that are com
pletely covered by other windows, and for windows that are already protected by backing store;

668

WINDOW(2) WINDOW(2)

and Refmesg, which causes messages to be delivered to the owner of the window when it needs
to be repainted. Refmesg is not fully implemented.

The result of allocwindow is an Image pointer that may be treated like any other image. In
particular, it is freed by calling freeimage (see allocimage(2)). The following functions, however,
apply only to windows, not regular images.

Bottomwindow pushes window w to the bottom of the stack of windows on its Screen, per
haps obscuring it. Topwindow pulls window w to the top, making it fully visible on its Screen.
(This Screen may itself be within a window that is not fully visible; topwindow will not affect
the stacking of this parent window.) Bottomnwindows and Topnwindows are analogous, but
push or pull a group of nw windows listed in the array wp. The order within wp is unaffected.

Each window is created as an Image whose Rectangle r corresponds to the rectangle given to
allocwindow when it was created. Thus, a newly created window w resides on its
Screen−>image at w−>r and has internal coordinates w−>r. Both these may be changed by a
call to originwindow. The two Point arguments to originwindow define the upper left
corner of the logical coordinate system (log) and screen position (scr). Their usage is shown in
the Examples section.

Rio(1) creates its client windows with backing store, Refbackup. The graphics initialization rou
tine, initdraw (see graphics(2)), builds a Screen upon this, and then allocates upon that
another window indented to protect the border. That window is created Refnone, since the back
ing store created by rio protects its contents. That window is the one known in the library by the
global name screen (a historic but confusing choice).

EXAMPLES
To move a window to the upper left corner of the display,

originwindow(w, w−>r.min, Pt(0, 0));
To leave a window where it is on the screen but change its internal coordinate system so (0, 0) is
the upper left corner of the window,

originwindow(w, Pt(0, 0), w−>r.min);
After this is done, w−>r is translated to the origin and there will be no way to discover the actual
screen position of the window unless it is recorded separately.

SOURCE
/sys/src/libdraw

SEE ALSO
graphics(2), draw(2), cachechars(2), draw(3)

BUGS
The refresh method Refmesg should be finished.

669

INTRO(3) INTRO(3)

NAME
intro � introduction to the Plan 9 devices

DESCRIPTION
A Plan 9 device implements a file tree for client processes. A file name beginning with a pound
sign, such as #c, names the root of a file tree implemented by a particular kernel device driver
identified by the character after the pound sign. Such names are usually bound to conventional
locations in the name space. For example, after

bind("#c", "/dev", MREPL)

an ls(1) of /dev will list the files provided by the console device.

A kernel device driver is a server in the sense of the Plan 9 File Protocol, 9P (see Section 5), but
with the messages implemented by local rather than remote procedure calls. Also, several of the
messages (Nop, Session, Flush, and Error) have no subroutine equivalents.

When a system call is passed a file name beginning with # it looks at the next character, and if that
is a valid device character it performs an attach(5) on the corresponding device to get a channel
representing the root of that device�s file tree. If there are any characters after the device charac
ter but before the next / or end of string, those characters are passed as parameter aname to the
attach. For example,

#I2

identifies the number 2 IP protocol stack (see ip(3)).

Each kernel device has a conventional place at which to be bound to the name space. The
SYNOPSIS sections of the following pages includes a bind command to put the device in the con
ventional place. Most of these binds are done automatically by init(8) using newns (see auth(2))
on the file /lib/namespace (see namespace(6)). When typed to rc(1), the bind commands will
need quotes to protect the # characters.

SEE ALSO
intro(5), intro(2)

670

AOE(3) AOE(3)

NAME
aoe � ATA-over-Ethernet (AoE) interface

SYNOPSIS
bind −a #æ /dev

/dev/aoe/ctl
/dev/aoe/log
/dev/aoe/shelf.slot/config
/dev/aoe/shelf.slot/ctl
/dev/aoe/shelf.slot/devlink/0
...
/dev/aoe/shelf.slot/devlink/i
/dev/aoe/shelf.slot/ident
...

DESCRIPTION
The AoE (ATA-over-Ethernet) interface serves a three-level directory providing control and access
to AoE targets. The interface provided is primarily intended for low-level control of the AoE initia
tor. See sdaoe(3) for the standard interface.

Top−level files
In order to access AoE targets, one or more Ethernet controllers need to be bound to the AoE initia
tor. By default, the system starts with no interfaces bound. For automatic binding of interfaces on
boot, the aoeif configuration variable is set in plan9.ini(8). Ethernet interfaces are specified as
ethern, not as #ln. To bind the first and second Ethernet devices on boot, add

aoeif=ether0 ether1

To bind ether1 to a running system:

% echo bind ’#l1/ether1’ >/dev/aoe/ctl

And to unbind it

% echo unbind ’#l1/ether1’ >/dev/aoe/ctl

When an interface is unbound, targets depending on that interface are removed.

Each local interface is called a netlink. The mapping of AoE targets to netlinks is called a devlink.
Each devlink may see multiple interfaces per target. For example, if the local machine has one Eth
ernet address bound and the target has two interfaces on the same Ethernet segment, this will
result in one netlink and one devlink with two Ethernet addresses. AoE frames are sent in round-
robin fashion. Each successive frame is sent on the next address available on the next available
devlink (local interface).

Normally the initiator automatically discovers and adds new device directories on startup. New
devices are not added except as new interfaces are bound to the initiator. Several messages can
be written to /dev/aoe/ctl which alter this behavior:

autodiscover toggle
If toggle is absent, the state of autodiscover is toggled. If it is the string on, it is
turned on. Any other string turns autodisover off. This option is not useful after Eth
ernet devices have been bound.

discover shelf.slot
Attempt to find the named target on all bound interfaces.

remove shelf.slot
The converse of discover: remove the named target if it exists.

rediscover toggle
Allow or disallow rediscovery. This allows for automatic discovery of new targets. Unfortu
nately, it also allows automatic modification or loss of existing targets. This option is con
sidered dangerous.

671

AOE(3) AOE(3)

Reading /dev/aoe/ctl returns a list of colon-separated lines with keywords and their values:

debug
autodiscover
rediscover Returns the current state of the variable named by the keyword. Writing the

variable�s name to the control file toggles the state of that variable.

ifn path Path to nth bound Ethernet device.

ifn ea Ethernet address of this device.

ifn flag A flag of ��Up�� indicates that this interface is available.

ifn lostjumbo Number of consecutive lost jumbograms.

ifn datamtu Incorrect and unused.

Shelf−and−slot subdirectories
Once configured, each AoE target is accessed via files in the directory named for its shelf and slot.
For example, shelf 42, slot 0 would be accessed through the path /dev/aoe/42.0. The ident
file contains the read-only, verbatim result of the identify unit ATA command. The config file
contains the target�s AoE configuration string. Writing to this file sets the targets configuration
string.

Reading a shelf and slot�s ctl file returns a list of colon-separated lines with the following key
words and values:

state ��Up�� or ��down��.

nopen Number of clients using this target.

nout Number of outstanding AoE frames.

nmaxout Maximum number of outstanding frames allowed.

nframes Maximum number of outstanding frames. Nframes is greater than nmaxout when
the initiator is reducing the number of in-flight frames due to packet loss. It is
assumed that packet loss is due to an overwhelmed target and not poor network
conditions.

maxbcount Maximum number of data bytes per AoE frame. Using standard frames,
maxbcount is 1024 or two sectors. AoE ATA headers are 36 bytes.

model
serial
firmware The respective fields from the ATA identify unit command.

flag List of flags useful for debugging. The flag jumbo indicates that jumbo frames are
accepted, not that they are being used. Maxbcount should be consulted for this
purpose.

The data file may be read or written like a normal file except that reads and writes to this file are
converted to AoE commands to the target, so transfers should be 512 or 1024 bytes long (or a
larger multiple of 512 iff jumbo packets are in use). The size of this file is the usable size of the
target.

The devlink directory contains one file for each interface the target was discovered on. The
files are numbers from 0 to n and contain a list of colon-separated lines with keywords and their
values:

addr A space-separated list of the target�s Ethernet addresses visible from this interface.

npkt The number of frames sent on this interface.

resent The number of frames re-sent. Frames are re-sent when they have been outstand
ing twice the RTT average.

flag ��Up�� when the netlink is up.

rttavg
mintimer Minimum timer and RTT average as per Congestion Avoidance and Control.

672

AOE(3) AOE(3)

nl path Path of the Ethernet device.

nl ea Ethernet address of the local Ethernet device.

nl flag ��Up�� if the local interface is up.

nl lostjumbo
Number of consecutive jumbograms lost.

nl datamtu
Unused.

SOURCE
/sys/src/9/port/devaoe.c

SEE ALSO
sd(3), sdaoe(3), vblade(8), snoopy(8)
http://www.coraid.com/documents/AoEr10.txt
Van Jacobson and Michael J. Karels, ‘‘Congestion Avoidance and Control’’, ACM Computer Commu
nication Review; Proceedings of the Sigcomm �88 Symposium in Stanford, CA, August, 1988.

BUGS
There is no raw file for executing arbitrary commands.

This is a fairly primitive interface; sdaoe(3) is usually more suitable.

673

APM(3) APM(3)

NAME
apm � Advanced Power Management 1.2 BIOS interface

SYNOPSIS
bind −a #P /dev

/dev/apm

DESCRIPTION
This device presents a low-level interface to the APM 1.2 bios calls. It is enabled by adding the
line ��apm0=�� to plan9.ini. (The value after the equals sign is ignored; the presence of the line at
all enables the driver.) It is only available on uniprocessor PCs. Writing a 386 Ureg structure and
then reading it back executes an APM call: the written registers are passed to the call, and the read
registers are those returned by the call.

This device is intended to enable more user-friendly interfaces such as apm(8).

SOURCE
/sys/src/9/pc/apm.c
/sys/src/9/pc/apmjump.s

674

ARCH(3) ARCH(3)

NAME
arch � architecture-specific information and control

SYNOPSIS
bind −a #P /dev

/dev/acpitbls
/dev/archctl
/dev/cputype
/dev/ec
/dev/ioalloc
/dev/iob
/dev/iol
/dev/iow
/dev/irqalloc
/dev/msr
/dev/realmodemem

DESCRIPTION
This device presents textual information about PC hardware and allows user-level control of the
I/O ports on x86-class machines.

Reads from cputype recover the processor type and clock rate in MHz. Reads from archctl yield at
least data of this form:

cpu AMD64 2201 pge
pge on
coherence mfence
cmpswap cmpswap486
i8253set on
cache default uc
cache 0x0 1073741824 wb
cache 0x3ff00000 1048576 uc

Where AMD64 is the processor type, 2201 is the processor speed in MHz, and pge is present only
if the �page global extension� capability is present; the next line reflects its setting. coherence
is followed by one of mb386, mb586, mfence or nop, showing the form of memory barrier used
by the kernel. cmpswap is followed by cmpswap386 or cmpswap486, reflecting the form of
�compare and swap� used by the kernel. i8253set is a flag, indicating the need to explicitly set
the Intel 8253 or equivalent timer. There may be lines starting with cache that reflect the state of
memory caching via MTRRs (memory-type region registers). The second word on the line is
default or a C-style number which is the base physical address of the region; the third is a C-
style length of the region; and the fourth is one of uc (for uncachable), wb (write-back), wc
(write-combining), wp (write-protected), or wt (write-through). A region may be a subset of
another region, and the smaller region takes precedence. This may be used to make I/O registers
uncachable in the midst of a write-combining region mostly used for a video framebuffer, for
example. Control messages may be written to archctl and use the same syntax as the data read
from archctl. Known commands include cache, coherence, i8253set, and pge.

Reads from ioalloc return I/O ranges used by each device, one line per range. Each line contains
three fields separated by white space: first address in hexadecimal, last address, name of device.

Reads from irqalloc return the enabled interrupts, one line per interrupt. Each line contains three
fields separated by white space: the trap number, the IRQ it is assigned to, and the name of the
device using it.

Reads and writes to iob, iow, and iol cause 8-bit wide, 16-bit wide, and 32-bit wide requests to
I/O ports. The port accessed is determined by the byte offset of the file descriptor.

Reads and writes to msr go to the P4/P6/Core/Core2/AMD64 MSRs.

The realmodemem file provides access to the first megabyte of memory. This allows reading BIOS
data structures and option ROMs. Writing is limited to the VGA framebuffer at [0xA0000-
0xBFFFF].

675

ARCH(3) ARCH(3)

Reads and writes to ec transfer bytes from and to the embedded controller.

Reads from acpitbls return a concatenation of system ACPI tables. Each table is prefixed with a
fixed size header that gives the name sigature and size of the table (see section 5.2.6 System
Description Table Header in the ACPI specification).

EXAMPLE
The following code reads from an x86 byte I/O port.

uchar
inportb(unsigned port)
{

uchar data;

if(iobfd == −1)
iobfd = open("#P/iob", ORDWR);

seek(iobfd, port, 0);
if(read(iobfd, &data, sizeof(data)) != sizeof(data))

sysfatal("inportb(0x%4.4ux): %r", port);
return data;

}

SOURCE
/sys/src/9/pc/devarch.c

676

AUDIO(3) AUDIO(3)

NAME
audio � audio device

SYNOPSIS
bind −a #A /dev

/dev/audio
/dev/audioctl
/dev/audiostat
/dev/volume

DESCRIPTION
The audio device serves a one-level directory, giving access to the stereo audio ports. Audio is
the data file, which can be written for audio playback. Audio data is a sequence of stereo samples,
left sample first. Each sample is a 16 bit little-endian two�s complement integer; the default sam
pling rate is 44.1 kHz.

The length of the audio file as returned by stat(2) represents the number of bytes buffered for
output.

Audioctl is driver specific control file and left undocumented here.

Audiostat is a read only status file. The first line has a length of 32 bytes including the newline
and starts with the string bufsize followed by the preferred write unit (in bytes) and the string
buffered followed by the number of bytes currently queued for output. The numbers are deci
mal and right-padded with spaces to fit. After this fixed header, the contents of the file is driver
specific.

Volume is the control file associated with the audio port. Each source has an associated stereo
volume control, ranging from 0 (quiet) to 100 (loud). In addition, there are controls for the sam
pling rate, latency control and for any tone controls. Reads return lines of the form

source left right

or

source value

Valid sources depend on the particular audio device, though all devices have an audio stereo
source, which controls the output volume from the D/A converter. Values for speed set the sam
pling frequency of the audio device and delay limits the audio data output buffering to a number
of samples.

Writes accept the same format except that for stereo sources left and right can be abbreviated to a
single value if both should be set the same.

SOURCE
/sys/src/9/port/devaudio.c

SEE ALSO
nusb(4)

677

BRIDGE(3) BRIDGE(3)

NAME
bridge � IP Ethernet bridge

SYNOPSIS
bind −a #Bb /net

/net/bridgeb/ctl
/net/bridgeb/cache
/net/bridgeb/log
/net/bridgeb/stats
/net/bridgeb/n
/net/bridgeb/n/ctl
/net/bridgeb/n/local
/net/bridgeb/n/status

DESCRIPTION
The bridge device bridges packets amongst Ethernet interfaces. The number b in the bind is
optional and selects a particular bridge (default 0).

The /net/bridge0 directory contains ctl, cache, log, and stats files, and numbered sub
directories for each physical interface.

Opening the ctl file reserves an interface. The file descriptor returned from the open(2) will
point to the control file, ctl, of the newly allocated interface. Reading ctl returns a text string
representing the number of the interface. Writing ctl alters aspects of the interface. The possi
ble ctl messages are:

bind ether name ownhash path
Treat the device mounted at path (e.g., /net/ether0) as an Ethernet medium
and associate it with this bridge (forward its packets to the other interfaces asso
ciated with this bridge). Ownhash is an �owner hash�.

bind tunnel name ownhash path path2
Treat the device mounted at path as a network tunnel carrying Ethernet packets,
the device mounted at path2 as an Ethernet and associate them with this bridge
(forward its packets to the other interfaces associated with this bridge). Read
packets from the path interface and write them to the path2 interface. Such tun
nels have an MTU of 1400 bytes.

unbind type address [ownhash]
Disassociate the interface associated with address from this bridge. Type must
be ether or tunnel.

cacheflush Clear the cache of (destination MAC address, port) tuples.

delay delay0 delayn
Set the delay0 and delayn parameters. delay0 is the constant microsecond delay
per packet and delayn is the microsecond delay per byte.

set option Set bridge option. The only known option is tcpmss, which limits the TCP Maxi
mum Segment Size of TCP packets passing through to 1300 bytes.

clear option Clear bridge option.

Reading stats returns statistics about the bridge.

Reading the log file returns data from the bridge�s log and will block at end of file awaiting new
data.

Reading the cache file prints the cache of (destination MAC address, port) tuples, one entry per
line. The format is: the destination MAC (e.g., Ethernet) address in hex, port number, count of
packets from this address, count of packets to this address, expiry time in seconds since the
epoch, and e for expired entries or v for valid entries.

In a connection subdirectory, ctl and local don�t do anything, but status returns a one-line
status summary.

678

BRIDGE(3) BRIDGE(3)

EXAMPLES
Set up a network bridge between two Ethernets (#l0 and #l1).

bind −a ’#B’ /net
bind −a ’#l1’ /net
echo ’bind ether outer 0 /net/ether0’ >/net/bridge0/ctl
echo ’bind ether inner 0 /net/ether1’ >/net/bridge0/ctl

SEE ALSO
ip(3)

SOURCE
/sys/src/9/port/devbridge.c

679

CAP(3) CAP(3)

NAME
cap � capabilities for setting the user id of processes

SYNOPSIS
bind #¤ dir

dir/caphash
dir/capuse

DESCRIPTION
This device enables a trusted process to create a capability that another process may then use to
change its user id. The intent is to allow server processes, for example telnetd (see ipserv(8)),
to change their user id after having proved to a trusted process, such as factotum(4), that they are
indeed executing on behalf of a user. A trusted process is one running with the user id of the host
owner (see /dev/hostowner in cons(3)).

A capability is a null terminated string consisting of the concatenation of an old user name, an
��@��, a new user name, an ��@��, and a string of randomly generated characters called the key. The
trusted process enables the kernel to authenticate capabilities passed to it by writing to caphash a
secure hash of the capability. The hash is 20 bytes long and generated by the following call:

hmac_sha1(old_at_new, strlen(old_at_new), key, strlen(key),
hash, nil);

The kernel maintains a list of hashes, freeing them after the corresponding capability is used or
after a minute has passed since the write to caphash.

The trusted process may then pass the capability to any process running as the old user. That pro
cess may then use the capability to change identity to the new user. A process uses a capability by
writing it to capuse. The kernel computes the same hash using the supplied capability and
searches its list of hashes for a match. If one is found, the kernel sets the process�s user id to that
in the capability.

SOURCE
/sys/src/9/port/devcap.c

SEE ALSO
sechash(2)

DIAGNOSTICS
Errors generated by reading and writing caphash and capuse can be obtained using errstr(2). A
read of caphash with a length of less than 20 or a write to capuse that doesn�t contain two @ char
acters generates the error ��read or write too small��. A write to capuse that has no matching hash
generates the error ��invalid capability��.

680

CMD(3) CMD(3)

NAME
cmd � interface to host operating system commands

SYNOPSIS
bind −a ’#C’ /

/cmd/clone
/cmd/n/ctl
/cmd/n/data
/cmd/n/stderr
/cmd/n/status
/cmd/n/wait

DESCRIPTION
Cmd provides a way to run commands in the underlying operating system�s command interpreter
of drawterm or when Inferno is running hosted. It serves a three-level directory that is convention
ally bound behind the root directory. The top of the hierarchy is a directory cmd, that contains a
clone file and zero or more numbered directories. Each directory represents a distinct connec
tion to the host�s command interpreter. The directory contains five files: ctl, data, stderr,
status and wait, used as described below. Opening the clone file reserves a connection: it is
equivalent to opening the ctl file of an unused connection directory, creating a new one if neces
sary.

The file ctl controls a connection. When read, it returns the decimal number n of its connection
directory. Thus, opening and reading clone allocates a connection directory and reveals the
number of the allocated directory, allowing the other files to be named (eg, /cmd/n/data).

Ctl accepts the following textual commands, allowing quoting as interpreted by parsecmd(2):

dir wdir
Run the host command in directory wdir, which is a directory on the host system . Issue
this request before starting the command. By default, commands are run in the Inferno
root directory on the host system.

exec command args ...
Spawn a host process to run the command with arguments as given. The write returns with
an error, setting the error string, if anything prevents starting the command. If write
returns successfully, the command has started, and its standard input and output may be
accessed through data, and its error output accessed through stderr (see below). If
arguments containing white space are quoted (following the conventions of rc(1) or
parsecmd(2)), they are requoted by cmd using the host command interpreter�s conventions
so that command sees exactly the same arguments as were written to ctl.

kill Kill the host command immediately.

killonclose
Set the device to kill the host command when the ctl file is closed (normally all files must
be closed, see below).

nice [n]
Run the host command at less than normal scheduling priority. Issue this request before
starting the command. The optional value n, in the range 1 to 3, indicates the degree of
�niceness� (default: 1).

The data file provides a connection to the input and output of a previously-started host com
mand. It must be opened separately for reading and for writing. When opened for reading, it
returns data that the command writes to its standard output; when closed, further writes by the
command will receive the host equivalent of �write to closed pipe�. When opened for writing, data
written to the file can be read by the command on its standard input; when closed, further reads
by the command will see the host equivalent of �end of file�. (Unfortunately there is no way to
know when the command needs input.)

The stderr file provides a similar read-only connection to the error output from the command.
If the stderr file is not opened, the error output will be discarded.

681

CMD(3) CMD(3)

Once started, a host command runs until it terminates or until it is killed, by using the kill or
killonclose requests above, or by closing all ctl, data and wait files for a connection.

The read-only status file provides a single line giving the status of the connection (not the com
mand), of the form:

cmd/n opens state wdir arg0

where the fields are separated by white space. The meaning of each field is:

n The cmd directory number.

opens The decimal number of open file descriptors for ctl, data and wait.

state The status of the interface in directory n:

Open Allocated for use but not yet running a command.
Execute Running a command.
Done Command terminated: status available in the status file (or via wait).
Closed Command completed. Available for reallocation via clone.

wdir The command�s initial working directory on the host.

arg0 The host command name (without arguments).

The read-only wait file must be opened before starting a command via ctl. When read, it
blocks until the command terminates. The read then returns with a single status line, to be parsed
using tokenize (see getfields(2)). There are five fields: host process ID (or 0 if unknown); time
the command spent in user code in milliseconds (or 0); time spent in system code in milliseconds
(or 0); real time in milliseconds (or 0); and a string giving the exit status of the command. The exit
status is host-dependent, except that an empty string means success, and a non-empty string
contains a diagnostic.

Command execution
In all cases, the command runs in the host operating system�s own file name space. All file names
will be interpreted in that space, not Plan9�s. For example, on Unix / refers to the host�s file sys
tem root, not Plan9�s; the effects of mounts and binds will not be visible.

SEE ALSO
os(1)

DIAGNOSTICS
A write to ctl returns with an error and sets the error string if a command cannot be started or
killed successfully.

682

CONS(3) CONS(3)

NAME
cons � console, clocks, process/process group ids, user, null, reboot, etc.

SYNOPSIS
bind #c /dev

/dev/bintime
/dev/config
/dev/cons
/dev/cputime
/dev/drivers
/dev/hostdomain
/dev/hostowner
/dev/kmesg
/dev/kprint
/dev/mordor
/dev/null
/dev/osversion
/dev/pid
/dev/ppid
/dev/random
/dev/reboot
/dev/sysname
/dev/sysstat
/dev/time
/dev/user
/dev/zero

DESCRIPTION
The console device serves a one-level directory giving access to the console screen and miscella
neous information.

A write (see read(2)) to cons causes the characters to be printed on the console screen. Console
input is handled by a different program (see kbdfs(8)).

The osversion file contains a textual representation of the operating system�s version and
parameters. At the moment, it contains one field: the 9P protocol version, currently 2000.

The config file contains a copy of the kernel configuration file used to build the kernel.

The kmesg file holds the last 16 kilobytes of output written to the console by the kernel�s print
statements or by processes writing to /dev/cons. It is useful for retrieving boot messages once
the boot process is over.

The kprint file may be read to receive a copy of the data written to the console by the kernel�s
print statements or by processes writing to /dev/cons. Only data written after the file is opened
is available. If the machine�s console is a serial line, the data is sent both to the console and to
kprint; if its console is a graphics screen, the data is sent either to the display or to kprint,
but not both. (It is advisable not to open kprint on terminals until you have started rio(1).)

The null file throws away anything written to it and always returns zero when read.

The zero file is a read-only file that produces an infinite stream of zero-valued bytes when read.

The drivers file contains, one per line, a listing of the drivers configured in the kernel, in the
format

#c cons

The hostdomain file contains the name of the authentication domain that this host belongs to;
see authsrv(6). Only the user named in /dev/hostowner may write this.

The hostowner file contains the name of the user that owns the console device files. The hos
towner also has group permissions for any local devices.

683

CONS(3) CONS(3)

Reads from random return a stream of random bytes produced by the kernels cryptographic ran
dom number generator. The rate at which data can be read depends on the implementation and
can vary from hundreds of megabytes to just a few hundred bits a second. Therefore, random
should be treated as a seed to pseudo-random number generators which can produce a faster rate
stream.

Writing the string reboot to reboot causes the system to shutdown and, if possible, restart.
Writing the string reboot kernelpath loads the named kernel image and restarts, preserving the
kernel configuration in #ec, except that the bootfile variable is set to kernelpath. Writing the
string rdb activates the remote kernel debugger (see rdbfs(4)). Only the host owner has the ability
to open this file.

Bintime is a binary interface that provides the same information as time (q.v.), in binary form,
and also controls clock frequency and clock trim. All integers read or written from bintime are
in big endian order. Unlike the other files, reads and writes do not affect the offset. Therefore,
there is no need for a seek back to zero between subsequent accesses. A read of bintime
returns 24 bytes, three 8 byte numbers, representing nanoseconds since start of epoch, clock
ticks, and clock frequency.

A write to bintime is a message with one of 3 formats:

n<8-byte time> set the nanoseconds since epoch to the given time.

d<8-byte delta><4-byte period>
trim the nanoseconds since epoch by delta over the next period seconds.

f<8-byte freq> Set the frequency for interpreting clock ticks to be freq ticks per second.

The rest of the files contain (mostly) read-only strings. Each string has a fixed length: a read(2) of
more than that gives a result of that fixed length (the result does not include a terminating zero
byte); a read of less than that length leaves the file offset so the rest of the string (but no more)
will be read the next time. To reread the file without closing it, seek must be used to reset the off
set. When the file contains numeric data each number is formatted in decimal. If the binary num
ber fits in 32 bits, it is formatted as an 11 digit decimal number with leading blanks and one trail
ing blank; totaling 12 bytes. Otherwise, it is formatted as 21 digit decimal numbers with leading
blanks and one trailing blank; totaling 22 bytes.

The cputime file holds six 32-bit numbers, containing the time in milliseconds that the current
process has spent in user mode, system calls, real elapsed time, and then the time spent, by exited
children and their descendants, in user mode, system calls, and real elapsed time.

The time file holds one 32-bit number representing the seconds since start of epoch and three
64-bit numbers, representing nanoseconds since start of epoch, clock ticks, and clock frequency.

A write of a decimal number to time will set the seconds since epoch.

The sysname file holds the textual name of the machine, e.g. kremvax, if known.

The sysstat file holds 10 numbers: processor number, context switches, interrupts, system
calls, page faults, TLB faults, TLB purges, load average, idle time and time spent servicing inter
rupts. The load average is in units of milli-CPUs and is decayed over time; idle time and interrupt
time are percentage units; the others are total counts from boot time. If the machine is a multipro
cessor, sysstat holds one line per processor. Writing anything to sysstat resets all of the
counts on all processors.

Reads and writes to mordor will inevitably cause the front to fall off.

The other files served by the cons device are all single numbers:

pid process number

ppid parent�s process number

SEE ALSO
draw(3), kbd(3), kbdfs(8), keyboard (6), authsrv(6), utf(6), swap(8)

SOURCE
/sys/src/9/port/devcons.c

684

DRAW(3) DRAW(3)

NAME
draw � screen graphics

SYNOPSIS
bind −a #i /dev

/dev/draw/new

/dev/draw/n/ctl
/dev/draw/n/data
/dev/draw/n/colormap
/dev/draw/n/refresh

#include <u.h>
#include <draw.h>

ushort BGSHORT(uchar *p)
ulong BGLONG(uchar *p)
void BPSHORT(uchar *p, ushort v)
void BPLONG(uchar *p, ulong v)

DESCRIPTION
The draw device serves a three-level file system providing an interface to the graphics facilities of
the system. Each client of the device connects by opening /dev/draw/new and reading 12
strings, each 11 characters wide followed by a blank: the connection number (n), the image id
(q.v.) of the display image (always zero), the channel format of the image, the replicate bit, the
min.x, min.y, max.x, and max.y of the display image, and the min.x, min.y, max.x, and
max.y of the clipping rectangle. The channel format string is described in image(6), and the other
fields are decimal numbers.

The client can then open the directory /dev/draw/n/ to access the ctl, data, colormap,
and refresh files associated with the connection.

Via the ctl and data files, the draw device provides access to images and font caches in its pri
vate storage, as described in graphics(2). Each image is identified by a 4-byte integer, its id.

Reading the ctl file yields 12 strings formatted as in /dev/draw/new, but for the current
image rather than the display image. The current image may be set by writing a binary image id to
the ctl file.

A process can write messages to data to allocate and free images, fonts, and subfonts; read or
write portions of the images; and draw line segments and character strings in the images. All
graphics requests are clipped to their images. Some messages return a response to be recovered
by reading the data file.

The format of messages written to data is a single letter followed by binary parameters; multibyte
integers are transmitted with the low order byte first. The BPSHORT and BPLONG macros place
correctly formatted two- and four-byte integers into a character buffer. BGSHORT and BGLONG
retrieve values from a character buffer. Points are two four-byte numbers: x, y. Rectangles are
four four-byte numbers: min x, min y, max x, and max y. Images, screens, and fonts have 32-bit
identifiers. In the discussion of the protocol below, the distinction between identifier and actual
image, screen, or font is not made, so that ��the object id�� should be interpreted as ��the object
with identifier id��. The definitions of constants used in the description below can be found in
draw.h.

The following requests are accepted by the data file. The numbers in brackets give the length in
bytes of the parameters.

A id[4] imageid[4] fillid[4] public[1]
Allocate a new Screen (see window(2)) with screen identifier id using backing store
image imageid, filling it initially with data from image fillid. If the public byte is non-zero,
the screen can be accessed from other processes using the publicscreen interface.

685

DRAW(3) DRAW(3)

b id[4] screenid[4] refresh[1] chan[4] repl[1] r[4*4] clipr[4*4] color[4]
Allocate an image with a given id on the screen named by screenid. The image will have
rectangle r and clipping rectangle clipr. If repl is non-zero, the image�s replicate bit will
be set (see draw(2)).

Refresh specifies the method to be used to draw the window when it is uncovered.
Refbackup causes the server to maintain a backing store, Refnone does not refresh
the image, and Refmesg causes a message to be sent via the refresh file (q.v.).

The image format is described by chan, a binary version of the channel format string.
Specifically, the image format is the catenation of up to four 8-bit numbers, each describ
ing a particular image channel. Each of these 8-bit numbers contains a channel type in its
high nibble and a bit count in its low nibble. The channel type is one of CRed, CGreen,
CBlue, CGrey, CAlpha, CMap, and CIgnore. See image(6).

Color is the catenation of four 8-bit numbers specifying the red, green, blue, and alpha
channels of the color that the new image should be initially filled with. The red channel is
in the highest 8 bits, and the alpha in the lowest. Note that color is always in this format,
independent of the image format.

c dstid[4] repl[1] clipr[4*4]
Change the replicate bit and clipping rectangle of the image dstid. This overrides whatever
settings were specified in the allocate message.

d dstid[4] srcid[4] maskid[4] dstr[4*4] srcp[2*4] maskp[2*4]
Use the draw operator to combine the rectangle dstr of image dstid with a rectangle of
image srcid, using a rectangle of image maskid as an alpha mask to further control blend
ing. The three rectangles are congruent and aligned such that the upper left corner dstr in
image dstid corresponds to the point srcp in image srcid and the point maskp in image
maskid. See draw(2).

D debugon[1]
If debugon is non-zero, enable debugging output. If zero, disable it. The meaning of
��debugging output�� is implementation dependent.

e dstid[4] srcid[4] c[2*4] a[4] b[4] thick[4] sp[2*4] alpha[4] phi[4]
Draw an ellipse in image dst centered on the point c with horizontal and vertical semiaxes
a and b. The ellipse is drawn using the image src, with the point sp in src aligned with c in
dst. The ellipse is drawn with thickness 1+2×thick.

If the high bit of alpha is set, only the arc of the ellipse from degree angles alpha to phi is
drawn. For the purposes of drawing the arc, alpha is treated as a signed 31-bit number
by ignoring its high bit.

E dstid[4] srcid[4] center[2*4] a[4] b[4] thick[4] sp[2*4] alpha[4] phi[4]
Draws an ellipse or arc as the e message, but rather than outlining it, fills the correspond
ing sector using the image srcid. The thick field is ignored, but must be non-negative.

f id[4]
Free the resources associated with the image id.

F id[4]
Free the screen with the specified id. Windows on the screen must be freed separately.

i id[4] n[4] ascent[1]
Treat the image id as a font cache of n character cells, each with ascent ascent.

l cacheid[4] srcid[4] index[2] r[4*4] sp[2*4] left[1] width[1]
Load a character into the font cache associated with image cacheid at cache position
index. The character data is drawn in rectangle r of the font cache image and is fetched
from the congruent rectangle in image srcid with upper left corner sp. Width specifies the
width of the character�the spacing from this character to the next�while left specifies the
horizontal distance from the left side of the character to the left side of the cache image.
The dimensions of the image of the character are defined by r.

L dstid[4] p0[2*4] p1[2*4] end0[4] end1[4] thick[4] srcid[4] sp[2*4]
Draw a line of thickness 1+2×thick in image dstid from point p0 to p1. The line is drawn
using the image srcid, translated so that point sp in srcid aligns with p0 in dstid. The end0

686

DRAW(3) DRAW(3)

and end1 fields specify whether the corresponding line end should be a square, a disc, or
an arrow head. See line in draw(2) for more details.

N id[4] in[1] j[1] name[j]
If in is non-zero, associate the image id with the string name. If in is zero and name
already corresponds to the image id, the association is deleted.

n id[4] j[1] name[j]
Introduce the identifier id to correspond to the image named by the string name.

o id[4] r.min[2*4] scr[2*4]
Position the window (layer) id so that its upper left corner is at the point scr on its screen.
Simultaneously change its internal (logical) coordinate system so that the point r.min cor
responds to the upper left corner of the window, see memlorigin(2).

O op[1]
Set the compositing operator to op for the next draw operation. (The default is SoverD).

p dstid[4] n[2] end0[4] end1[4] thick[4] srcid[4] sp[2*4] dp[2*2*(n+1)]
Draw a polygon of thickness 1+2×thick. It is conceptually equivalent to a series of n
line-drawing messages (see L above) joining adjacent points in the list of points dp. The
source image srcid is translated so that the point sp in srcid aligns with the first point in
the list dp. The polygon need not be closed: end0 and end1 specify the line endings for
the first and last point on the polygon. All interior lines have rounded ends to make
smooth joins.

P dstid[4] n[2] wind[4] ignore[2*4] srcid[4] sp[2*4] dp[2*2*(n+1)]
Draw a polygon as the p message, but fill it rather than outlining it. The winding rule
parameter wind resolves ambiguities about what to fill if the polygon is self-intersecting.
If wind is ~0, a pixel is inside the polygon if the polygon�s winding number about the
point is non-zero. If wind is 1, a pixel is inside if the winding number is odd. Comple
mentary values (0 or ~1) cause outside pixels to be filled. The meaning of other values is
undefined. The polygon is closed with a line if necessary.

r id[4] r[4*4]
Cause the next read of the data file to return the image pixel data corresponding to the
rectangle r in image id.

s dstid[4] srcid[4] fontid[4] dp[2*4] clipr[4*4] sp[2*4] n[2] n*(index[2])
Draw in the image dstid the text string specified by the n cache indices into font fontid,
starting with the upper left corner at point p in image dstid. The image drawn is taken
from image srcid, translated to align sp in srcid with dp in dstid. All drawing is confined to
the clipping rectangle clipr in dstid.

x dstid[4] srcid[4] fontid[4] dp[2*4] clipr[4*4] sp[2*4] n[2] bgid[4] bp[2*4] n*(index[2])
Like the string drawing s command, but fill the background of each character with pixels
from image bgid. The image bgid is translated so that the point bp aligns with the point dp
in dstid.

S id[4] chan[4] Attach to the public screen with the specified id. It is an error if the screen does
not exist, is not public, or does not have the channel descriptor chan for its associated
image.

t top[1] n[2] n*id[4]
Send n windows to the top (if t is non-zero) or bottom (if t is zero) of the window stack.
The window is specified by the list of n image ids are moved as a group, maintaining their
own order within the stack.

v
Flush changes from a soft screen, if any, to the display buffer.

y id[4] r[4*4] buf[x*1]
Y id[4] r[4*4] buf[x*1]

Replace the rectangle r of pixels in image id with the pixel data in buf. The pixel data
must be in the format dictated by id�s image channel descriptor (see image(6)). The y
message uses uncompressed data, while the Y message uses compressed data. In either
case, it is an error to include more data than necessary.

687

DRAW(3) DRAW(3)

Reading the colormap returns the system color map used on 8-bit displays. Each color map
entry consists of a single line containing four space-separated decimal strings. The first is an
index into the map, and the remaining three are the red, green, and blue values associated with
that index. The color map can be changed by writing entries in the above format to the
colormap file. Note that changing the system color map does not change the color map used
for calculations involving m8 images, which is immutable.

The refresh file is read-only. As windows owned by the client are uncovered, if they cannot be
refreshed by the server (such as when they have refresh functions associated with them), a mes
sage is made available on the refresh file reporting what needs to be repainted by the client.
The message has five decimal integers formatted as in the ctl message: the image id of the win
dow and the coordinates of the rectangle that should be refreshed.

SOURCE
/sys/src/9/port/devdraw.c
/sys/src/libmemdraw

DIAGNOSTICS
Most messages to draw can return errors; these can be detected by a system call error on the
write(see read(2)) of the data containing the erroneous message. The most common error is a fail
ure to allocate because of insufficient free resources. Most other errors occur only when the proto
col is mishandled by the application. Errstr(2) will report details.

BUGS
The Refmesg refresh method is not fully implemented.
The colormap files only reference the system color map, and as such should be called
/dev/colormap rather than /dev/draw/n/colormap.

688

DUP(3) DUP(3)

NAME
dup � dups of open files

SYNOPSIS
bind #d /fd

/fd/0
/fd/0ctl
/fd/1
/fd/1ctl
...

DESCRIPTION
The dup device serves a one-level directory containing files whose names are decimal numbers.
Each such file also has an associated control file. A file of name n corresponds to open file
descriptor n in the current process.

An open(2) of file n results in a file descriptor identical to what would be returned from a system
call dup(n, −1). Note that the result is no longer a file in the dup device.

The stat operation returns information about the device file, not the open file it points to. A stat of
#d/n will contain n for the name, 0 for the length, and 0400, 0200, or 0600 for the mode,
depending on whether the dup target is open for reading, writing, or both.

A file of name nctl may be read to discover the properties of the associated file descriptor, in
format identical to that of the fd file in proc(3).

SEE ALSO
dup(2)

SOURCE
/sys/src/9/port/devdup.c

689

ENV(3) ENV(3)

NAME
env � environment variables

SYNOPSIS
bind #e /env

/env/var1
/env/var2
...

DESCRIPTION
The env device serves a one-level directory containing files with arbitrary names and contents.
The intention is that the file name is the name of an environment variable (see rc(1)), and the con
tent is the variable�s current value.

When a fork(2) system call creates a new process, both the parent and the child continue to see
exactly the same files in the env device: changes made in either process can be noticed by the
other. In contrast, an rfork system call with the RFENVG bit set (see fork(2)) causes a split: ini
tially both process groups see the same environment files, but any changes made in one process
group cannot be noticed by the other. An rfork with RFCENVG splits and then clears the envi
ronment.

The special global environment #ec contains kernel configuration variables, such as those set in
plan9.ini(8). All processes see the same #ec; its contents are writable only by the host owner.

SEE ALSO
rc(1), fork(2), #c/reboot in cons(3), plan9.ini(8)

SOURCE
/sys/src/9/port/devenv.c

BUGS
A write starting at an offset after the current extent of a file yields an error instead of zero filling.

690

ETHER(3) ETHER(3)

NAME
ether � Ethernet device

SYNOPSIS
bind −a #ln /net

/net/ethern/clone
/net/ethern/addr
/net/ethern/ifstats
/net/ethern/stats
/net/ethern/[0−7]
/net/ethern/[0−7]/data
/net/ethern/[0−7]/ctl
/net/ethern/[0−7]/ifstats
/net/ethern/[0−7]/stats
/net/ethern/[0−7]/type

DESCRIPTION
The Ethernet interface, /net/ethern, is a directory containing subdirectories, one for each dis
tinct Ethernet packet type, and clone, addr, ifstats, and stats files. stats and
ifstats are the same as in the subdirectories (see below). Reading addr returns the MAC
address of this interface in hex with no punctuation and no trailing newline. The number n
(optional in the bind) is the device number of the card, permitting multiple cards to be used on a
single machine.

Each directory contains files to control the associated connection, receive and send data, and sup
ply statistics. Incoming Ethernet packets are demultiplexed by packet type and passed up the cor
responding open connection. Reading from the data file reads packets of that type arriving from
the network. A read will terminate at packet boundaries. Each write to the data file causes a
packet to be sent. The Ethernet address of the interface is inserted into the packet header as the
source address.

A connection is assigned to a packet type by opening its ctl file and writing connect n where n
is a decimal integer constant identifying the Ethernet packet type. A type of �1 enables the con
nection to receive copies of packets of all types. A type of �2 enables the connection to receive
copies of the first 64 bytes of packets of all types. If multiple connections are assigned to a given
packet type a copy of each packet is passed up each connection.

Some interfaces also accept unique options when written to the ctl (or clone) file; see the descrip
tion of wavelan in plan9.ini(8).

Reading the ctl file returns the decimal index of the associated connection, 0 through 7. Read
ing the type file returns the decimal value of the assigned Ethernet packet type. Reading the
stats file returns status information such as the Ethernet address of the card and general statis
tics, independent of the interface; ifstats contains device-specific data and statistics about the
card.

An interface normally receives only those packets whose destination address is that of the interface
or is the broadcast address, ff:ff:ff:ff:ff:ff. The interface can be made to receive all
packets on the network by writing the string promiscuous to the ctl file. The interface
remains promiscuous until the control file is closed. The extra packets are passed up connections
only of types �1 and �2.

Writing packets to the data file automatically fills the source address before sending. To allow
implementations of layer 2 bridges like bridge(3), connections can be set to bridge mode by writ
ing bridge to the ctl file.

SOURCE
/sys/src/9/*/devether.c

691

FLASH(3) FLASH(3)

NAME
flash � flash memory

SYNOPSIS
bind −a #F[n] /dev

/dev/flash
/dev/flash/part
/dev/flash/partctl

DESCRIPTION
The flash memory device serves a two-level directory, giving access to files representing part or all
of a bank of flash memory. A platform might have more than one bank of flash, numbered start
ing from 0. The attach specifier n is a decimal integer that selects a particular bank of flash
(default: 0). Both NOR and NAND flash is supported. For both types of flash, the driver gives a
read/write/erase interface to the raw flash device, which can impose constraints on operations
beyond those imposed by the driver.

The top level directory contains a single directory named flash for bank 0, and flashn for each
other bank n. It contains two files for each partition: a data file part and an associated control file
partctl, where part is the name of the partition. Each partition represents a region of flash
memory that starts and ends on a flash segment (erase unit) boundary. The system initially cre
ates a single standard partition flash representing the whole of flash memory, and the corre
sponding control file flashctl. Other partitions can be created by writing to flashctl as
described below.

The data file part provides read and write access to the bytes on the system�s flash memory. Bytes
can be read and written on any byte boundary: the interface hides any alignment restrictions. A
read returns the value of the bytes at the current file offset, where zero is the start of the partition.
A write reprograms the flash to the given byte values, at the current file offset (relative to the start
of the partition), using the physical device�s reprogramming algorithm. An erased flash byte is
logically 0xFF (regardless of the conventions of the physical flash device). A write can change a
bit with value 1 to a 0, but cannot change a 0 bit to 1; that can only be done by erasing one or
more flash segments. NAND flash typically has restrictions on the number of writes allowed to a
page before requiring a block erase.

The control file partctl can be read and written. A read returns several lines containing decimal
and hexadecimal numbers (separated by white space) revealing the characteristics of memory
within the partition. The first line gives the manufacturer ID, the flash device ID, the memory
width in bytes, and a string giving the flash type (currently either nor or nand). Subsequent lines
give characteristics of each group of erase units within the partition, where the erase units within a
group have the same properties. Each line gives the start and end (as byte addresses) of the erase
units in the region that lie within the partition, followed by the size in bytes of each erase unit,
which is followed for NAND flash by the size in bytes of a page. The sizes for NAND flash include
the extra bytes per page typically used to hold an ECC and block status. A write contains one of
the following textual commands:

add name start end
Create a new partition that ranges from start to end within the current partition.
Each value must be numeric (decimal, octal or hexadecimal) and a multiple of the
erase unit size. Name must not be the name of an existing partition. On success,
new files name and namectl will appear in the parent flash directory.

erase all Erase the whole flash partition, setting all bytes to 0xFF, except those that are
hardware write-protected.

erase offset Erase the segment that begins at the given offset within the partition, setting all
bytes to 0xFF, except those that are hardware write-protected. The offset is given
in bytes, but must be a multiple of the segment (erase unit) size.

protectboot [off]
By default the system prevents erase unit 0 of the flash from being erased or writ
ten, assuming it contains the primary bootstrap. Writing this command with param
eter off removes that protection. Writing protectboot with any other parame
ter (or none) restores the protection. Note that a manufacturer might also have

692

FLASH(3) FLASH(3)

locked the flash in hardware, and that protection must be removed in a device-
dependent way.

sync If the underlying device must buffer or cache (current devices do not), flush the
buffer(s).

The syntax of all numbers is that of strtoul (in atof(2)); the default base is 10.

SOURCE
/sys/src/9/*/devflash.c

SEE ALSO
flashfs(4), paqfs(4)

DIAGNOSTICS
A write will return an error if an attempt is made to change a 0 bit to 1, or if the flash memory fails
to be programmed correctly.

BUGS
The flash cannot be written if the kernel is executing directly from flash, because the physical flash
cannot be read during programming, and the driver does not copy the programming code to
DRAM.

693

FLOPPY(3) FLOPPY(3)

NAME
floppy � floppy disk interface

SYNOPSIS
bind −a #f /dev

/dev/fd0disk
/dev/fd0ctl
/dev/fd1disk
/dev/fd1ctl
/dev/fd2disk
/dev/fd2ctl
/dev/fd3disk
/dev/fd3ctl

DESCRIPTION
The floppy disk interface serves a one-level directory giving access to up to four floppy disk
drives. Each drive is represented by a data and control file. There are no partitions.

Messages accepted by the ctl file include:

eject Eject the floppy, if possible.
reset Reset the drive.
format type

Format the floppy. The type sets the density and type of disk to be formatted; see
format in prep(8).

A read of the ctl file returns a string describing the form factor of the disk, one of 3½DD, 3½HD,
5¼DD, or 5¼HD.

SOURCE
/sys/src/9/*/devfloppy.c

694

FS(3) FS(3)

NAME
fs � file system devices

SYNOPSIS
bind −b #k /dev

/dev/fs
/dev/fs/ctl
/dev/fs/...
/dev/new

DESCRIPTION
The fs driver builds complex disk files out of simpler disk files. Inspired by the Plan 9 file server
kernel�s configuration strings, it provides device mirroring, partitioning, interleaving, and catena
tion for disk-based services like venti(8).

The device is intended to be bound at /dev and initially contains a directory named fs, which in
turn contains a ctl file and one file per configured device.

Most control messages introduce a new device, here named new. The file arguments are inter
preted in the name space of the writing process.

The device name new may be a single filename component (containing no slashes); in this case,
the device is created under #k/fs. If new instead has the format dir/file, the device is made
available at #k/dir/file. The directory dir goes away when the last device on it is removed with
the del control message, but #k/fs will never be removed.

cat new files...
The device new corresponds to the catenation of files.

inter new files...
The device new corresponds to the block interleaving of files; an 8192-byte block size is
assumed.

mirror new files...
The device new corresponds to a RAID-1-like mirroring of files. Writes to new are han
dled by sequentially writing the same data to the files from right to left (the reverse of
the order in the control message). A failed write causes an eventual error return but
does not prevent the rest of the writes to the other devices of the mirror set. Reads
from new are handled by sequentially reading from the files from left to right until one
succeeds. The length of the mirror device is the minimum of the lengths of the files.

part new file offset length

part new offset end
In the first form, the device new corresponds to the length units starting at offset in file.
If offset+length reaches past the end of file, length is silently reduced to fit. Units are
bytes. In the second form, a previous disk request must have defined the source file
for further requests and the end of the device is determined by the end offset in the
source file, and not by the device length. Units are as defined in the previous disk
request. This form is accepted for compatibility with fdisk (in prep(8)) and sd(3) devices.

del old Removes the device named old. The device will still be seen while in use. Further I/O
attempts will fail with an error indication stating that the device is gone. When old is
dir/*, all devices under dir are removed.

disk dir [n file]
makes dir implicit in new device names (i.e., it makes new mean dir/new by default).
Optional argument n specifies the default unit (sector) size in bytes and the default
source file for further partition devices. Default values are restored when the control file
is closed.

crypt new file key
The device new corresponds to a AES-encrypted partition file encrypted with key (see
cryptsetup(8)).

695

FS(3) FS(3)

clear Discard all fs device definitions.

If the variable fsconfig is set in plan9.ini(8), fs will read its configuration from the file
$fsconfig on the first attach. This is useful when the machine boots from a local file server
that uses fs.

EXAMPLES
Use a previously partitioned disk, /dev/sdC0, making partition files available under
/dev/sdC0parts:

{
echo disk sdC0parts 512 /dev/sdC0/data
disk/fdisk −p /dev/sdC0/data
now create plan 9 partitions
echo disk sdC0parts 512 /dev/sdC0parts/plan9
disk/prep −p /dev/sdC0parts/plan9

} > /dev/fs/ctl

Mirror the two disks /dev/sdC0/data and /dev/sdD0/data as /dev/fs/m0; similarly,
mirror /dev/sdC1/data and /dev/sdD1/data as /dev/fs/m1:

echo mirror m0 /dev/sdC0/data /dev/sdD0/data >/dev/fs/ctl
echo mirror m1 /dev/sdC1/data /dev/sdD1/data >/dev/fs/ctl

Interleave the two mirrored disks to create /dev/fs/data:

echo inter data /dev/fs/m0 /dev/fs/m1 >/dev/fs/ctl

Run hjfs(4) on the interleaved device:

hjfs −f /dev/fs/data

Save the configuration:

cp /dev/fs/ctl /dev/fd0disk

To load the configuration automatically at boot time, add this to plan9.ini:

fsconfig=/dev/fd0disk

SEE ALSO
read in cat(1), dd(1), sd(3), fs(8), plan9.ini(8), prep(8), venti(8)

SOURCE
/sys/src/9/port/devfs.c

BUGS
Mirrors are RAID-like but not RAID. There is no fancy recovery mechanism and no automatic initial
copying from a master drive to its mirror drives.

Each write system call on ctl may transmit at most one command.

696

I82365(3) I82365(3)

NAME
i82365 � Personal Computer Memory Card Interface Association (PCMCIA) device

SYNOPSIS
bind −a #y /dev

/dev/pcm0attr
/dev/pcm0ctl
/dev/pcm0mem
/dev/pcm1attr
/dev/pcm1ctl
/dev/pcm1mem

DESCRIPTION
The i82365 driver provides an interface to an Intel 82365-compatible PCMCIA interface chip. This
chip supports up to 2 PCMCIA slots, 0 and 1. Reading pcm[01]attr returns the contents of
attribute memory. Reading or writing pcm[01]mem reads or writes RAM on the card. Reading
pcm[01]ctl returns the card�s status.

This driver must be included to use PCMCIA devices such as the NE4100 Ethernet card. The indi
vidual card drivers make calls to routines in the PCMCIA driver.

SOURCE
/sys/src/9/pc/devi82365.c

SEE ALSO
plan9.ini(8)

BUGS
There is no driver for the Databook PCMCIA interface chip.

697

IP(3) IP(3)

NAME
ip, esp, gre, icmp, icmpv6, ipmux, rudp, tcp, udp, il � network protocols over IP

SYNOPSIS
bind −a #Ispec /net

/net/ipifc
/net/ipifc/clone
/net/ipifc/stats
/net/ipifc/n
/net/ipifc/n/status
/net/ipifc/n/ctl
...

/net/arp
/net/bootp
/net/iproute
/net/ipselftab
/net/log
/net/ndb

/net/esp
/net/gre
/net/icmp

/net/icmpv6
/net/ipmux
/net/rudp
/net/tcp
/net/udp
/net/il

/net/tcp/clone
/net/tcp/stats
/net/tcp/n
/net/tcp/n/data
/net/tcp/n/ctl
/net/tcp/n/local
/net/tcp/n/remote
/net/tcp/n/status
/net/tcp/n/listen
...

DESCRIPTION
The ip device provides the interface to Internet Protocol stacks. Spec is an integer starting from 0
identifying a stack. Each stack implements IPv4 and IPv6. Each stack is independent of all others:
the only information transfer between them is via programs that mount multiple stacks. Normally
a system uses only one stack. However multiple stacks can be used for debugging new IP net
works or implementing firewalls or proxy services.

All addresses used are 16-byte IPv6 addresses. IPv4 addresses are a subset of the IPv6 addresses
and both standard ASCII formats are accepted. In binary representation, all v4 addresses start with
the 12 bytes, in hex:

00 00 00 00 00 00 00 00 00 00 ff ff

Configuring interfaces
Each stack may have multiple interfaces and each interface may have multiple addresses. The
/net/ipifc directory contains a clone file, a stats file, and numbered subdirectories for
each physical interface.

Opening the clone file reserves an interface. The file descriptor returned from the open(2) will
point to the control file, ctl, of the newly allocated interface. Reading ctl returns a text string
representing the number of the interface. Writing ctl alters aspects of the interface. The possi
ble ctl messages are those described under Protocol directories below and these:

bind ether path
Treat the device mounted at path as an Ethernet medium carrying IP and ARP
packets and associate it with this interface. The kernel will dial(2)
path!0x800, path!0x86DD and path!0x806 and use the three connections for
IPv4, IPv6 and ARP respectively.

bind pkt Treat this interface as a packet interface. Assume a user program will read
and write the data file to receive and transmit IP packets to the kernel. This is
used by programs such as ppp(8) to mediate IP packet transfer between the
kernel and a PPP encoded device.

bind netdev path
Treat this interface as a packet interface. The kernel will open path and read
and write the resulting file descriptor to receive and transmit IP packets.

bind loopback Treat this interface as a local loopback. Anything written to it will be looped
back.

698

IP(3) IP(3)

unbind Disassociate the physical device from an IP interface.

add local mask remote mtu proxy
try local mask remote mtu proxy

Add a local IP address to the interface. Try adds the local address as a tenta
tive address if it�s an IPv6 address. The mask, remote, mtu, and proxy
arguments are all optional. The default mask is the class mask for the local
address. The default remote address is local ANDed with mask. The default
mtu (maximum transmission unit) is 1514 for Ethernet and 4096 for packet
media. The mtu is the size in bytes of the largest packet that this interface
can send. Proxy, if specified, means that this machine should answer ARP
requests for the remote address. Ppp(8) does this to make remote machines
appear to be connected to the local Ethernet. Adding the special null-address
0.0.0.0 or :: in local to a interface makes the ip stack accept all incoming
connections regardless of the destination IP address. This is used temporarily
by ipconfig(8) to accept DHCP answers when no IP address has been assigned
yet. This can also be used to implement a NAT gateway by accepting all
incoming connections and proxying them with trampoline(8) to a different ip
stack.

remove local mask
Remove a local IP address from an interface.

mtu n Set the maximum transfer unit for this device to n. The mtu is the maximum
size of the packet including any medium-specific headers.

speed n Set the maximum transmit speed in bits per second.

delay n Set the maximum burst delay in milliseconds. (Default is 40ms) When speed
has been set and packets in flight exceed the maximum burst delay then
packets send on the interface are discarded until the load drops below the
maximum.

iprouting n Allow (n is missing or non-zero) or disallow (n is 0) forwarding packets
between this interface and others.

reflect n When forwarding, allow packets from this interface to be echoed back on the
same interface.

reassemble n Reassemble IP fragments before forwarding to this interface

bridge Enable bridging (see bridge(3)).

promiscuous Set the interface into promiscuous mode, which makes it accept all incoming
packets, whether addressed to it or not.

connect type marks the Ethernet packet type as being in use, if not already in use on this
interface. A type of -1 means �all� but appears to be a no-op.

addmulti Media−addr
Treat the multicast Media−addr on this interface as a local address.

remmulti Media−addr
Remove the multicast address Media−addr from this interface.

scanbs Make the wireless interface scan for base stations.

headersonly Set the interface to pass only packet headers, not data too.

add6 v6addr pfx−len [onlink auto validlt preflt]
Add the local IPv6 address v6addr with prefix length pfx−len to this interface.
See RFC 2461 §6.2.1 for more detail. The remaining arguments are optional:

onlink flag: address is �on-link�

auto flag: autonomous
validlt valid life-time in seconds
preflt preferred life-time in seconds

remove6 Remove local IPv6 addresses that have expired ther valid life-time.

699

IP(3) IP(3)

ra6 keyword value ...
Set IPv6 router advertisement (RA) parameter keyword�s value. Known
keywords and the meanings of their values follow. See RFC 2461 §6.2.1 for
more detail. Flags are true iff non-zero.

recvra flag: receive and process RAs.
sendra flag: generate and send RAs.
mflag flag: ��Managed address configuration��, goes into RAs.
oflag flag: ��Other stateful configuration��, goes into RAs.
maxraint ��maximum time allowed between sending unsolicited multi

cast�� RAs from the interface, in ms.
minraint ��minimum time allowed between sending unsolicited multi

cast�� RAs from the interface, in ms.
linkmtu ��value to be placed in MTU options sent by the router.�� Zero

indicates none.
reachtime sets the Reachable Time field in RAs sent by the router. ��Zero

means unspecified (by this router).��
rxmitra sets the Retrans Timer field in RAs sent by the router. ��Zero

means unspecified (by this router).��
ttl default value of the Cur Hop Limit field in RAs sent by the

router. Should be set to the ��current diameter of the Internet.��
��Zero means unspecified (by this router).��

routerlt sets the Router Lifetime field of RAs sent from the interface, in
ms. Zero means the router is not to be used as a default
router.

Reading the interface�s status file returns information about the interface. The first line is com
posed of white-space-separated fields, the first two fields are: device and maxmtu. Subsequent
lines list the ip addresses assigned to that inferface. The colums are: ip address, network mask,
network address and valid/preferred life times in milliseconds. See readipifc in ip(2).

Routing
The file iproute controls information about IP routing. When read, it returns one line per routing
entry. Each line contains eight white-space-separated fields: target address, target mask, address
of next hop, flags, tag, interface number, source address, source mask. The entry used for routing
an IP packet is the one with the longest destination and source mask for which destination address
ANDed with target mask equals the target and also the source ANDed with the source mask equals
the source address. The one-character flags are:

4 IPv4 route
6 IPv6 route
i local interface
b broadcast address
u local unicast address
m multicast route
p point-to-point route

The tag is an arbitrary, up to 4 character, string. It is normally used to indicate what routing proto
col originated the route.

Writing to /net/iproute changes the route table. The messages are:

flush tag Remove routes of the specified tag, or all routes if tag is omitted.

tag string Associate the tag, string, with all subsequent routes added via this file descriptor.

add target mask nexthop

add target mask nexthop interface

add target mask nexthop source smask

add target mask nexthop interface source smask

add target mask nexthop tag interface source smask

700

IP(3) IP(3)

add target mask nexthop type tag interface source smask
Add the route to the table. If one already exists with the same target and mask,
replace it. The interface can be given as either the interface number or a local IP
address on the desired interface.

remove target mask

remove target mask nexthop

remove target mask source smask

remove target mask nexthop source smask

remove target mask nexthop interface source smask

remove target mask nexthop tag interface source smask

remove target mask nexthop type tag interface source smask
Remove the matching route.

Address resolution
The file /net/arp controls information about address resolution. The kernel automatically
updates the v4 ARP and v6 Neighbour Discovery information for Ethernet interfaces. When read,
the file returns one line per address containing the type of medium, the status of the entry (OK,
WAIT), the IP address, the medium address and the IP address of the interface where the entry is
valid. Writing to /net/arp administers the ARP information. The control messages are:

flush Remove all entries.

add type IP−addr Media−addr Interface−IP−addr
Add an entry or replace an existing one for the same IP address. The optional inter
face IP address specifies the interface where the ARP entry will be valid. This is
needed for IPv6 link local addresses.

del IP−addr Delete an individual entry.

ARP entries do not time out. The ARP table is a cache with an LRU replacement policy. The IP
stack listens for all ARP requests and, if the requester is in the table, the entry is updated. Also,
whenever a new address is configured onto an Ethernet, an ARP request is sent to help update the
table on other systems.

Currently, the only medium type is ether.

Debugging and stack information
If any process is holding /net/log open, the IP stack queues debugging information to it. This
is intended primarily for debugging the IP stack. The information provided is implementation-
defined; see the source for details. Generally, what is returned is error messages about bad pack
ets.

Writing to /net/log controls debugging. The control messages are:

set arglist Arglist is a space-separated list of items for which to enable debugging. The pos
sible items are: ppp, ip, fs, tcp, il, icmp, udp, compress, ilmsg, gre,
tcpwin, tcprxmt, udpmsg, ipmsg, and esp.

clear arglist Arglist is a space-separated list of items for which to disable debugging.

only addr If addr is non-zero, restrict debugging to only those packets whose source or des
tination is that address.

The file /net/ndb can be read or written by programs. It is normally used by ipconfig(8) to leave
configuration information for other programs such as dns and cs (see ndb(8)). /net/ndb may
contain up to 1024 bytes.

The file /net/ipselftab is a read-only file containing all the IP addresses considered local.
Each line in the file contains three white-space-separated fields: IP address, usage count, and
flags. The usage count is the number of interfaces to which the address applies. The flags are the
same as for routing entries.

701

IP(3) IP(3)

Protocol directories
The ip device supports IP as well as several protocols that run over it: TCP, UDP, RUDP, ICMP, IL,
GRE, and ESP. TCP and UDP provide the standard Internet protocols for reliable stream and unreli
able datagram communication. RUDP is a locally-developed reliable datagram protocol based on
UDP. ICMP is IP�s catch-all control protocol used to send low level error messages and to imple
ment ping(8). GRE is a general encapsulation protocol. ESP is the encapsulation protocol for IPsec.
IL provides a reliable datagram service for communication between Plan 9 machines but is now
deprecated.

Each protocol is a subdirectory of the IP stack. The top level directory of each protocol contains a
clone file, a stats file, and subdirectories numbered from zero to the number of connections
opened for this protocol.

Opening the clone file reserves a connection. The file descriptor returned from the open(2) will
point to the control file, ctl, of the newly allocated connection. Reading ctl returns a text string
representing the number of the connection. Connections may be used either to listen for incoming
calls or to initiate calls to other machines.

A connection is controlled by writing text strings to the associated ctl file. After a connection
has been established data may be read from and written to data. A connection can be actively
established using the connect message (see also dial(2)). A connection can be established pas
sively by first using an announce message (see dial(2)) to bind to a local port and then opening
the listen file (see dial(2)) to receive incoming calls.

The following control messages are supported:

connect ip−address!port!r local
Establish a connection to the remote ip−address and port. If local is specified, it is
used as the local port number. If local is not specified but !r is, the system will
allocate a restricted port number (less than 1024) for the connection to allow com
munication with Unix login and exec services. Otherwise a free port number
starting at 5000 is chosen. The connect fails if the combination of local and
remote address/port pairs are already assigned to another port.

announce X X is a decimal port number or *. Set the local port number to X and accept calls
to X. If X is *, accept calls for any port that no process has explicitly announced.
The local IP address cannot be set. Announce fails if the connection is already
announced or connected.

bind X X is a decimal port number or *. Set the local port number to X. This exists to
support emulation of BSD sockets by the APE libraries (see pcc(1)) and is not oth
erwise used.

ttl n Set the time to live IP field in outgoing packets to n.

tos n Set the service type IP field in outgoing packets to n.

ignoreadvice
Don�t break (UDP) connections because of ICMP errors.

addmulti ifc−ip [mcast−ip]
Treat ifc−ip on this multicast interface as a local address. If mcast−ip is present,
use it as the interface�s multicast address.

remmulti ip Remove the address ip from this multicast interface.

Port numbers must be in the range 1 to 32767.

Several files report the status of a connection. The remote and local files contain the IP
address and port number for the remote and local side of the connection. The status file con
tains protocol-dependent information to help debug network connections. On receiving and error
or EOF reading or writing the data file, the err file contains the reason for error.

A process may accept incoming connections by open(2)ing the listen file. The open will block
until a new connection request arrives. Then open will return an open file descriptor which points
to the control file of the newly accepted connection. This procedure will accept all calls for the
given protocol. See dial(2).

702

IP(3) IP(3)

TCP
TCP connections are reliable point-to-point byte streams; there are no message delimiters. A con
nection is determined by the address and port numbers of the two ends. TCP ctl files support
the following additional messages:

hangup close down this TCP connection

close graceful hangup

keepalive n turn on keep alive messages. N, if given, is the milliseconds between keepalives
(default 30000).

checksum n emit TCP checksums of zero if n is zero; otherwise, and by default, TCP check
sums are computed and sent normally.

tcpporthogdefense onoff
onoff of on enables the TCP port-hog defense for all TCP connections; onoff of
off disables it. The defense is a solution to hijacked systems staking out ports
as a form of denial-of-service attack. To avoid stateless TCP conversation hogs,
ip picks a TCP sequence number at random for keepalives. If that number gets
acked by the other end, ip shuts down the connection. Some firewalls, notably
ones that perform stateful inspection, discard such out-of-specification
keepalives, so connections through such firewalls will be killed after five minutes
by the lack of keepalives.

UDP
UDP connections carry unreliable and unordered datagrams. A read from data will return the
next datagram, discarding anything that doesn�t fit in the read buffer. A write is sent as a single
datagram.

By default, a UDP connection is a point-to-point link. Either a connect establishes a local and
remote address/port pair or after an announce, each datagram coming from a different remote
address/port pair establishes a new incoming connection. However, many-to-one semantics is
also possible.

If, after an announce, the message headers is written to ctl, then all messages sent to the
announced port are received on the announced connection prefixed with the corresponding struc
ture, declared in <ip.h>:

typedef struct Udphdr Udphdr;
struct Udphdr
{

uchar raddr[16]; /* V6 remote address and port */
uchar laddr[16]; /* V6 local address and port */
uchar ifcaddr[16]; /* V6 interface address (receive only) */
uchar rport[2]; /* remote port */
uchar lport[2]; /* local port */

};

Before a write, a user must prefix a similar structure to each message. The system overrides the
user specified local port with the announced one. If the user specifies an address that isn�t a uni
cast address in /net/ipselftab, that too is overridden. Since the prefixed structure is the
same in read and write, it is relatively easy to write a server that responds to client requests by just
copying new data into the message body and then writing back the same buffer that was read.

In this case (writing headers to the ctl file), no listen nor accept is needed; otherwise, the usual
sequence of announce, listen, accept must be executed before performing I/O on the correspond
ing data file.

RUDP
RUDP is a reliable datagram protocol based on UDP, currently only for IPv4. Packets are delivered
in order. RUDP does not support listen. One must write either connect or announce fol
lowed immediately by headers to ctl.

Unlike TCP, the reboot of one end of a connection does not force a closing of the connection.
Communications will resume when the rebooted machine resumes talking. Any unacknowledged
packets queued before the reboot will be lost. A reboot can be detected by reading the err file.

703

IP(3) IP(3)

It will contain the message

hangup address!port

where address and port are of the far side of the connection. Retransmitting a datagram more
than 10 times is treated like a reboot: all queued messages are dropped, an error is queued to the
err file, and the conversation resumes.

RUDP ctl files accept the following messages:

headers Corresponds to the headers format of UDP.
hangup IP port Drop the connection to address IP and port.
randdrop [percent] Randomly drop percent of outgoing packets. Default is 10%.

ICMP
ICMP is a datagram protocol for IPv4 used to exchange control requests and their responses with
other machines� IP implementations. ICMP is primarily a kernel-to-kernel protocol, but it is possi
ble to generate �echo request� and read �echo reply� packets from user programs.

ICMPV6
ICMPv6 is the IPv6 equivalent of ICMP. If, after an announce, the message headers is written
to ctl, then before a write, a user must prefix each message with a corresponding structure,
declared in <ip.h>:

/*
* user level icmpv6 with control message "headers"
*/
typedef struct Icmp6hdr Icmp6hdr;
struct Icmp6hdr {

uchar unused[8];
uchar laddr[IPaddrlen]; /* local address */
uchar raddr[IPaddrlen]; /* remote address */

};

In this case (writing headers to the ctl file), no listen nor accept is needed; otherwise, the usual
sequence of announce, listen, accept must be executed before performing I/O on the correspond
ing data file.

IL
IL is a reliable point-to-point datagram protocol that runs over IPv4. Like TCP, IL delivers data
grams reliably and in order. Also like TCP, a connection is determined by the address and port
numbers of the two ends. Like UDP, each read and write transfers a single datagram.

IL is efficient for LANs but doesn�t have the congestion control features needed for use through the
Internet. It is no longer necessary, except to communicate with old standalone fs(4) file servers.
Its use is now deprecated.

GRE
GRE is the encapsulation protocol used by PPTP. The kernel implements just enough of the proto
col to multiplex it. Our implementation encapsulates in IPv4, per RFC 1702. Announce is not
allowed in GRE, only connect. Since GRE has no port numbers, the port number in the connect
is actually the 16 bit eproto field in the GRE header.

Reads and writes transfer a GRE datagram starting at the GRE header. On write, the kernel fills in
the eproto field with the port number specified in the connect message.

ESP
ESP is the Encapsulating Security Payload (RFC 1827, obsoleted by RFC 4303) for IPsec (RFC 4301).
We currently implement only tunnel mode, not transport mode. It is used to set up an encrypted
tunnel between machines. Like GRE, ESP has no port numbers. Instead, the port number in the
connect message is the SPI (Security Association Identifier (sic)). IP packets are written to and
read from data. The kernel encrypts any packets written to data, appends a MAC, and prefixes
an ESP header before sending to the other end of the tunnel. Received packets are checked
against their MAC�s, decrypted, and queued for reading from data. In the following, secret is the
hexadecimal encoding of a key, without a leading 0x. The control messages are:

704

IP(3) IP(3)

esp alg secret Encrypt with the algorithm, alg, using secret as the key. Possible algorithms are:
null, des_56_cbc, des3_cbc, and eventually aes_128_cbc, and
aes_ctr.

ah alg secret Use the hash algorithm, alg, with secret as the key for generating the MAC. Possi
ble algorithms are: null, hmac_sha1_96, hmac_md5_96, and eventually
aes_xcbc_mac_96.

header Turn on header mode. Every buffer read from data starts with 4 unused bytes,
and the first 4 bytes of every buffer written to data are ignored.

noheader Turn off header mode.

IP packet filter
The directory /net/ipmux looks like another protocol directory. It is a packet filter built on top
of IP. Each numbered subdirectory represents a different filter. The connect messages written to
the ctl file describe the filter. Packets matching the filter can be read on the data file. Packets
written to the data file are routed to an interface and transmitted.

A filter is a semicolon-separated list of relations. Each relation describes a portion of a packet to
match. The possible relations are:

ver=n the IP version must be n.

proto=n the IP protocol number must be n.

data[n:m]=expr bytes n through m following the IP header must match expr.

iph[n:m]=expr bytes n through m of the IP packet header must match expr.

ifc=expr the packet must have been received on an interface whose address matches
expr.

src=expr The source address in the packet must match expr.

dst=expr The destination address in the packet must match expr.

Expr is of the form:

value

value|value|...

value&mask

value|value&mask

If a mask is given, the relevant field is first ANDed with the mask. The result is compared against
the value or list of values for a match. In the case of ifc, dst, and src the value is a dot-
formatted IP address and the mask is a dot-formatted IP mask. In the case of data, iph and
proto, both value and mask are strings of 2 hexadecimal digits representing 8-bit values.

A packet is delivered to only one filter. The filters are merged into a single comparison tree. If
two filters match the same packet, the following rules apply in order (here �>� means is preferred
to):

1) protocol > data > source > destination > interface

2) lower data offsets > higher data offsets

3) longer matches > shorter matches

4) older > younger

So far this has just been used to implement a version of OSPF in Inferno and 6to4 tunnelling.

Statistics
The stats files are read only and contain statistics useful to network monitoring.

705

IP(3) IP(3)

Reading /net/ipifc/stats returns a list of 19 tagged and newline-separated fields repre
senting:

forwarding status (0 and 2 mean forwarding off,
1 means on)

default TTL
input packets
input header errors
input address errors
packets forwarded
input packets for unknown protocols
input packets discarded
input packets delivered to higher level protocols

output packets
output packets discarded
output packets with no route
timed out fragments in reassembly queue
requested reassemblies
successful reassemblies
failed reassemblies
successful fragmentations
unsuccessful fragmentations
fragments created

Reading /net/icmp/stats returns a list of 26 tagged and newline-separated fields represent
ing:

messages received
bad received messages
unreachables received
time exceededs received
input parameter problems received
source quenches received
redirects received
echo requests received
echo replies received
timestamps received
timestamp replies received
address mask requests received
address mask replies received

messages sent
transmission errors
unreachables sent
time exceededs sent
input parameter problems sent
source quenches sent
redirects sent
echo requests sent
echo replies sent
timestamps sent
timestamp replies sent
address mask requests sent
address mask replies sent

Reading /net/tcp/stats returns a list of 11 tagged and newline-separated fields represent
ing:

maximum number of connections
total outgoing calls
total incoming calls
number of established connections to be reset
number of currently established connections
segments received

segments sent
segments retransmitted
retransmit timeouts
bad received segments
transmission failures

Reading /net/udp/stats returns a list of 4 tagged and newline-separated fields representing:
datagrams received
datagrams received for bad ports

malformed datagrams received
datagrams sent

Reading /net/il/stats returns a list of 6 tagged and newline-separated fields representing:
checksum errors
header length errors
out of order messages

retransmitted messages
duplicate messages
duplicate bytes

Reading /net/gre/stats returns a list of 1 tagged number representing:
header length errors

SEE ALSO
dial(2), ip(2), bridge(3), ndb(6), listen(8)
/lib/rfc/rfc2460 IPv6
/lib/rfc/rfc4291 IPv6 address architecture
/lib/rfc/rfc4443 ICMPv6

SOURCE
/sys/src/9/ip

BUGS
Ipmux has not been heavily used and should be considered experimental. It may disappear in
favor of a more traditional packet filter in the future.

706

KBD(3) KBD(3)

NAME
kbd � pc keyboard driver

SYNOPSIS
bind −a #b /dev

/dev/scancode
/dev/leds

DESCRIPTION
The kbd device serves a one-level directory containing the files scancode and leds.

Reading the scancode file returns the raw scancode stream as it is emitted by the keyboard
device without any translation. It is usually kbdfs(8) task to interpret the scancodes and provide
device independent keyboard input to programs. The scancode file can be only opened once by
the hostowner.

Writing a number to the write-only leds file changes the status leds on the keyboard. the value of
the number is the addition of 1, 2 and 4 representing activated Scroll, Num and Caps leds.

EXAMPLE
Set the Scroll and Caps leds:
echo 5 >/dev/leds

SEE ALSO
kbdfs(8)

SOURCE
/sys/src/9/pc/devkbd.c

707

KPROF(3) KPROF(3)

NAME
kprof � kernel profiling

SYNOPSIS
bind −a #K /dev

/dev/kpctl
/dev/kpdata

DESCRIPTION
The kprof device provides simple profiling data for the operating system kernel. The data accu
mulates by recording the program counter of the kernel at each �tick� of the system clock.

The file kpdata holds the accumulated counts as 4-byte integers in big-endian byte order. The
size of the file depends on the size of kernel text. The first count holds the total number of clock
ticks during profiling; the second the number of ticks that occurred while the kernel was running.
The rest each hold the number of ticks the kernel program counter was within the corresponding
8-byte range of kernel text, starting from the base of kernel text.

The file kpctl controls profiling. Writing the string start to kpctl begins profiling; stop
terminates it. The message startclr restarts profiling after zeroing the array of counts.

The program kprof (see prof(1)) formats the data for presentation.

EXAMPLE
The following rc(1) script runs a test program while profiling the kernel and reports the results.

bind −a ’#K’ /dev
echo start > /dev/kpctl
runtest
echo stop > /dev/kpctl
kprof /386/9pcdisk /dev/kpdata

SOURCE
/sys/src/9/port/devkprof.c

SEE ALSO
prof(1)

708

LOOPBACK(3) LOOPBACK(3)

NAME
loopback � network link simulation

SYNOPSIS
bind −a #λ /net

/net/loopbackn/[0−1]
/net/loopbackn/[0−1]/data
/net/loopbackn/[0−1]/ctl
/net/loopbackn/[0−1]/status
/net/loopbackn/[0−1]/stats

DESCRIPTION
The loopback interface, /net/loopbackn, is a directory containing two subdirectories, one for
each end of a simulated network link. The number n is the device number of the link, permitting
multiple links to be used on a single machine.

Each directory contains files to control the associated connection, receive and send data, monitor
the simulation parameters, and supply statistics.

The data files for the two directories are cross-connected. Writes to one are divided into packets
of at most a certain size, typically 32768 bytes, written to a flow-controlled output queue, trans
ferred across the link, and put into an input queue where it is readable from the other data file.

Options are set by writing to the ctl file for the receiving end of the link, and are reported in the
same format by reading status. The following options are supported.

delay latency bytedelay
Control the time a packet takes in the link. A packet n bytes long takes bytedelay * n
nanoseconds to exit the output queue and is available for reading latency nanoseconds
later.

droprate n
Randomly drop approximately one out of n packets. If zero drop no packets.

indrop [01]
Disallow or allow packets to be dropped if the input queue overflows.

limit n
Set the input and output queues to hold at most n bytes.

reset
Clear all of the statistics recorded for the link.

Reading stats returns a list of 4 tagged numbers representing:
packets sent to this receiver
bytes sent to this receiver
packets dropped due to droprate
packets dropped due to input queue overflows

SOURCE
/sys/src/9/port/devloopback.c

709

LPT(3) LPT(3)

NAME
lpt � parallel port interface for PC�s

SYNOPSIS
bind −a #L[123] /dev

/dev/lpt[123]data
/dev/lpt[123]dlr
/dev/lpt[123]pcr
/dev/lpt[123]psr

DESCRIPTION
The lpt driver provides an interface to the parallel interface normally used for printers. The speci
fiers 1, 2, and 3 correspond to the parallel interfaces at PC ports 0x3bc, 0x378, and 0x278
respectively.

Lpt?data is write only. Writing to it sends data to the interface. This file is sufficient for com
municating with most printers.

Lpt?dlr, lpt?pcr, and lpt?psr are used for fine control of the parallel port. Reading or
writing these files corresponds to reading and writing the data latch register, printer control regis
ter, and printer status register. These are used by programs to drive special devices.

SOURCE
/sys/src/9/pc/devlpt.c

710

MNT(3) MNT(3)

NAME
mnt � attach to 9P servers

SYNOPSIS
#M

DESCRIPTION
The mount driver is used by the mount system call (but not bind; see bind(2)) to connect the
name space of a process to the service provided by a 9P server over a communications channel.
After the mount, system calls involving files in that portion of the name space will be converted by
the mount driver into the appropriate 9P messages to the server.

The mount system call issues session and attach(5) messages to the server to identify and validate
the user of the connection. Each distinct user of a connection must mount it separately; the mount
driver multiplexes the access of the various users and their processes to the service.

File-oriented system calls are converted by the kernel into messages in the 9P protocol. Within the
kernel, 9P is implemented by procedure calls to the various kernel device drivers. The mount
driver translates these procedure calls into remote procedure calls to be transmitted as messages
over the communication channel to the server. Each message is implemented by a write of the cor
responding protocol message to the server channel followed by a read on the server channel to get
the reply. Errors in the reply message are turned into system call error returns.

A read(2) or write system call on a file served by the mount driver may be translated into more
than one message, since there is a maximum data size for a 9P message. The system call will
return when the specified number of bytes have been transferred or a short reply is returned.

The string #M is an illegal file name, so this device can only be accessed directly by the kernel.

SEE ALSO
bind(2)

SOURCE
/sys/src/9/port/devmnt.c

BUGS
When mounting a service through the mount driver, that is, when the channel being multiplexed is
itself a file being served by the mount driver, large messages may be broken in two.

711

MOUSE(3) MOUSE(3)

NAME
mouse, cursor � kernel mouse interface

SYNOPSIS
bind −a #m /dev

/dev/mouse
/dev/mousein
/dev/mousectl
/dev/cursor

DESCRIPTION
The mouse device provides an interface to the mouse. There is also a cursor associated with the
screen; it is always displayed at the current mouse position.

Reading the mouse file returns the mouse status: its position and button state. The read blocks
until the state has changed since the last read. The read returns 49 bytes: the letter m followed by
four decimal strings, each 11 characters wide followed by a blank: x and y, coordinates of the
mouse position in the screen image; buttons, a bitmask with the 1, 2, and 4 bits set when the
mouse�s left, middle, and right buttons, respectively, are down; and msec, a time stamp, in units
of milliseconds.

Writing the mouse file, in the same format, causes the mouse cursor to move to the position spec
ified by the x and y coordinates of the message. The buttons and msec fields are ignored and may
be omitted.

Writes to the mousein file are processed as if they were generated by the mouse hardware itself,
as extra mouse events to be processed and passed back via the mouse file. The mousein file,
which is exclusive-use and may be opened only by the host owner, is intended for controlling
devices, such as USB mice, that are managed by user-level software. Each event should consist of
the letter m followed by delta x, delta y, and buttons as space-separated decimal numbers.

Writing to the mousectl file configures and controls the mouse. The messages are:

serial n sets serial port n to be the mouse port.
ps2 sets the PS2 port to be the mouse port.
intellimouse uses the wheel on a Microsoft Intellimouse as the middle button.
ps2intellimouse is equivalent to a write of ps2 followed by a write of intellimouse.
accelerated [n] turns on mouse acceleration. N is an optional acceleration factor.
linear turns off mouse acceleration.
res n sets mouse resolution to a setting between 0 and 3 inclusive.
hwaccel on/off sets whether acceleration is done in hardware or software. By default,

PS2 mice use hardware and serial mice use software. Some laptops
(notably the IBM Thinkpad T23) don�t implement hardware acceleration
for external mice.

swap swaps the left and right buttons on the mouse.
buttonmap xyz numbers the left, middle, and right mouse buttons x, y, and z, respec

tively. If xyz is omitted, the default map, 123, is used. Thus in the
default state writing buttonmap 321 swaps left and right buttons and
writing buttonmap 123 or just buttonmap restores their usual
meaning. Note that buttonmap messages are idempotent, unlike
swap.

scrollswap inverts the scroll wheel.
reset clears the mouse to its default state.
blank blanks the screen. The screen also blanks after 30 minutes of inactivity.

The screen can be unblanked by moving the mouse.
blanktime minutes sets the timeout before the screen blanks; the default is 30 minutes. If

minutes is zero, blanking is disabled.
twitch unblanks the screen and resets the idle timeout as if the mouse was

twitched.

Not all mice interpret all messages; with some devices, some of the messages may be no-ops.

712

MOUSE(3) MOUSE(3)

Cursors are described in graphics(2). When read or written from or to the cursor file, they are
represented in a 72-byte binary format. The first and second four bytes are little endian 32-bit
numbers specifying the x and y coordinates of the cursor offset; the next 32 bytes are the clr bit
mask, and the last 32 bytes the set bitmask.

Reading from the cursor file returns the current cursor information. Writing to the cursor file
sets the current cursor information. A write of fewer than 72 bytes sets the cursor to the default,
an arrow.

The mouse and cursor files are multiplexed by rio(1) to give the illusion of a private mouse to
each of its clients. The semantics are otherwise the same except that notification of a window
resize is passed to the application using a mouse message beginning with r rather than m; see
rio(4) for details.

To cope with pointing devices with only two buttons, when the shift key is pressed, the right
mouse button generates middle-button events.

SOURCE
/sys/src/9/port/devmouse.c

SEE ALSO
rio(4)

BUGS
The cursor format is big endian while the rest of the graphics interface is little endian.

713

PIPE(3) PIPE(3)

NAME
pipe � two-way interprocess communication

SYNOPSIS
bind #| dir

dir/data
dir/data1

DESCRIPTION
An attach(5) of this device allocates two new cross-connected I/O streams, dir/data and
dir/data1.

Data written to one channel becomes available for reading at the other. Write boundaries are pre
served: each read terminates when the read buffer is full or after reading the last byte of a write,
whichever comes first.

Writes are atomic up to a certain size, typically 32768 bytes, that is, each write will be delivered in
a single read by the recipient, provided the receiving buffer is large enough.

If there are multiple writers, each write is guaranteed to be available in a contiguous piece at the
other end of the pipe. If there are multiple readers, each read will return data from only one write.

The pipe(2) system call performs an attach of this device and returns file descriptors to the new
pipe�s data and data1 files. The files are open with mode ORDWR.

SEE ALSO
pipe(2)

SOURCE
/sys/src/9/port/devpipe.c

714

PNP(3) PNP(3)

NAME
pnp � Plug �n� Play ISA and PCI Interfaces

SYNOPSIS
bind −a ’#$’ /dev

/dev/pci/bus.dev.fnctl
/dev/pci/bus.dev.fnraw

/dev/pnp/ctl
/dev/pnp/csnnctl
/dev/pnp/csnnraw
...

DESCRIPTION
This device provides a limited interface to the PCI bus and Plug �n� Play ISA devices.

PCI Interface
PCI devices are addressed logically by a bus number, a device number on that bus, and a function
number within the device. The set of all such device functions may be enumerated by traversing
the /dev/pci directory; the driver serves two files for each function. These are a control file
(/dev/pci/bus.dev.fnctl) which may be read for a textual summary of the device function,
and a �raw� file (/dev/pci/bus.dev.fnraw) which may be used to read or write the raw con
tents of PCI configuration space.

The first field of a PCI control file contains the class, sub-class and programming interface values
for the device function, expressed as 2-digit hexadecimal values, and separated by periods. The
second field yields the vendor ID and device ID, each as 4-digit hex numbers, separated by a
slash. The third field is the associated interrupt line in decimal. The remainder of the line enu
merates any valid base address registers for the function, using two fields for each. In the first
field, the index of the register is followed by a colon, and then the value of the register itself. The
following field gives the associated size of the memory (or I/O space) that is mapped by the regis
ter.

Plug ’n’ Play
Plug �n� Play ISA devices are discovered by sending a fixed �unlock� sequence over an I/O port, and
then reading back data from another port. An arbitration algorithm is used to separate out the
individual cards and enumerate them in turn. Each card is assigned a unique number, called a
CSN, in the range 1-255 as a result of enumeration. Cards also have a fixed 64 bit identification
number, set by the manufacturer, which is used by the arbitration algorithm to resolve conflicts.
The first 32 bits describe the type of the card, and the second 32 bits form a serial number for the
particular instance of that card type. When formatted textually, it appears as 3 upper-case letters
(typically representing the manufacturer), followed by 4 hex digits, then a period, then 8 hex dig
its. The substring before the period is the card type, and the substring after the period is the
serial number.

The enumeration algorithm needs to be enabled by specifying the port number to write the unlock
sequence out on. This can be configured to take place at boot time by adding a line like the fol
lowing to plan9.ini:

pnp0=port=0x203

Here port should be chosen to not conflict with any existing devices. It must be in the range
0x203−0x3ff. Alternatively, one can use the following command:

echo port 0x203 >/dev/pnp/ctl

Note that a side-effect of PnP enumeration is to reset the configuration state of all such cards; any
settings made by a Plug and Play BIOS will be lost. Reading the file /dev/pnp/ctl returns one
of the strings enabled port or disabled.

For each enumerated card, two files are served in /dev/pnp. A control file
(/dev/pnp/csnnctl) may be read to determine the ID of the card, and a raw file
(/dev/pnp/csnnraw) may be read to obtain the configuration data associated with the card. It
is intended that the control file should take commands which set the various configurable
resources of the card, but this has not been implemented yet.

715

PNP(3) PNP(3)

A mechanism is provided for configuring cards via plan9.ini(8). A line of the form pnpn=idstring
... will cause the driver to look for the card named by idstring and, if found, assign it the CSN n.
The intention is that any additional text after the idstring is interpreted as if it was written to the
card�s ctl file, but this is not yet implemented.

EXAMPLES
To list all PCI functions:

cat /dev/pci/*ctl

To find just the PCI video card (class 3):

grep ’^03’ /dev/pci/*ctl

SOURCE
/sys/src/9/port/devpnp.c

SEE ALSO
pci(8)

BUGS
Access to the I/O and memory regions of a PCI device is not provided.

The ability to set a Plug �n� Play card�s configurable settings has not been implemented.

There should be a user program for identifying and configuring Plug �n� Play cards.

716

PROC(3) PROC(3)

NAME
proc � running processes

SYNOPSIS
bind #p /proc

/proc/trace
/proc/n/args
/proc/n/ctl
/proc/n/fd
/proc/n/fpregs
/proc/n/kregs
/proc/n/mem
/proc/n/note
/proc/n/noteid
/proc/n/notepg
/proc/n/ns
/proc/n/proc
/proc/n/profile
/proc/n/regs
/proc/n/segment
/proc/n/status
/proc/n/text
/proc/n/wait
...

DESCRIPTION
The proc device serves a two-level directory structure. The first level contains the trace file (see
below) and numbered directories corresponding to pids of live processes; each such directory con
tains a set of files representing the corresponding process.

The mem file contains the current memory image of the process. A read or write at offset o, which
must be a valid virtual address, accesses bytes from address o up to the end of the memory seg
ment containing o. Kernel virtual memory, including the kernel stack for the process and saved
user registers (whose addresses are machine-dependent), can be accessed through mem. Writes
are permitted only while the process is in the Stopped state and only to user addresses or regis
ters.

The read-only proc file contains the kernel per-process structure. Its main use is to recover the
kernel stack and program counter for kernel debugging.

The files regs, fpregs, and kregs hold representations of the user-level registers, floating-
point registers, and kernel registers in machine-dependent form. The kregs file is read-only.

The read-only fd file lists the open file descriptors of the process. The first line of the file is its
current directory; subsequent lines list, one per line, the open files, giving the decimal file descrip
tor number; whether the file is open for read (r), write, (w), or both (rw); the type, device number,
and qid of the file; its I/O unit (the amount of data that may be transferred on the file as a contigu
ous piece; see iounit(2)), its I/O offset; and its name at the time it was opened.

The read-only ns file contains a textual representation of the process�s file name space, in the for
mat of namespace(6) accepted by newns (see auth(2)). The last line of the file identifies the cur
rent working directory of the process, in the form of a cd command (see rc(1)). The information in
this file is based on the names files had when the name space was assembled, so the names it con
tains may be inaccessible if the files have been subsequently renamed or rearranged.

The read-only segment file contains a textual display of the memory segments attached to the
process. Each line has multiple fields: the type of segment (Stack, Text, Data, Bss, etc.);
one-letter flags such as R for read-only, if any; starting virtual address, in hexadecimal; ending
virtual address, and reference count.

The read-only status file contains a string with twelve fields, each followed by a space. The
fields are:

717

PROC(3) PROC(3)

� the process name and user name, each 27 characters left justified

� the process state, 11 characters left justified (see ps(1))

� the six 11-character numbers also held in the process�s #c/cputime file

� the amount of memory used by the process in units of 1024 bytes

� the base and current scheduling priority, each 11 character numbers

The args file contains the arguments of the program when it was created by exec(2). Writing to
the args file will overwrite its contents. If the program was not created by exec, such as by
fork(2), its args file will be empty. The format of the file is a list of quoted strings suitable for
tokenize; see getfields(2).

The text file is a pseudonym for the file from which the process was executed; its main use is to
recover the symbol table of the process.

The wait file may be read to recover records from the exiting children of the process in the for
mat of await (see wait(2)). If the process has no extant children, living or exited, a read of wait
will block. It is an error for a process to attempt to read its own wait file when it has no children.
When a process�s wait file is being read, the process will draw an error if it attempts an await
system call; similarly, if a process is in an await system call, its wait file cannot be read by any
process.

The read-only profile file contains the instruction frequency count information used for multi
process profiling; see tprof in prof(1). The information is gleaned by sampling the program�s
user-level program counter at interrupt time.

Strings written to the note file will be posted as a note to the process (see notify(2)). The note
should be less than ERRLEN−1 characters long; the last character is reserved for a terminating
NUL character. A read of at least ERRLEN characters will retrieve the oldest note posted to the
process and prevent its delivery to the process. The notepg file is similar, but the note will be
delivered to all the processes in the target process�s note group (see fork(2)). However, if the pro
cess doing the write is in the group, it will not receive the note. The notepg file is write-only.

The textual noteid file may be read to recover an integer identifying the note group of the pro
cess (see RFNOTEG in fork(2)). The file may be written to cause the process to change to another
note group, provided the group exists and is owned by the same user.

The file /proc/trace can be opened once and read to see trace events from processes that
have had the string trace written to their ctl file. Each event produces, in native machine for
mat, the pid, a type, and a time stamp (see /sys/include/trace.h and
/sys/src/cmd/trace.c).

The watchpt file contains a list of the watchpoints set for the process. If supported by the hard
ware, watchpoints can be used to trap accesses to specific addresses. Each line in the file has the
form "type address length", where type consists of the characters r (read), w (write), x (execute) or
− (padding character). The watchpoint triggers on an access to the length bytes starting at
address if the type of the access must match one of the characters in the type field.

Writing to the file either replaces (offset zero) or adds to (offset non-zero) the list of watchpoints.
Each line written must be terminated by a newline. If and only if all lines written comply with the
(usually rather idiosyncratic) hardware restrictions, the list is updated; otherwise all changes are
discarded. Watchpoints can also be cleared by opening the file with OTRUNC (see open(2)).

A triggered watchpoint will deliver a sys: watchpoint note which includes a comma-
separated list of the watchpoints that were triggered, where 0 corresponds to the first line in the
watchpt file, 1 to the second and so forth.

Control messages
Textual messages written to the ctl file control the execution of the process. Some require that
the process is in a particular state and return an error if it is not.

stop Suspend execution of the process, putting it in the Stopped state.

start Resume execution of a Stopped process.

waitstop
Do not affect the process directly but, like all other messages ending with stop, block

718

PROC(3) PROC(3)

the process writing the ctl file until the target process is in the Stopped state or
exits. Also like other stop control messages, if the target process would receive a note
while the message is pending, it is instead stopped and the debugging process is
resumed.

startstop
Allow a Stopped process to resume, and then do a waitstop action.

hang Set a bit in the process so that, when it completes an exec(2) system call, it will enter the
Stopped state before returning to user mode. This bit is inherited across fork(2) and
exec(2).

nohang Clear the hang bit.

private
Make it impossible to read the process�s user memory. This property is inherited on
fork(2), cleared on exec(2), and is not otherwise resettable.

noswap Don�t allow this process to be swapped out. This should be used carefully and sparingly
or the system could run out of memory. It is meant for processes that can�t be
swapped, like the local fileserver implementing the swap device and for processes con
taining sensitive data. This property is inherited on fork(2), cleared on exec(2), and is
not otherwise resettable.

kill Kill the process the next time it crosses the user/kernel boundary.

close n
Close file descriptor n in the process.

closefiles
Close all open file descriptors in the process.

pri n Set the base priority for the process to the integer n.

wired n
Wire the process to processor n.

trace Without an argument, toggle trace event generation for this process into
/proc/trace (see below). With a zero argument, tracing for the proc is turned off,
with a non-zero numeric argument, it is turned on.

interrupt
Interrupt a blocking system call. If no blocking call was in progress, the interrupt will be
pending and the next attempt to block will be interrupted. This is similar to posting a
note but, unlike notes, a pending interrupt is not cleared when crossing the user/kernel
boundary.

nointerrupt
Clear a pending interrupt.

period nu
Set the real-time scheduling period of the process to nu, where n is an optionally signed
number containing an optional decimal point and u is one of s, ms, us, µs, ns, or
empty. The time is interpreted, respectively, as seconds, milliseconds, microseconds,
microseconds, nanoseconds, or, in the case of an absent units specifier, as nanoseconds.
If the time specifier is signed, it is interpreted as an increment or decrement from a pre
viously set value. See also the admit command below.

deadline nu
Set the real-time deadline interval of the process to nu, where n and u are interpreted as
for period above.

cost nu
Set the real-time cost (maximum CPU time per period) of the process to nu, where n and
u are interpreted as for period above.

sporadic
Use sporadic scheduling for the real-time process. The description of the admit com
mand below contains further details.

719

PROC(3) PROC(3)

yieldonblock
Make the real-time process yield on blocking I/O.

The description of the admit command below contains further details.

admit Given real-time period, deadline and cost are set (an unset deadline will set deadline to
period), perform a schedulability test and start scheduling the process as a real-time
process if the test succeeds. If the test fails, the write will fail with error set to the
reason for failure.

event Add a user event to the /proc/trace file.

Real−time scheduling
Real−time processes are periodically released , giving them a higher priority than non-real-time
processes until they either give up the processor voluntarily, they exhaust their CPU allocation, or
they reach their deadline . The moment of release is dictated by the period and whether the process
is sporadic or not. Non-sporadic processes are called periodic and they are released precisely at
intervals of their period (but periods can be skipped if the process blocks on I/O). Sporadic pro
cesses are released whenever they become runnable (after being blocked by sleep() or I/O), but
always at least an interval of period after the previous release.

The deadline of a real-time process specifies that the process must complete within the first
deadline seconds of its period. The dealine must be less than or equal to the period. If it is not
specified, it is set to the period.

The cost of a real-time process describes the maximum CPU time the process may use per period.

A real-time process can give up the CPU before its deadline is reached or its allocation is
exhausted. It does this by calling sleep(0). If yieldonblock is specified, it also does it by executing
any blocking system call. Yieldonblock is assumed for sporadic processes.

Of the released processes, the one with the earliest deadline has the highest priority. Care should
be taken using spin locks (see lock(2)) because a real-time process spinning on a lock will not give
up the processor until its CPU allocation is exhausted; this is unlikely to be the desired behavior.

When a real-time process reaches its deadline or exhausts its CPU allocation, it remains schedula
ble, but at a very low priority.

The priority is interpreted by Plan 9�s multilevel process scheduler. Priorities run from 0 to 19,
with higher numbers representing higher priorities. A process has a base priority and a running
priority which is less than or equal to the base priority. As a process uses up more of its allocated
time, its priority is lowered. Unless explicitly set, user processes have base priority 10, kernel pro
cesses 13. Children inherit the parent�s base priority.

FILES
/sys/src/9/*/mem.h
/sys/src/9/*/dat.h
/sys/include/trace.h

SEE ALSO
trace(1), debugger (2), mach(2), cons(3)

SOURCE
/sys/src/9/port/devproc.c

720

ROOT(3) ROOT(3)

NAME
root � the root file system

SYNOPSIS
/
/boot
/dev
/env
/net
/net.alt
/proc
/root
/srv

DESCRIPTION
The syntax #/ is illegal, so this device can only be accessed directly by the kernel.

This device is set up by the kernel to be the root of the name space. The names in the one-level
tree are mostly just place-holders, to allow a place to bind(2) to. The exception is /boot, which
contains /boot/boot and any files /boot/boot might need. The kernel does an exec(2) of
/boot/boot when initializing.

SOURCE
/sys/src/9/port/devroot.c

721

RTC(3) RTC(3)

NAME
rtc � real-time clock and non-volatile RAM

SYNOPSIS
bind #r /dev

/dev/rtc
/dev/nvram

DESCRIPTION
The rtc device supports devices with real-time clocks and non-volatile RAM.

The rtc file behaves just like /dev/time (see cons(3)). The real-time clock is maintained on-
board; /dev/time is set from the file server. Neither is necessarily more accurate.

The nvram file provides (if permission allows) access to the local non-volatile RAM. For example,
boot(8) reads the machine�s key from there (see auth(8)).

SEE ALSO
auth(8), boot(8)

SOURCE
/sys/src/9/*/devrtc.c

722

SD(3) SD(3)

NAME
sd � storage device interface

SYNOPSIS
bind #S /dev

/dev/sdctl
/dev/sdCu/ctl
/dev/sdCu/raw
/dev/sdCu/data
...

DESCRIPTION
The storage device interface serves a two-level directory giving access to multiple storage units,
typically ATA(PI) or SCSI discs. Each unit is accessed via files in the directory named by the con
troller to which it is attached, C, and by its unit number u. The controller naming convention for
ATA(PI) units starts with the first controller being named C, the second D, etc. up to a maximum of
4 controllers ([C−F]); legacy controllers are always �C� and �D�. There can be a maximum of 2 units
per ATA(PI) controller ([01]). The controller naming convention for SCSI units starts with the first
controller being named 0, the second 1, etc. up to a maximum of 16 controllers ([0−9a−f]).
There can be a maximum of 16 units per SCSI controller ([0−9a−f]).

Units are not accessed before the first attach. Units may be individually attached using the attach
specifier, for example

bind −a ’#SsdD0’ /dev

An attach without a specifier will cause the driver to scan for all possible units before processing
the rest of the name.

The subdirectory for each unit contains two files, ctl and raw. In addition, if the unit is a direct-
access disc of some type it may be split into partitions and the subdirectory may contain a file per
partition. By default, the partition data will exist for such media.

Partitions are added and deleted by writing to the ctl file

part name start−sector end−sector
delpart name

The default data partition may be deleted. A partition cannot be deleted if a process has it open.
If a change of removable media is detected, the new media cannot be opened until all open parti
tions on the old media are closed.

Partitions are usually created using fdisk and prep(8); the convention is to name non-Plan 9 parti
tions after their corresponding operating systems (e.g., /dev/sdC0/dos) and Plan 9 partitions
according to their function (e.g., /dev/sdC0/swap). The example in prep(8) shows how this is
done.

Reading the ctl file returns at least one line of textual information about the unit. The first line will
always be prefixed by inquiry and will give a manufacturer and model number if possible. A
line prefixed by config will be returned for appropriate media, e.g. for ATA(PI) units the remain
der of the line contains configuration information from the device�s identify command (config and
capabilities) and also the available I/O transfer options; this is a diagnostic aid. A line prefixed by
geometry will be returned for appropriate media; at least two numbers will follow, the first being
the number of sectors contained in the unit and the second the sector size in bytes. Any remain
ing information on the geometry line is unit-dependent, for instance, head, cylinder and sector
counts for ATA discs. If any partitions are defined for the media, their name, start-sector and
end-sector will be returned, prefixed by part.

% cat /dev/sdD0/ctl
inquiry KENWOOD CD−ROM UCR−421 208E10/20/99 7.39 2 M0
config 85C0 capabilities 0F00 dma 00550004 dmactl 00000000
geometry 242725 2352
part data 0 242725
%

723

SD(3) SD(3)

The use of DMA and multi-sector read/write commands may be enabled and disabled on ATA(PI)
units by writing to the ctl file dma and rwm respectively followed by on or off. For example, to
enable DMA on a unit that supports it:

% echo ’dma on’>/dev/sd00/ctl

If supported by the unit, the standby timer may be enabled:

% echo ’standby T’>/dev/sdC0/ctl

where T is the standby timer period in seconds. T must be between 30 and 1200, or can be 0 to
disable the timer.

The raw file is used to execute an arbitrary command on the unit at a low level. This is used by
programs such as scuzz(8) to manipulate devices that do not fit the simple storage model or for
maintenance purposes. The following steps may be taken to execute a command

� Write the command to the raw file;

� Read or write data associated with the command, according to the direction of the transfer.

� Read the raw file to retrieve the status of the command, returned as a text integer.

Reading /dev/sdctl yields information about each controller, one line per controller. Writing
�config message� to /dev/sdctl passes message to the legacy configuration machinery,
used to set attributes such as IRQ, port and size. Writing �ctltype message� to /dev/sdctl
passes message to ctltype�s wtopctl function with a nil sdev argument, where ctltype is a
known controller type such as ata or scsi. Writing �sdctlletter message� to /dev/sdctl
passes message to sdctlletter�s wtopctl function with an sdev argument corresponding to the
named controller, where ctlletter is a known controller letter such as C or 0.

SOURCE
/sys/src/9/port/devsd.c
/sys/src/9/*/sd*.[hc]

SEE ALSO
scuzz(8)

BUGS
LUNs (logical unit numbers) are not implemented. For (S)ATA drives, LUNs are not merely ignored
but are actively prevented from working except for INQUIRY commands.

The 4 controller limit for ATA(PI) is not enforced.

No account is taken of some buggy ATA PCI controllers such as the CMD640.

ATA(PI) units come up with DMA and multi-sector read/write capability disabled.

724

SDAHCI(3) SDAHCI(3)

NAME
sdahci � AHCI (Advanced Host Controller Interface) SATA (Serial ATA) storage device drivers

SYNOPSIS
bind −a #S /dev

/dev/sdctl

/dev/sdEn/ctl
/dev/sdEn/raw
/dev/sdEn/data
...

DESCRIPTION
The sdahci driver provides access to AHCI devices via the sd(3) interface. The AHCI programming
interface supports up to 32 hot-swappable ATAPI or hard disk-like devices per controller. The
legacy IDE interface provided by sdata.c supports up to four drives which are not hot-
swappable. Controller drive letters are assigned from E onward.

AHCI controllers are detected automatically. Currently Intel and AMD controllers are detected.
Intel controllers need to have AHCI enabled in the BIOS. For ich parts this typically means
enabling enhanced mode and AHCI. For ESB (Enterprise South Bridge) -based parts, only enhanced
mode needs to be enabled. Intel ich9-based AHCI does not support hot swapping and drives
must be connected to the lowest-numbered free port.

The top level control file, /dev/sdctl, supports the following control messages for sdahci:

ahci debug Toggle debug messages. Default is off.
ahci idprint Toggle printing of drive identification messages. Default is on. Prints short

messages when a drive is identified or removed.
ahci aprint Print verbose ATAPI debugging messages. Default is off.

The device-level ctl file supports:

flushcache Send the ATA/ATAPI FLUSH CACHE command (0xe7 or 0xea). This com
mand may take up to 60 seconds to complete.

identify Send the ATA/ATAPI IDENTIFY DEVICE command (0xec). If device infor
mation has changed, the new size, features and serial will be noted. If
changed, I/O on existing file descriptors will result in the error string media
or partition has changed.

mode speed Change the connection speed to one of auto, satai or sataii.
nop Send the ATA NOP command (0) if the device supports it. Per standard, the

result is always an error.
smart Send the ATA/ATAPI SMART RETURN STATUS command (0xda). This will

fail unless SMART is enabled on the drive.
smartdisable Disable SMART on the drive. SMART is a persistent property of the drive.
smartenable Enable SMART on the drive.
state state Force a transition to the named state. The states are:

null ignored (may only be reached manually);
missing not detected;
new powered down or newly discovered;
ready ready for commands;
reset being reset gently;
portreset being fully reset;
offline device failed portreset (a port reset will be attempted

periodically).

For devices present at boot, the transition is from state new to state ready.

SOURCE
/sys/src/9/pc/sdiahci.c

SEE ALSO
sd(3)
http://download.intel.com/technology/serialata/pdf/rev1_2.pdf.

725

SDAHCI(3) SDAHCI(3)

BUGS
None of enclosure management, LED control and port multipliers are supported.

ATAPI devices may not be reset when they have outstanding commands.

726

SDAOE(3) SDAOE(3)

NAME
sdaoe � ATA-over-Ethernet (AoE) storage device interface

SYNOPSIS
bind −a #S /dev
echo config switch on spec l type aoe//dev/aoe/shelf.slot >/dev/sdctl
echo config switch off spec l >/dev/sdctl

/dev/sdl0/ctl
/dev/sdl0/raw
/dev/sdl0/data
...

addaoe letter unit

DESCRIPTION
Sdaoe has a few quirks because network-attached storage can�t be enumerated as directly-
attached storage can. The default first controller letter for AoE devices is e. Each sdaoe device
must be configured explicitly.

Addaoe packages up the switch on invocation as an rc script.

To boot from an AoE root, the sd device must be configured on boot by either PXE booting or
booting from directly-attached storage and adding two configuration lines to plan9.ini(8) for
aoeif, listing the names of the Ethernet interface(s) to use, and aoedev=letter!#æ/aoe/lun.

EXAMPLES
To configure target (LUN) 42.0 on #S/sde0,

echo config switch on spec e type aoe//dev/aoe/42.0 >/dev/sdctl

To turn this device off,

echo config switch off spec e >/dev/sdctl

To boot using target 42.0 as #S/sde0 and as root, over Ethernet interfaces 0 and 1,

aoeif=ether0 ether1
aoedev=e!42.0

SOURCE
/sys/src/9/port/sdaoe.c

SEE ALSO
aoe(3), sd(3), snoopy(8)

BUGS
It is not currently possible to boot from an AoE target without an external bootstrap like PXE.

727

SDLOOP(3) SDLOOP(3)

NAME
sdloop � loopback storage device interface

SYNOPSIS
bind −a #S /dev
echo config switch on spec l type loop/path[!sectsize] >/dev/sdctl

/dev/sdl0/ctl
/dev/sdl0/raw
/dev/sdl0/data
...

DESCRIPTION
Sdloop allows a file to be used as a sd device. To configure /tmp/data as sdl0: with a 1024-
byte sector size

echo config switch on spec l type loop//tmp/data!1024 >/dev/sdctl

To turn this device off,

echo config switch off spec l >/dev/sdctl

The configuration variable loopdev may be specified in plan9.ini(8) to configure a loopback sd
device at boot. For example

loopdev=l!/tmp/data!1024

SOURCE
/sys/src/9/port/sdloop.c

SEE ALSO
sd(3), sdaoe(3), partfs(8)

BUGS
Maybe.

728

SDP(3) SDP(3)

NAME
sdp � secure datagram protocol

SYNOPSIS
bind −a #Espec /net

/net/sdp/clone
/net/sdp/log
/net/sdp/n
/net/sdp/n/data
/net/sdp/n/control
/net/sdp/n/ctl
/net/sdp/n/rstats
/net/sdp/n/stats
/net/sdp/n/status
...

DESCRIPTION
The sdp device provides the interface to the Secure Datagram Protocol (SDP). SDP (un)compresses
and (de-)encrypts packets. Spec is an integer from 0 to 15 identifying a stack. Each stack is inde
pendent of all others: the only information transfer between them is via programs that mount mul
tiple stacks. Normally a system uses only one stack. However multiple stacks can be used for
debugging new networks or implementing firewalls or proxy services.

The top level directory contains a clone file, a log file, and subdirectories numbered from zero
to the number of connections opened for this protocol.

Opening the clone file reserves a connection. The file descriptor returned from the open(2) will
point to the control file, ctl, of the newly allocated connection. Reading ctl returns a text string
representing the number of the connection. Connections may be used either to listen for incoming
calls or to initiate calls to other machines.

A connection is controlled by writing text strings to the associated ctl file. After a connection
has been established data may be read from and written to data. A connection can be actively
established using the connect message (see also dial(2)). A connection can be established pas
sively by first using an announce message (see dial(2)) to bind to a local port and then opening
the listen file (see dial(2)) to receive incoming calls.

The following control messages are supported:

accept file Accept an incoming encrypted connection on file, typically a data file.

dial file Initiate a new encrypted connection on file, typically a UDP data file.

drop permil Randomly drop approximately one of every permil output packets, thus sim
ulating network errors.

cipher algorithm Use ciphering algorithm; choices are null, des_56_cbc, rc4_128, and
rc4_256.

auth algorithm Use authentication algorithm; choices are null, hmac_sha1_96, and
hmac_md5_96.

comp algorithm Use compression algorithm; choices are null and thwack.

insecret secret Use secret to decrypt incoming packets.

outsecret secret Use secret to encrypt outgoing packets.

SEE ALSO
dial(2), ip(3)
Robust Data Compression of Network Packets, Sean Dorward and Sean Quilan, Bell Labs, Lucent
Technologies, http://plan9.bell−labs.com/who/seanq/networkcomp.pdf.

SOURCE
/sys/src/9/port/devsdp.c

729

SEGMENT(3) SEGMENT(3)

NAME
segment � long lived memory segments

SYNOPSIS
bind −c ’#g’ /mnt/segment

#g/seg1
#g/seg1/ctl
#g/seg1/data
#g/seg2
#g/seg2/ctl
#g/seg2/data
...

DESCRIPTION
The segment device provides a 2-level file system representing long-lived sharable segments that
processes may segattach(2). The name of the directory is the class argument to segattach.

New segments are created under the top level using create (see open(2)). The DMDIR bit must
be set in the permissions. Remove(2)�ing the directory makes the segment no longer available for
segattach. However, the segment will continue to exist until all processes using it either exit or
segdetach it.

Within each segment directory are two files, data and ctl. Reading and writing data affects
the contents of the segment. Reading and writing ctl retrieves and sets the segment�s proper
ties.

There is only one control message, which sets the segment�s virtual address and length in bytes:
va address length type

Address is automatically rounded down to a page boundary and length is rounded up to end the
segment at a page boundary. The segment will reside at the same virtual address in all processes
sharing it. Optionally, type can be specified as fixed or sticky. Fixed segments are uncached
and physically continuous with a fixed physical base address suitable for hardware DMA access.
Sticky segments are like normal shared segments but preallocated at creation time and never
swapped out. Only the hostower is allowed to create fixed or sticky segments.

segattach, the address and length arguments are ignored in the call; they are defined only by the
va control message. Once the address and length are set, they cannot be reset.

Reading the control file returns a message of the same format with the segment�s actual start
address and length. For fixed segments, the type and physical base address are appended.

Opening data or reading ctl before setting the virtual address yields the error ��segment not yet
allocated��.

The permissions check when segattaching is equivalent to the one performed when opening data
with mode ORDWR.

EXAMPLE
Create a one megabyte segment at address 0x10000000:

% bind −c ’#g’ /mnt/segment
% mkdir /mnt/segment/example
% echo ’va 0x10000000 0x100000’ > /mnt/segment/example/ctl

Put the string ��hi mom�� at the start of the segment:
% echo −n hi mom > /mnt/segment/example/data

Attach the segment to a process:
{

ulong va;

va = segattach(0, "example", 0, 0);
}

SEE ALSO
segattach(2)

730

SEGMENT(3) SEGMENT(3)

SOURCE
/sys/src/9/port/devsegment.c

731

SHR(3) SHR(3)

NAME
shr � global mountpoints

SYNOPSIS
bind ’#σ’ /shr

#σ/share1
#σc/share1/service1
#σc/share1/service2
...

DESCRIPTION
The shr device provides global mountpoints in the form of share directories where 9P services can
be mounted.

Effectively, it is a global mountpoint registry that is separate from private namespaces.

The shr device exports a mount tree and a control tree. The directories in the mount tree #σ are
the share mountpoints themselves, while the directories in #σc contain the service files of the
share.

To create a new share, create the directory #σc/myshare

To mount a service in that share, create the file #σc/myshare/myserv and then write a text
string (suitable for strtoul; see atof(2)) giving the file descriptor number of an open 9P service.
Any process with the proper permission may then access #σ/myshare on the mount tree.

The service file can be reopened and passed to mount (see bind(2)) or added to another share.

Multiple services can be mounted under a share forming a union directory. New services get
mounted before old ones. Removing the service file unmounts the service from the share.

Creating shares and mounts requires read-write access in the share directory. The special user
none is prohibited from these operations.

EXAMPLES
To mount a 9p service from srv(3) to the shr device

mkdir ’#σc’/myshare
echo 3 > ’#σc’/myshare/myserv <>[3]/srv/myserv

SOURCE
/sys/src/9/port/devshr.c

HISTORY
Shr first appeared in 9front (July, 2011).

732

SRV(3) SRV(3)

NAME
srv � server registry

SYNOPSIS
bind #s /srv

#s/service1
#s/service2
...

DESCRIPTION
The srv device provides a one-level directory holding already-open channels to services. In effect,
srv is a bulletin board on which processes may post open file descriptors to make them available
to other processes.

To install a channel, create a new file such as /srv/myserv and then write a text string (suitable
for strtoul; see atof(2)) giving the file descriptor number of an open file. Any process may then
open /srv/myserv to acquire another reference to the open file that was registered.

An entry in srv holds a reference to the associated file even if no process has the file open.
Removing the file from /srv releases that reference.

It is an error to write more than one number into a server file, or to create a file with a name that is
already being used.

EXAMPLE
To drop one end of a pipe into /srv, that is, to create a named pipe:

int fd, p[2];
char buf[32];

pipe(p);
fd = create("/srv/namedpipe", OWRITE, 0666);
fprint(fd, "%d", p[0]);
close(fd);
close(p[0]);
fprint(p[1], "hello");

At this point, any process may open and read /srv/namedpipe to receive the hello string.
Data written to /srv/namedpipe can be received by executing

read(p[1], buf, sizeof buf);

in the above process.

SOURCE
/sys/src/9/port/devsrv.c

733

SSL(3) SSL(3)

NAME
ssl � SSL record layer

SYNOPSIS
bind −a #D /net

/net/ssl/clone
/net/ssl/n
/net/ssl/n/ctl
/net/ssl/n/data
/net/ssl/n/encalgs
/net/ssl/n/hashalgs
/net/ssl/n/secretin
/net/ssl/n/secretout

DESCRIPTION
The SSL device provides the interface to the Secure Socket Layer device implementing the record
layer protocol of SSLv2 (but not the handshake protocol, which is responsible for mutual authenti
cation and key exchange.) The ssl device can be thought of as a filter providing optional encryp
tion and anti-tampering.

The top level directory contains a clone file and subdirectories numbered from zero to the num
ber of connections configured. Opening the clone file reserves a connection. The file descriptor
returned from the open(2) will point to the control file, ctl, of the newly allocated connection.
Reading the ctl file returns a text string representing the number of the connection.

A connection is controlled by writing text strings to the associated ctl file. After a connection
has been established data may be read from and written to the data file.

The SSL protocol provides a stream connection that preserves read/write boundaries. As long
as reads always specify buffers that are of equal or greater lengths than the writes at the other end
of the connection, one write will correspond to one read.

Options are set by writing control messages to the ctl file of the connection.

The following control messages are supported:

fd open−file−descriptor
Run the SSL protocol over the existing file descriptor.

alg cryptoalgs
Connections start in alg clear which means no encryption or digesting. Writing alg
sha to the control file turns on SHA-1 digest authentication for the data channel. Simi
larly, writing alg rc4_128 enables encryption. Both can be turned on at once by alg
sha rc4_128. The digest mode sha may be replaced by md5. The encryption mode
rc4_128 may be replaced by rc4_40, rc4_128, rc4_256, des_40_ecb,
des_40_cbc, des_56_ecb, and des_56_cbc. The mode may be changed at any
time during the connection.

secretin base64−secret
The secret for decrypting and authenticating incoming messages can be specified either as
a base64 encoded string by writing to the control file, or as a binary byte string using the
interface below.

secretout base64−secret
The secret for encrypting and hashing outgoing messages can be specified either as a
base64 encoded string by writing to the control file, or as a binary byte string using the
interface below.

Before enabling digesting or encryption, shared secrets must be agreed upon with the remote side,
one for each direction of transmission, and loaded as shown above or by writing to the files
secretin and secretout. If either the incoming or outgoing secret is not specified, the other secret is
assumed to work for both directions.

The encryption and hash algoritms actually included in the kernel may be smaller than the set pre
sented here. Reading encalgs and hashalgs will give the actual space-separated list of algorithms

734

SSL(3) SSL(3)

implemented.

SEE ALSO
listen(8), dial(2)

SOURCE
/sys/src/9/port/devssl.c

BUGS
Messages longer than 4096 bytes are truncated.

735

SWAP(3) SWAP(3)

NAME
swap � memory usage statistics and swap file control

SYNOPSIS
bind −a #¶ /dev

/dev/swap

DESCRIPTION
The swap device holds a text block giving memory usage statistics:

n memory
n pagesize
n kernel
n/m user
n/m swap
a/n/m kernel malloc
a/n/m kernel draw
a/n/m kernel secret

These are total memory (bytes), system page size (bytes), kernel memory (pages), user memory
(pages), swap space (pages), kernel malloced data (bytes), kernel graphics data (bytes) and kernel
secret data (bytes). The expression n/m indicates n used out of m available. For kernel malloc
and kernel draw, a indicates the current allocation in bytes. These numbers are not blank padded.

To turn on swapping, write to swap the textual file descriptor number of a file or device on which
to swap.

Only the hostowner is allowed to enable swapping. The pages written to the swap file are transpar
ently encrypted by the kernel using a random key.

SEE ALSO
memory(8), swap(8).

SOURCE
/sys/src/9/port/devswap.c

736

TLS(3) TLS(3)

NAME
tls � TLS and SSL3 record layer

SYNOPSIS
bind −a #a /net

/net/tls/clone
/net/tls/encalgs
/net/tls/hashalgs
/net/tls/n
/net/tls/n/ctl
/net/tls/n/data
/net/tls/n/hand
/net/tls/n/stats
/net/tls/n/status

DESCRIPTION
The TLS device implements the record layer protocols of Transport Layer Security version 1.0-1.2
and Secure Sockets Layer version 3.0. It does not implement the handshake protocols, which are
responsible for mutual authentication and key exchange. The tls device can be thought of as fil
ters providing optional encryption and anti-tampering.

The top level directory contains a clone file and subdirectories numbered from zero through at
least the last active filter. Opening the clone file reserves a filter. The file descriptor returned
from the open(2) will point to the control file, ctl, of the newly allocated filter. Reading the ctl
file returns a text string containing the number of the filter directory.

The filter initially cannot be used to pass messages and will not encrypt or digest messages. It is
configured and controlled by writing commands to ctl.

The following commands are supported:

fd open−fd vers
Pass record messages over the communications channel open−fd. Initially, outgoing mes
sages use version vers format records, but incoming messages of either version are
accepted. Valid versions are 0x300 for SSLv3.0 and 0x301, 0x302 and 0x303 for
TLSv1.0 (which could be known as SSLv3.01), TLSv1.1 and TLSv1.2. This command must
be issued before any other command and before reading or writing any messages; it may
only be executed once.

version vers
Use vers format records for all future records, both outgoing and incoming. This command
may only be executed once.

secret hashalg encalg isclient secretdata
Set up the digesting and encryption algorithms and secrets. Hashalg and encalg must be
algorithm names returned by the corresponding files. Secretdata is the base-64 encoded
(see encode(2)) secret data used for the algorithms. It must contain at least enough data to
populate the secrets for digesting and encrypting. These secrets are divided into three cat
egories: digest secrets, keys, and initialization vectors. The secrets are packed in this
order, with no extra padding. Within each category, the secret for data traveling from the
client to the server comes first. The incoming and outgoing secrets are automatically
selected by devtls based on the isclient argument, which must be non-zero for the client of
the TLS handshake, and zero for the server.
This command must be issued after version, and may be issued more than once. At
least one new secret command must be issued before each changecipher command; simi
larly, at least one new secret command must precede each incoming changecipher mes
sage.

changecipher
Enable outgoing encryption and digesting as configured by the previous secret command.
This command sends a changecipher message.

737

TLS(3) TLS(3)

opened
Enable data messages. This command may be issued any number of times, although only
the first is significant. It must follow at least one successful changecipher command.

alert alertno
Send an alert message. Alertno may be a valid alert code for either SSLv3.0 or TLS, and is
mapped to an appropriate code for the protocol in use. If it is a fatal alert, the filter is set
into an error state.

Application messages and handshake messages are communicated using data and hand, respec
tively. Only one open(2) of hand is allowed at a time.

Any record layer headers and trailers are inserted and stripped automatically, and are not visible
from the outside. The device tries to synchronize record boundaries with reads and writes. Each
read will return data from exactly one record, and will return all of the data from the record as long
as the buffer is big enough. Each write will be converted into an integral number of records, with
all but potentially the last being maximal size. The maximum record length supported is 16384
bytes. This behavior is not specified in the protocols, and may not be followed by other implemen
tations.

If a fatal alert message is received, or a fatal alert command issued, the filter is set into an error
state. All further correspondence is halted, although some pending operations may not be termi
nated. Operations on data will fail with a ’tls error’, and operations on hand will fail with a
textual decoding of the alert. The current non-fatal alert messages are ’close notify’, ’no
renegotiation’, and ’handshake canceled by user’. Receipt of one of these alerts
cause the next read on hand to terminate with an error. If the alert is ’close notify’, all
future reads will terminate with a tls hungup error. A ’close notify’ alert command will
terminate all future writes or reads from data with a ’tls hungup’ error.

If an error is encountered while reading or writing the underlying communications channel, the
error is returned to the offending operation. If the error is not ’interrupted’, the filter is set
into the error state. In this case, all future operations on hand will fail with a ’channel
error’.

When all file descriptors for a filter have been closed, the session is terminated and the filter
reclaimed for future use. A ’close notify’ alert will be sent on the underlying communica
tions channel unless one has already been sent or the filter is in the error state.

Reading stats or status returns information about the filter. Each datum is returned on a single
line of the form tag: data. Stats returns the number of bytes communicated by the data and
hand channels. The four lines returned are tagged by, in order, DataIn, DataOut, HandIn,
and HandOut. Status returns lines following tags: State, Version, EncIn, HashIn,
NewEncIn, NewHashIn, EncOut, HashOut, NewEncOut, and NewHashOut. State�s
value is a string describing the status of the connection, and is one of the following:
’Handshaking’, ’Established’, ’RemoteClosed’, ’LocalClosed’, ’Alerting’,
’Errored’, or ’Closed’. Version�s give the hexadecimal record layer version in use. The
Enc and Hash fields return name of the current algorithms in use or ready to be used, if any.

Reading encalgs and hashalgs will give the space-separated list of algorithms implemented. This
will always include clear, meaning no encryption or digesting. Currently implemented encryp
tion algorithms for use with TLSv1.0 and TLSv1.1 are: rc4_128, 3des_ede_cbc,
aes_128_cbc and aes_256_cbc. For TLSv1.2, which adds support for authenticated encryp
tion with associated data (AEAD), the following ciphers are supported: ccpoly64_aead,
ccpoly96_aead, aes_128_gcm_aead and aes_256_gcm_aead. Currently implemented
hashing algorithms are: md5, sha1 and sha256. For an AEAD cipher, the hashing algorithm
should be set to clear.

SEE ALSO
listen(8), dial(2), pushtls(2)

SOURCE
/sys/src/9/port/devtls.c

738

TWSI(3) TWSI(3)

NAME
twsi - two-wire serial interface (TWSI) and inter-integrated circuit (I²C) interface

SYNOPSIS
bind −a #² /dev

/dev/twsi*

DESCRIPTION
The twsi device serves a one-level directory containing one file per TWSI or I²C bus. Bytes written
are transmitted on the bus; bytes received from the bus are queued and delivered by reading.
Seeking to a given offset before reading or writing causes the twsi device to use that offset as a
TWSI slave address for a subsequent read(2) or write call.

FILES
#²/twsi*

SOURCE
/sys/src/9/*/devtwsi.c

BUGS
10-bit addressed devices are not supported.

No slave mode.

Setting the bus rate is not supported.

739

UART(3) UART(3)

NAME
uart, eia � serial communication control

SYNOPSIS
bind −a #t /dev

/dev/eia0
/dev/eia0ctl
/dev/eia0status
/dev/eia1
/dev/eia1ctl
/dev/eia1status
...

DESCRIPTION
The serial line devices serve a one-level directory, giving access to the serial ports. Device n is
accessed through eian (the data file), eianctl (the control file), and eianstatus (the read-
only status file). Reads of the data file will block until at least one byte is available. The control
file configures the port. It accepts the following commands:

bn Set the baud rate to n.

cn Set hangup on DCD if n is non-zero; else clear it.

dn Set DTR if n is non-zero; else clear it.

en Set hangup on DSR if n is non-zero; else clear it.

f Flush output queue.

h Close input and output queues.

in Enable/disable the FIFOs. If n is zero the FIFOs are disabled; otherwise n is taken as a trig
ger level for the FIFOs. The trigger levels supported are device dependant, but usually
include 1, 4 and 8. An unrecognised, but non-zero, value of n causes the maximum-
supported trigger level to be set.

kn Send a break lasting n milliseconds.

ln Set number of bits per byte to n. Legal values are 5, 6, 7, or 8.

mn Obey modem CTS signal if n is non-zero; else clear it.

n Make writes non-blocking.

pc Set parity to odd if c is o, to even if c is e; else set no parity.

qn Set input and output queue limits to n.

rn Set RTS if n is non-zero; else clear it.

sn Set number of stop bits to n. Legal values are 1 or 2.

wn Set the uart clock timer to n times 100us.

The status files contain a textual representation of the status of the line, in the format of the com
mands used on the control file.

SOURCE
/sys/src/9/port/devuart.c
/sys/src/9/*/uart*.c

740

USB(3) USB(3)

delim $$

NAME
usb � USB Host Controller Interface

SYNOPSIS
bind −a #u /dev

/dev/usb
/dev/usb/ctl
/dev/usb/epN.M
/dev/usb/epN.M/data
/dev/usb/epN.M/ctl
...

DESCRIPTION
The Universal Serial Bus is a complex yet popular bus for connecting all kind of devices to a com
puter. It is a four-wire tree-shaped bus that provides both communication and (limited) power to
devices. Branching points in the tree are provided by devices called hubs. Hubs provide ports
where USB devices (also hubs) can be attached.

Most PCs have one or more USB controllers called host controllers. Each one has a built-in hub
called a root hub providing several ports. In some cases, more hubs are built-in and attached to a
root hub port. The topology of the network is a tree with at most 127 nodes, counting both inter
nal and leaf nodes.

Host controllers come in four flavours: UHCI and OHCI for USB 1 (up to 12 Mb/s), EHCI for USB 2
(up to 480 Mb/s) and XHCI for USB 3 (up to 5 Gb/s). We currently support all but XHCI, which is
still quite new.

The USB bus is fully controlled by the host; all devices are polled. Hubs are passive in the sense
that they do not poll the devices attached to them. The host polls those devices and the hubs
merely route the messages.

Devices may be added to or removed from the bus at any time. When a device is attached, the
host queries it to determine its type and speed. The querying process is standardized. The first
level of querying is the same for all devices, the next is somewhat specialized for particular classes
of devices (such as mice, keyboards, or audio devices). Specialization continues as subclasses and
subsubclasses are explored.

Enumeration of the bus and initial configuration of devices is done by a user level program, usbd.
Device drivers are implemented by separate user programs, although some of them may be stati
cally linked into usbd.

The kernel device described in this page is responsible for providing I/O for using the devices
through so called endpoints. Access to the host controller is hidden from user programs, which
see just a set of endpoints. After system initialization, some endpoints are created by the device
to permit I/O to root hubs. All other devices must be configured by usbd.

Devices and Endpoints
A device includes one or more functions (e.g., audio output, volume control buttons, mouse input,
etc.) Communication with device functions is performed by some combination of issuing control
requests to, sending data to, and receiving data from device endpoints. Endpoints can be under
stood as addresses in the bus. There are several types:

Control Their main use is to configure devices. Writing a message with a specific format
(specified in the USB specification) issues a request to the device. If the request
implies a reply, a read can be made next to retrieve the requested data (if the write
succeeded).

Interrupt Used to send and receive messages to or from a specific device function (e.g., to read
events from a mouse).

Bulk Used to send and receive larger amounts of data through streams (e.g., to write
blocks to a disk).

Isochronous Used to send and receive data in a timely manner (e.g., to write audio samples to a
speaker).

741

USB(3) USB(3)

All USB devices include at least a control endpoint to perform device configuration. This is called
the setup endpoint or endpoint zero. After configuring a device, other endpoints may be created as
dictated by the device to perform actual I/O.

Operation
Bus enumeration and device configuration is performed by usbd and not by this driver. The driver
provides an interface to access existing endpoints (initially those for the built-in root hubs), to cre
ate and configure other ones, and to perform I/O through them.

Each directory /dev/usb/epN.M represents an endpoint, where N is a number identifying a
device and M is a number identifying one of its endpoints.

For each device attached to the bus, and configured by usbd, an endpoint zero (a setup endpoint)
is provided at /dev/usb/epN.0 for configuring the device. This is always a control endpoint
and represents the device itself.

The device driver may use the setup endpoint to issue control requests and perhaps to create more
endpoints for the device. Each new endpoint created has its own directory as said above. For
example, if the driver for the device /dev/usb/epN.0 creates the endpoint number 3 for that
device, a directory /dev/usb/epN.3 will be available to access that endpoint.

All endpoint directories contain two files: data and ctl. The former has mode bit DMEXCL set
and can be open by only one process at a time.

data
The data file is used to perform actual I/O. In general, reading from it retrieves data from the
endpoint and writing into it sends data to the endpoint. For control endpoints, writing to this file
issues a control request (which may include data); if the request retrieves data from the device, a
following read on the file will provide such data.

USB errors reported by the endpoint upon I/O failures are passed to the user process through the
error string. I/O stalls not resulting from an error, usually an indication from the device, are
reported by indicating that the number of bytes transferred has been zero. In most cases, the cor
rect course of action after noticing the stall is for the device driver to issue a �clear halt� request
(see unstall in nusb(2)) to resume I/O. The most common error is crc/timeout indicating
problems in communication with the device (eg., a physical detach of the device or a wiring prob
lem).

For control and isochronous transfers, there is an implicit timeout performed by the kernel and it
is not necessary for applications to place their own timers. For other transfer types, the kernel will
not time out any operation by default (but see the timeout control request).

ctl and status
The ctl file can be read to learn about the endpoint. It contains information that can be used to
locate a particular device (or endpoint). It also accepts writes with textual control requests
described later.

This may result from the read of an endpoint control file:

(the first line is wrapped to make it fit here)
enabled control rw speed full maxpkt 64 pollival 0

samplesz 0 hz 0 hub 1 port 3 busy
storage csp 0x500608 vid 0x951 did 0x1613 Kingston ’DT 101 II’

The first line contains status information. The rest is information supplied by usbd as an aid to
locate devices. The status information includes:

Device state One of config, enabled, and detached. An endpoint starts in the config
state, and accepts control commands written to its ctl file to configure the end
point. When configured, the state is enabled and the data file is used as
described above (several control requests can still be issued to its ctl file, but
most will not be accepted from now on). Upon severe errors, perhaps a physical
detachment from the bus, the endpoint enters the detached state and no fur
ther I/O is accepted on it. Files for an endpoint (including its directory) vanish
when the device is detached and its files are no longer open. Root hubs may not
be detached.

742

USB(3) USB(3)

Endpoint type control, iso, interrupt, or bulk, indicating the type of transfer supported
by the endpoint.

Endpoint mode One of r, w, or rw, depending on the direction of the endpoint (in, out, or inout).

Speed low (1.5 Mb/s), full (12 Mb/s), or high (480 Mb/s).

Maximum packet size
Used when performing I/O on the data file.

Polling interval The polling period expressed as a number of µframes (for high-speed endpoints)
or frames (for low- and full-speed endpoints). Note that a µframe takes 125 µs
while a frame takes 1 ms. This is only of relevance for interrupt and isochronous
endpoints. This value determines how often I/O happens. Note that the control
request adjusting the polling interval does not use these units, to make things eas
ier for USB device drivers.

Sample size Number of bytes per I/O sample (isochronous endpoints only).

Frequency Number of samples per second (Hertz).

Hub address Device address of the hub where the device is attached.

Port number Port number (in the hub) where the device is attached.

Usage busy while the data file is open and idle otherwise. This is useful to avoid dis
turbing endpoints already run by a device driver.

The second line contains information describing the device:

Class name As provided by the device itself.

CSP Class, Subclass, and Protocol for the device. If the device contains different func
tions and has more CSPs, all of them will be listed. The first one is that of the
device itself. For example, a mouse and keyboard combo may identify itself as a
keyboard but then include two CSPs, one for the keyboard and another one for the
mouse.

Vid and Did Vendor and device identifiers.

Device strings Provided by the device and identifying the manufacturer and type of device.

For example, to find a mouse not yet in use by a driver, scan the ctl files for enabled, idle,
and csp 0x020103. A mouse belongs to class 3 (in the least significant byte), human interface
device, subclass 1, boot, protocol 2, mouse (protocol 1 would be the keyboard). USB class, sub
class and proto codes can be found at http://www.usb.org.

Control requests
Endpoint control files accept the following requests. In most cases the driver does not issue them,
leaving the task to either usbd or the usb driver library documented in nusb(2).

detach Prevent further I/O on the device (delete the endpoint) and remove its file interface
as soon as no process is using their files.

maxpkt n Set the maximum packet size to n bytes.
pollival n Only for interrupt and isochronous endpoints. Set the polling interval as a function

of the value n given by the endpoint descriptor. The interval value used is the
period n in bus time units for low- and full-speed interrupt endpoints. Otherwise,
the actual interval is $2 sup n$ and not n. Bus time units are 1 ms for low- and
full-speed endpoints and 125 µs for high-speed endpoints. In most cases, the
device driver may ignore all this and issue the control request supplying the polling
interval value as found in the endpoint descriptor. The kernel adjusts the value
according to the endpoint configuration and converts it into the number of frames
or µframes between two consecutive polls.

samplesz n Use n as the number of bytes per sample.
hz n Use n as the number of samples per second.
ntds n Use n as the number of transactions per frame (or µframe), as reported by the

descriptor.
uframes n If n is set to 1 for an isochronous endpoint, read(2) from the data file will not cross

¼frame boundaries.

743

USB(3) USB(3)

clrhalt Clear the halt condition for an endpoint. Used to recover from a stall caused by a
device to signal its driver (usually due to an unknown request or a failure to com
plete one).

info string Replaces description information in ctl with string. Usbd uses this to add device
descriptions.

address Tell this driver that the device has been given an address, which causes the device
to enter the enabled state.

name str Generates an additional file name, str , for the data file of the endpoint. This file
name appears in the root directory of the #u tree. For example, this is used by the
audio device driver to make the data file also available as /dev/audio.

debug n Enable debugging of the endpoint. N is an integer; larger values make diagnostics
more verbose. 0 stops debugging diagnostics. 1 causes just problem reports.
Bigger values report almost everything.

timeout n Enable time-outs for the endpoint. Transfers are timed out by the kernel after n
ms. This should not be used for control and isochronous endpoints, which are
always timed out.

Setup endpoints (those represented by epN.0 directories) also accept the following requests:

new n type mode
Creates a new endpoint with number n of the given type (ctl, bulk, intr, or iso).
Mode may be r, w, or rw, which creates, respectively, an input, output, or input/output
endpoint.

speed {low|full|high}
Set the endpoint speed to full, low, or high, respectively.

hub Tell this driver that the endpoint corresponds to a hub device.

Setup endpoints for hub devices also accept his request:

newdev {low|full|high} port
Create a new setup endpoint to represent a new device. The first argument is the device
speed. Port is the port number where the device is attached (the hub is implied by the end
point where the control request is issued).

The file /dev/usb/ctl provides all the information provided by the various ctl files when
read. It accepts several requests that refer to the entire driver and not to particular endpoints:

debug n Sets the global debug flag to n.
dump Dumps data structures for inspection.

FILES
#u/usb root of the USB interface

SOURCE
/sys/src/9/port/usb.h
/sys/src/9/port/devusb.c
/sys/src/9/*/usb*.c

SEE ALSO
nusb(2), nusb(4), plan9.ini(8)

BUGS
USB controllers limit the speed of all their ports to that of the slowest device connected to any one
of them.

Isochronous input streams are not implemented for OHCI.

Some EHCI controllers drop completion interrupts and so must be polled, which hurts throughput.

744

VGA(3) VGA(3)

NAME
vga � VGA controller device

SYNOPSIS
bind #v /dev

/dev/vgactl

DESCRIPTION
The VGA device allows configuration of a graphics controller on a PC. Vgactl allows control over
higher-level settings such as display height, width, depth, controller and hardware-cursor type.
Along with the I/O-port registers provided by arch(3), it is used to implement configuration and
setup of VGA controller cards. This is usually performed by vga(8).

Writing strings to vgactl configures the VGA device. The following are valid commands.

size XxYxZ chan
Set the size of the screen image to be X pixels wide and Y pixels high. Each pixel is Z bits
as specified by chan, whose format is described in image(6).

actualsize XxY
Set the physical size of the display to be X pixels wide by Y pixels high. This message is
optional; it is used to accommodate displays that require the in-memory screen image to
have certain alignment properties. For example, a 1400x1050 screen with a 1408x1050
in-memory image will use size 1408x1050 but actualsize 1400x1050.

tilt value
Set the tilt of the screen, altering the screen�s orientation. The value can be one of: none,
left, inverted and right.

type ctlr
Set the type of VGA controller being used. Ctlr is one of 3dfx, ark200pv, clgd542x,
clgd546x, ct65545, cyber938x, et4000, geode, hiqvideo, i81x, igfx,
mach64xx, mga2164w, mga4xx, neomagic, nvidia, radeon, s3, t2r4 and
vmware.

Note that this list does not indicate the full set of VGA chips supported. For example, s3
includes the 86C801/5, 86C928, Vision864, and Vision964. It is the job of vga(8) to rec
ognize which particular chip is being used and to initialize it appropriately.

hwgc gc
Set the type of hardware graphics cursor being used. Gc is one of soft, 3dfxhwgc,
ark200pvhwgc, bt485hwgc, clgd542xhwgc, clgd546xhwgc, ct65545hwgc,
cyber938xhwgc, et4000hwgc, geodehwgc, hiqvideohwgc, i81xhwgc,
igfxhwgc, mga2164whwgc, mach64xxhwgc, neomagichwgc, nvidiahwgc,
radeonhwgc, rgb524hwgc, s3hwgc, t2r4hwgc, tvp3020hwgc, tvp3026hwgc
and vmwarehwgc. A value of off disables the cursor.

palettedepth d
Set the number of bits of precision used by the VGA palette to d, which must be either 6 or
8.

hwaccel mode
Depending on whether mode is on or off, enable or disable whether hardware accelera
tion (currently for rectangle filling and moving) used by the graphics engine. The default
setting is on.

softscreen mode
Depending on whether mode is on or off, enable or disable shadow framebuffer to reduce
slow bus reads. Enabling softscreen disables hardware acceleration. The default setting
is off except for the vesa driver.

hwblank mode
Depending on whether mode is on or off, enable or disable the use of DPMS blanking (see
mouse(3)).

745

VGA(3) VGA(3)

linear size align
Use a linear screen aperture of size size aligned on an align-byte boundary.

drawinit
Initialize the graphics hardware. This must be sent after setting the type.

Reading vgactl returns the current settings, one per line.

EXAMPLES
The following disables hardware acceleration.

echo hwaccel off > /dev/vgactl

SOURCE
/sys/src/9/pc/devvga.c

SEE ALSO
arch(3), vga(8)

BUGS
The hardware graphics cursor on the et4000 does not work in 2x8-bit mode.

746

VMX(3) VMX(3)

NAME
vmx � x86 virtualization interface

SYNOPSIS
#X/clone
#X/n
#X/n/ctl
#X/n/fpregs
#X/n/map
#X/n/regs
#X/n/status
#X/n/wait

DESCRIPTION
The vmx device supports "virtual CPUs" using the Intel VT-x extension (a.k.a. VMX instruction set).
This is used by vmx(3) to implement virtual machines. Access to the vmx device is restricted to
the hostowner.

The top level directory contains a clone file and numbered subdirectories representing the allo
cated virtual CPUs. Opening the clone file allocates a new virtual CPU and returns the file descrip
tor to its ctl file. The ctl file provides the main control interface. See below for a list of com
mands. Reading returns the subdirectory number. Removing the ctl file marks the virtual CPU as
moribund. The status file contains the current status of the virtual CPU, which is one of

init The virtual CPU is being initialized.
ready The virtual CPU is idle.
running The virtual CPU is executing code.
dead The virtual CPU suffered a fatal error. This state may be followed by an error message.
ending The virtual CPU is shutting down.

The map file contains the memory map that the virtual CPU will see. It consists of lines of the form
access cache lowaddr highaddr segment offset

Lowaddr specifies the lowest address in the region and highaddr one past the highest address.
The region is mapped to a region of the same size in the global segment segment (see
segment(3)), starting at offset. The access field specifies the permitted types of access using the
characters r (read), w (write), x (execute) and − (padding character). The cache field specifies the
cacheability of the region, it must be one of uc, wc, wt, wp and wb (as defined in the Intel SDM).

Writes to the map file append lines to the end. Multiple lines can be written at once but all lines
written must be newline terminated. Regions can be overlapping, in which case later definitions
always override earlier ones. The map can be cleared by opening the file with OTRUNC (see open
(2)).

The regs file contains the registers of the virtual CPU in the format name value. Writes to the file
(in the same format) write to the referenced registers (if possible). Multiple lines can be written at
once but all lines written must be newline terminated.

Some registers (CR0 and CR4) are split into three registers, suffixed real, fake and mask. In
this case, real corresponds to the bits that affect actual CPU execution, fake corresponds to the
bits read back by the guest and the bits set in mask are those "owned" by the host. The guest is
free to modify the bits that it owns (in which case it always has the same value in both real and
fake), but attempting to change a host-owned bit from the status in fake causes a VM exit.
Certain bits are owned by the kernel, which means they are fixed in both mask and real.

Reading the wait file will stall the reading process until the virtual CPU reaches a point where it
cannot continue (a "VM exit"). This may be due to the an access to hardware or a software excep
tion. Each exit is indicated by a single line in a format compatible with tokenize (see getfields(2)).
The first column contains the cause of the exit and the second column contains the "exit qualifica
tion" field that may contain more details on the exit (see Intel SDM). The remaining columns come

747

VMX(3) VMX(3)

in pairs and contain further info and the values of relevant registers.

Some notable exit causes are (see kernel source code for a complete list)

#exception Exception of the specified type (e.g. #gp for general protection fault). Currently only
debug exceptions are configured to cause VM exits.

triplef Triple fault.
eptfault The virtual CPU attempted a memory access that does not match any entry in the

map file.
movcr Illegal access to a control register (see above).
.instr The virtual CPU attempted to execute the instruction instr.
*ack Not an actual exit, but acknowledgement that an interrupt request (IRQ) was posted.

The fpregs file contains the virtual CPU�s floating point registers, in the same binary format used
by proc(3).

Control messages
quit Destroy the current virtual CPU.
go [regs] Launch the virtual CPU. Regs is an optional list of register changes in the for

mat name=value; that will be applied before launching.
stop Stop the virtual CPU.
step [regs] Executes a single instruction with the virtual CPU. Regs is optinal, same as go.
exc excep The exception excep is triggered in the virtual CPU. Excep can either be a

named exception (such as #gp, in lower case) or an exception number. A num
ber may be preeded by # to mark it as an exception, otherwise it is delivered as
an interrupt (but always disregarding whether interrupts are enabled).

irq [excep] An Interrupt is posted, i.e. the exception excep will be triggered the next time
interrupts are enabled in the virtual CPU, at which point a *ack message is
sent to wait. Irq cancels any interrupts that have been previously posted
but not yet delivered and it can be called with no argument to cancel an inter
rupt.

extrap bitmap Changes the exception bitmap. Set bits cause a VM exits.

SOURCE
/sys/src/9/pc/devvmx.c

SEE ALSO
vmx(1), cpuid(8)

Intel 64 and IA-32 Architectures Software Developer�s Manual, Volume 3B, Chapters 23-33.

BUGS
Devvmx can and will crash your kernel.

HISTORY
Devvmx first appeared in 9front (June, 2017).

748

INTRO(4) INTRO(4)

NAME
intro � introduction to file servers

DESCRIPTION
A Plan 9 file server provides a file tree to processes. This section of the manual describes servers
than can be mounted in a name space to give a file-like interface to interesting services. A file
server may be a provider of a conventional file system, with files maintained on permanent stor
age, or it may also be a process that synthesizes files in some manner.

SEE ALSO
bind(1)

749

ACME(4) ACME(4)

NAME
acme � control files for text windows

SYNOPSIS
acme [−ab] [−c ncol] [−f varfont] [−F fixfont] [−l file | file ...]

DESCRIPTION
The text window system acme(1) serves a variety of files for reading, writing, and controlling win
dows. Some of them are virtual versions of system files for dealing with the virtual console; others
control operations of acme itself. When a command is run under acme, a directory holding these
files is mounted on /mnt/acme (also bound to /mnt/wsys) and also /dev; the files mentioned
here appear in both those directories.

Some of these files supply virtual versions of services available from the underlying environment,
in particular the character terminal files cons(3). (Unlike in rio(1), each command under acme sees
the same set of files; there is not a distinct /dev/cons for each window.) Other files are unique
to acme.

acme is a subdirectory used by win (see acme(1)) as a mount point for the acme files associated
with the window in which win is running. It has no specific function under acme itself.

cons is the standard and diagnostic output file for all commands run under acme. (Input for
commands is redirected to /dev/null.) Text written to cons appears in a window
labeled dir/+Errors, where dir is the directory in which the command was run. The win
dow is created if necessary, but not until text is actually written.

consctl
is an empty unwritable file present only for compatibility; there is no way to turn off �echo�,
for example, under acme.

index
holds a sequence of lines of text, one per window. Each line has 5 decimal numbers, each
formatted in 11 characters plus a blank�the window ID; number of characters (runes) in
the tag; number of characters in the body; a 1 if the window is a directory, 0 otherwise; and
a 1 if the window is modified, 0 otherwise�followed by the tag up to a newline if present.
Thus at character position 5×12 starts the name of the window. If a file has multiple
zeroxed windows open, only the most recently used will appear in the index file.

label
is an empty file, writable without effect, present only for compatibility with rio.

log reports a log of window operations since the opening of the log file. Each line describes a
single operation using three fields separated by single spaces: the decimal window ID, the
operation, and the window name. Reading from log blocks until there is an operation to
report, so reading the file can be used to monitor editor activity and react to changes. The
reported operations are new (window creation), zerox (window creation via zerox), get,
put, del (window deletion), and focus (window focus change). The window name can
be the empty string; in particular it is empty in new log entries corresponding to windows
created by external programs.

new is a directory analogous to the numbered directories (q.v.). Accessing any file in new cre
ates a new window. Thus to cause text to appear in a new window, write it to
/dev/new/body. For more control, open /dev/new/ctl and use the interface
described below.

Each acme window has associated a directory numbered by its ID. Window IDs are chosen sequen
tially and may be discovered by the ID command, by reading the ctl file, or indirectly through
the index file. The files in the numbered directories are as follows.

addr may be written with any textual address (line number, regular expression, etc.), in the for
mat understood by button 3 but without the initial colon, including compound addresses,
to set the address for text accessed through the data file. When read, it returns the value
of the address that would next be read or written through the data file, formatted as 2
decimal numbers m and n, each formatted in 11 characters plus a blank. M and n are the
character (not byte) offsets of the beginning and end of the address, which would be

750

ACME(4) ACME(4)

expressed in acme ’s input language as #m,#n. Thus a regular expression may be evalu
ated by writing it to addr and reading it back. The addr address has no effect on the
user�s selection of text.

body holds contents of the window body. It may be read at any byte offset. Text written to
body is always appended; the file offset is ignored.

ctl may be read to recover the five numbers as held in the index file, described above, plus
three more fields: the width of the window in pixels, the name of the font used in the win
dow, and the width of a tab character in pixels. Text messages may be written to ctl to
affect the window. Each message is terminated by a newline and multiple messages may
be sent in a single write.

addr=dot Set the addr address to that of the user�s selected text in the window.
clean Mark the window clean as though it has just been written.
dirty Mark the window dirty, the opposite of clean.
cleartag Remove all text in the tag after the vertical bar.
del Equivalent to the Del interactive command.
delete Equivalent to the Delete interactive command.
dot=addr Set the user�s selected text in the window to the text addressed by the

addr address.
dump command Set the command string to recreate the window from a dump file.
dumpdir directory

Set the directory in which to run the command to recreate the window
from a dump file.

get Equivalent to the Get interactive command with no arguments; accepts
no arguments.

limit=addr When the ctl file is first opened, regular expression context searches in
addr addresses examine the whole file; this message restricts subse
quent searches to the current addr address.

mark Cancel nomark, returning the window to the usual state wherein each
modification to the body must be undone individually.

menu Maintain Undo, Redo, and Put in the left half of the tag. (This is the
default for file windows.)

name name Set the name of the window to name.
nomark Turn off automatic �marking� of changes, so a set of related changes may

be undone in a single Undo interactive command.
nomenu Do not maintain Undo, Redo, and Put in the left half of the tag. (This

is the default for directory and error windows.)
noscroll Turn off automatic �scrolling� of the window to show text written to the

body.
put Equivalent to the Put interactive command with no arguments; accepts

no arguments.
scratch Turn off tracking the �dirty� status, the window stays clean.
scroll Cancel a noscroll message, returning the window to the default state

wherein each write to the body file causes the window to �scroll� to dis
play the new text.

show Guarantee at least some of the selected text is visible on the display.

data is used in conjunction with addr for random access to the contents of the body. The file
offset is ignored when writing the data file; instead the location of the data to be read or
written is determined by the state of the addr file. Text, which must contain only whole
characters (no �partial runes�), written to data replaces the characters addressed by the
addr file and sets the address to the null string at the end of the written text. A read from
data returns as many whole characters as the read count will permit starting at the begin
ning of the addr address (the end of the address has no effect) and sets the address to
the null string at the end of the returned characters.

errors
Writing to the errors file appends to the body of the dir/+Errors window, where dir is
the directory currently named in the tag. The window is created if necessary, but not until
text is actually written.

751

ACME(4) ACME(4)

event
When a window�s event file is open, changes to the window occur as always but the
actions are also reported as messages to the reader of the file. Also, user actions with but
tons 2 and 3 (other than chorded Cut and Paste, which behave normally) have no imme
diate effect on the window; it is expected that the program reading the event file will
interpret them. The messages have a fixed format: a character indicating the origin or
cause of the action, a character indicating the type of the action, four free-format blank-
terminated decimal numbers, optional text, and a newline. The first and second numbers
are the character addresses of the action, the third is a flag, and the final is a count of the
characters in the optional text, which may itself contain newlines. The origin characters are
E for writes to the body or tag file, F for actions through the window�s other files, K for
the keyboard, and M for the mouse. The type characters are D for text deleted from the
body, d for text deleted from the tag, I for text inserted to the body, i for text inserted to
the tag, L for a button 3 action in the body, l for a button 3 action in the tag, X for a but
ton 2 action in the body, and x for a button 2 action in the tag.

If the relevant text has less than 256 characters, it is included in the message; otherwise it
is elided, the fourth number is 0, and the program must read it from the data file if
needed. No text is sent on a D or d message.

For D, d, I, and i the flag is always zero. For X and x, the flag is a bitwise OR (reported
decimally) of the following: 1 if the text indicated is recognized as an acme built-in com
mand; 2 if the text indicated is a null string that has a non-null expansion; if so, another
complete message will follow describing the expansion exactly as if it had been indicated
explicitly (its flag will always be 0); 8 if the command has an extra (chorded) argument; if
so, two more complete messages will follow reporting the argument (with all numbers 0
except the character count) and where it originated, in the form of a fully-qualified button
3 style address.

For L and l, the flag is the bitwise OR of the following: 1 if acme can interpret the action
without loading a new file; 2 if a second (post-expansion) message follows, analogous to
that with X messages; 4 if the text is a file or window name (perhaps with address) rather
than plain literal text.

For messages with the 1 bit on in the flag, writing the message back to the event file, but
with the flag, count, and text omitted, will cause the action to be applied to the file exactly
as it would have been if the event file had not been open.

tag holds contents of the window tag. It may be read at any byte offset. Text written to tag is
always appended; the file offset is ignored.

xdata
The xdata file like data except that reads stop at the end address.

SOURCE
/sys/src/cmd/acme

SEE ALSO
rio(1), acme(1), cons(3).

752

ARCHFS(4) ARCHFS(4)

NAME
archfs � mount mkfs-style archive

SYNOPSIS
archfs [−abcC] [−m mtpt] archfile

DESCRIPTION
Archfs mounts at mtpt (default /mnt/arch) a file system presenting the contents of an archive in
the format produced by the −a flag to mkfs(8). The −a, −b, −c, and −C flags control the flag
argument to the mount system call (see bind(2)) as in the mount command (see bind(1)).

SOURCE
/sys/src/cmd/archfs.c

SEE ALSO
mkfs(8)

753

BZFS(4) BZFS(4)

NAME
bzfs � compressed read-write ram filesystem

SYNOPSIS
bzfs [−m mtpt] [−s] [−f file]

DESCRIPTION
Bzfs reads a bzip2 (see gzip(1)) compressed filesystem archive as produced by mkfs(8) and serves
it as a writable ram filesystem. The compressed archive file has to be provided with the −f file
option. The −m option sets the mountpoint mptp (default /root). If the −s flag is specified then
the 9p channel /srv/ramfs is created to be used later for mounting the filesystem.

SOURCE
/sys/src/cmd/bzfs

SEE ALSO
mkfs(8), gzip(1), ramfs(4), paqfs(4).

754

CDFS(4) CDFS(4)

NAME
cdfs, cddb � optical disc (CD, DVD, BD) track reader and writer file system

SYNOPSIS
cdfs [−d sddev] [−m mtpt]
grep aux/cddb /mnt/cd/ctl | rc
aux/cddb [−DTt] [−s server] query diskid ntracks track0id ...

DESCRIPTION
Cdfs serves a one and a half level directory mounted at mtpt (default /mnt/cd) that provides
access to the tracks on discs placed in the disc reader or writer named by sddev (default
/dev/sdD0, see sd(3)). Any MMC-compliant compact disc (CD), DVD, or Blu-ray disc (BD) drive
should work. On DVDs and BDs, access to data tracks only is implemented.

The top level directory contains one file per disc track. The files are named cNNN, where c is a
type character (a for audio tracks and d for data tracks) and NNN is the track number.

If the device can write discs and contains a writable disc, the top-level directory also contains an
empty directory wd and, for CDs only, an empty directory wa. Files created in these directories
appear in the top-level directory as new data or audio tracks, respectively, regardless of name.

At any time, any number of tracks may be open for reading or a single track may be open for writ
ing. Writing a disc track is a quasi-real-time operation: the disc writer should be kept saturated
with new data to avoid buffer underruns, but modern drives will be told to cope with underruns
transparently. To ensure saturation, copying from a file system stored on local disk or memory is
recommended.

To fixate a disc (close a recordable disc by writing its permanent table of contents), simply remove
the wa or wd directory. The directory removed selects whether the disc is fixated as an audio or
data disc; since each track carries its own type information, very few readers care which fixation
type was used. Rewritable discs do not require fixation.

The top level directory also contains a ctl file, into which control messages may be echoed. The
current control messages are:

format Format the rewritable disc (−RW or −RE) in the drive before initial use.
blank Blank the entire rewritable disc in the drive.
quickblank Blank only the table of contents on the rewritable disc in the drive.
eject Eject the disc in the drive.
ingest Ingest a disc into the drive.
speed kbps Set the reading and writing speed to use, in units of 1,000-bytes-per-second. A

value of best requests the optimal speed for the current drive and disc. CD 1x
speed is 154; DVD 1x speed is 1350; BD 1x speed is 4608. Drives may round
down the speed to one they support. To set reading and writing speeds sepa
rately, prefix the speeds with read or write, as in speed write 8192 or
speed read 16384 write 8192. Note that most drives reset the reading
and writing speed each time a new disc is inserted.

Reading the ctl file yields information about the drive. If the drive contains an audio CD, the first
line will be an aux/cddb command that can be run to query an internet CD database to get a
table of contents. Subsequent lines contain the current and maximum reading and writing speeds.
Additional lines may further describe the current disc.

Aux/cddb takes 4 optional arguments. The −s option makes aux/cddb use server for the query
instead of freedb.freedb.org. The −D option causes the raw database response from the
server to be dumped to standard output. The −t option causes the time of each track to be
appended to the normal output. −T is like −t but prints a final line with the total time.

EXAMPLES
Backup to a BD-R disc:

9fs boot
cdfs
tar cf /mnt/cd/wd/x /n/boot

755

CDFS(4) CDFS(4)

Copy the audio tracks from a CD:

cdfs −d /dev/sd05
mkdir /tmp/songs
cp /mnt/cd/a* /tmp/songs

Copy the tracks onto a blank CD inserted in the drive, and then fixate the disk as an audio CD.

cp /tmp/songs/* /mnt/cd/wa
rm /mnt/cd/wa

SOURCE
/sys/src/cmd/cdfs

SEE ALSO
sd(3), 9660srv (in dossrv(4)), mk9660(8)
http://www.t10.org optical disc interface standards

BUGS
Fixating a BD-R disc records only the first track in the disc�s TOC. Any other tracks are still there
and their data accessible via sd(3). There�s no need to fixate data discs, except to prevent adding
new tracks.

Closing a just-written DVD-R track can take minutes while the drive burns the unused part of the
track reservation (for the whole disc). Thus only a single DVD-R track can be written on a DVD-R
disc; use other media if you need more than one track per disc.

There are too many combinations of optical media, each with unique quirks, approximately the
cross-product of these tuples: (CD DVD- DVD+ BD), (single-layer dual-layer), (-ROM -R -RW).

Only MMC-compliant disc readers and writers are supported, but it would be easy to add support
for early CD writers if desired.

756

CFS(4) CFS(4)

NAME
cfs � cache file system

SYNOPSIS
cfs −s [−dknrS] [−f partition]

cfs −a netaddr [−dknrS] [−f partition] [mtpt]

cfs −F srvfile [−dknrS] [−f partition] [mtpt]

DESCRIPTION
Cfs is a user-level file server that caches data from remote files onto a local disk. It is normally
started by the kernel at boot time, though users may start it manually. Cfs is interposed between
the kernel and a network connection to a remote file server to improve the efficiency of access
across slow network connections such as modem lines. On each open of a file cfs checks the con
sistency of cached information and discards any old information for that file.

Cfs mounts onto mtpt (default /mnt/cfs) after connecting to the file server.

The options are:

a netaddr
dial the destination netaddr to connect to a remote file server. Exclusive with −F.

d turn on debugging.

f partition
use file partition as the cache disk partition.

F srvfile
open srvfile (often a file under /srv) to connect to a remote file server. Exclusive with −a.

k keep cache contents even if they might have come from a different server. Cfs will obey −r
even if −k is given.

n mount the remote file server without authentication; often useful with −F.

r reformat the cache disk partition.

s the connection to the remote file server is on file descriptors 0 and 1.

S turn on statistics gathering. A file called cfsctl at the root of the caching file system can be
read to get statistics concerning number of calls/bytes on client and server sides and laten
cies.

All 9P messages except read, clone, and walk (see intro(5)) are passed through cfs unchanged
to the remote server. If possible, a read is satisfied by cached data. Otherwise, the file server is
queried for any missing data.

FILES
/dev/sdC0/cache

Default file used for storing cached data.

SOURCE
/sys/src/cmd/cfs

757

CIFS(4) CIFS(4)

NAME
cifs - Microsoft" Windows network filesystem client

SYNOPSIS
cifs [−bDiv] [−d debug] [−a auth−method] [−s srvname] [−n called−name] [−k
keyparam] [−m mntpnt] [−t dfs−timeout] host [share ...]

DESCRIPTION
Cifs translates between Microsoft�s file-sharing protocol (a.k.a. CIFS or SMB) and 9P, allowing Plan9
clients to mount file systems (shares or trees in MS terminology) published by such servers.

The root of the mounted directory contains one subdirectory per share, and a few virtual files give
additional information. The arguments are:

−a auth−method Cifs authenticates using ntlmv2 by default, but alternative strategies may be
selected using this option. Cifs eschews cleartext authentication, however it
may be enabled with the plain auth method. The list of currently-supported
methods is printed if no method name is supplied.

Windows server 2003 requires the ntlmv2 method by default, though it can be
configured to be more flexible.

−b Enable file ownership resolution in stat(2) calls. This requires an open and close
per file and thus will slow cifs considerably; its use is not recommended.

−d debug followed by non-whitespace separated list of debug options debug writes spe
cific debug output to file descriptor 2. See source for more information.

−D 9P request debug.

−i By default cifs attempts to enforce case significance file and directory names,
though objects which differ only in their case still cannot co-exist in the same
directory. The −i option disables this behaveiour.

−k keyparam lists extra parameters which will be passed to factotum(4) to select a specific
key. The remote servers�s domain is always included in the keyspec, under the
assumption that all servers in a Windows domain share an authentication
domain; thus cifs expects keys in factotum of the form:

key proto=pass dom=THEIR−DOMAIN service=cifs
user=MY−USERNAME !password=XYZZY

−m mntpnt set the mount point for the remote filesystem; the default is /n/host.

−n called−name The CIFS protocol requires clients to know the NetBios name of the server they
are attaching to, the Icalled−name. If this is not specified on the command line,
cifs attempts to discover this name from the remote server. If this fails it will
then try host, and finally it will try the name *SMBSERVER.

−s srvname post the service as /srv/srvname.

−t dfs−timeout sets the timeout in for DFS redirections - it defaults to 100ms. This is a reason
able minimum, it should have a value just greater than the RTT to the most dis
tant server being accessed.

host The address of the remote server to connect to.

share A list of share names to attach on the remote server; if none is given, cifs will
attempt to attach all shares published by the remote host.

Synthetic Files
Several synthetic files appear in the root of the mounted filesystem:

Shares Contains a list of the currently attached shares, with fields giving the share
name, the share type, disk free space / capacity, and a descriptive comment
from the server.

Connection Contains the username used for authentication, server�s called name, server�s
domain, server�s OS, the time slip between the local host and the server, the

758

CIFS(4) CIFS(4)

Maximum Transfer Unit (MTU) the server requested, and optionally a flag indi
cating only guest access has been granted. The second line contains a list of
capabilities offered by the server which is mainly of use for debugging cifs.

Users Each line contains a user�s name, the user�s full name, and a descriptive com
ment.

Groups Each line gives a group�s name, and a list of the names of the users who are
members of that group.

Sessions Lists the users authenticated, the client machine�s NetBios name or IP address,
the time since the connection was established, and the time for which the con
nection has been idle.

Domains One line per domain giving the domain name and a descriptive comment.

Workstations One line per domain giving the domain name and a descriptive comment, the
version number of the OS it is running, and comma-separated list of flags giv
ing the features of that OS.

Dfsroot Lists the top level DFS domains and the servers that provision them.

Dfscache Contents of the DFS referal cache, giving the path prefix, the expiry time (or
-1 for never), the measured RTT to the server in milliseconds, the server prox
imity (0 is local), the server name, and the share name on that server.

COMPATIBILITY
Cifs has been tested against aquarela, cifsd(8), Windows 95, NT4.0sp6, Windows server 2003, Win
dows server 2003, WinXP pro, Samba 2.0 (Pluto VideoSpace), and Samba 3.0.

Windows Vista require a hotfix (registry change) to support NTLMv2 without GSSAPI, see
http://support.microsoft.com/kb/957441. Alternatively the −a option can be used to force cifs to
use one of the less secure authentication mechnisms.

Windows 7 has dropped support for RAP, which is used to generate the synthetic files offered by
cifs. RAP is also used to enumerate the shares offered by the remote host so remote share names
must always be specified on the command line.

The NetApp Filer was supported by earlier releases, however recent attempts to mount one have
failed. Should a server be available it is likely that this could be easily fixed.

SOURCE
/sys/src/cmd/cifs

SEE ALSO
factotum(4), cifsd(8)

BUGS
DFS support is unfinished, it will not follow referals that span servers.

Kerberos authentication is not supported.

NetBios name resolution is not supported, though it is now rarely used.

HISTORY
Cifs first appeared in Plan 9 from Bell Labs. It was updated to the author�s latest revision for 9front
(January, 2012).

759

CONSOLEFS(4) CONSOLEFS(4)

NAME
consolefs, C, clog � file system for console access

SYNOPSIS
aux/consolefs [−m mntpt] [−c consoledb]

C system

aux/clog console log system

DESCRIPTION
To ease administration of multiple machines one might attach many serial console lines to a single
computer. Consolefs is a file system that lets multiple users simultaneously access these console
lines. The consoles and permissions to access them are defined in the file consoledb (default
/lib/ndb/consoledb). The format of consoledb is the same as that of other /lib/ndb
files, ndb(6). Consoles are defined by entries of the form:

console=dirty dev=/dev/eia205
uid=bignose
gid=support
speed=56200
cronly=

Each console/dev pair represents the name of a console and the device associated with it.
Consolefs presents a single level directory with up to three files per console: console, consolectl,
and consolestat. Writes of console are equivalent to writes of dev and reads and writes of
consolectl and consolestat are equivalent to reads and writes of devctl and devstat respec
tively. Consolectl and consolestat will not exist if the underlying dev does not provide them.
Consolefs broadcasts anything it reads from dev to all readers of console. Therefore, many users
can con(1) to a console, see all output, and enter commands.

The cronly= attribute causes newlines typed by the user to be sent to the console as returns. The
speed=x attribute/value pair specifies a bit rate for the console. The default is 9600 baud. The
openondemand= attribute causes the console device (dev) to be opened only when the correspond
ing mntpt/console file is open.

Access to the console is controlled by the uid and gid attributes/value pairs. The uid values are
user account names. The gid values are the names of groups defined in consolefs by entries of the
form:

group=support
uid=bob
uid=carol
uid=ted
uid=alice

Groups are used to avoid excessive typing. Using gid=x is equivalent to including a uid=y for each
user y that is a member of x.

To keep users from inadvertently interfering with one another, notification is broadcast to all read
ers whenever a user opens or closes name. For example, if user boris opens a console that users
vlad and barney have already opened, all will read the message:

[+boris, vlad, barney]

If vlad then closes, boris and barney will read:

[−vlad, boris, barney]

Consolefs posts the client end of its 9P channel in /srv/consolefs and mounts this locally in
mntpt (default /mnt/consoles); remote clients must mount (see bind(1)) this file to see the
consoles.

The rc(1) script C automates this procedure. It uses import(4) to connect to /mnt/consoles
on the machine connected to all the consoles, then uses con(1) to connect to the console of the
machine system. The script must be edited at installation by the local administration to identify the
system that holds /mnt/consoles.

760

CONSOLEFS(4) CONSOLEFS(4)

Aux/clog opens the file console and writes every line read from it, prefixed by the ASCII time to the
file log.

An example of 2 consoles complete with console logging is:

% cat /lib/ndb/consoledb
group=sys

uid=glenda
console=bootes dev=/dev/eia0 gid=sys
console=fornax dev=/dev/eia1 gid=sys
% aux/consolefs
% ls −p /mnt/consoles
bootes
bootesctl
fornax
fornaxctl
% clog /mnt/consoles/fornax /sys/log/fornax &
% clog /mnt/consoles/bootes /sys/log/bootes &

The console server�s default name space must mount the consoles for C to import. This can be
arranged by adding

mount /srv/consoles /mnt/consoles

to /lib/namespace.$sysname.

FILES
/srv/consoles Client end of pipe to server.
/mnt/consoles Default mount point.
/lib/ndb/consoledb Default user database.

SOURCE
/sys/src/cmd/aux/consolefs.c
/rc/bin/C
/sys/src/cmd/aux/clog.c

BUGS
Changing the gid�s or uid�s while consolefs is running is detected by consolefs. However, to add
new consoles one must restart consolefs.

761

CWFS(4) CWFS(4)

NAME
cwfs, cwfs64, cwfs64x, fs64 - cached-worm file server, dump

SYNOPSIS
cwfs [−csC] [−n service] [−a announce−string] ... [−m device−map] [−f config−device]

DESCRIPTION
Cwfs is a cached-worm file server that runs as a user-mode program and can maintain file sys
tems created by fs(4), the original Plan 9 file server that had its own kernel and operated a stan
dalone system with disks and optical-disc jukebox attached. Unlike fs(4), which could only accept
9P connections over IL/IPv4 on Ethernets (or over Datakit and Cyclones, long ago), cwfs accepts 9P
connections over any network medium and protocol that it can announce on, by default TCP (over
IPv4 or IPv6). Given suitable 9P clients, one could even run 9P over aan(8) or tls(3).

The stock cwfs implements a 16K file system block size and 32-bit disk addresses, in order to be
compatible with some existing file systems, notably emelie�s. These parameters can be changed by
recompilation.

Cwfs places its server 9P connection in /srv/name and its command pipe in /srv/name.cmd,
where name is the service name.

Options are:

−f specify config−device other than the default /dev/sdC0/cwfs.

−a announce on announce−string, can be specified multiple times.

−C use a newer, faster, and incompatible cache-device layout. To convert an old file system�s
cache to the new layout, dump the file system, note the last superblock number, halt cwfs,
restart cwfs with −cC, recover the file system, and start cwfs with −C thereafter.

−c enter the file server�s configuration mode before starting normal operation.

−n overrides the service name of the file server�s configuration.

−s Post file descriptor zero in /srv/service and read and write protocol messages on file
descriptor one.

−m the file device−map contains a simple device name (e.g., w9) and a replacement per line.
The device name is in the usual filsys notation of fsconfig(8). The replacement can be the
name of an existing file (which cwfs will not grow) or another such device name. For exam
ple, the file

w0 /tmp/w0
h1 w2

would map accesses to device w0 to existing file /tmp/w0 and accesses to device h1 to
device w2, if no file named w2 exists.

The file server normally requires all users except none to provide authentication tickets on each
attach(5). This can be disabled using the noauth configuration command (see fsconfig(8)).

The group numbered 9999, normally called noworld, is special on the file server. Any user
belonging to that group has attenuated access privileges. Specifically, when checking such a
user�s access to files, the file�s permission bits are first ANDed with 0770 for normal files or 0771
for directories. The effect is to deny world access permissions to noworld users, except when
walking directories.

The user none is always allowed to attach to emelie without authentication but has minimal per
missions.

Emelie maintains three file systems on a combination of disks and write-once-read-many
(WORM) magneto-optical disks.

other
is a simple disk-based file system not backed by worm.

main is a worm-based file system with a disk-based look-aside cache. The disk cache holds
modified worm blocks to overcome the write-once property of the worm. The cache also
holds recently accessed non-modified blocks to speed up the effective access time of the

762

CWFS(4) CWFS(4)

worm. Occasionally (usually daily at 5AM) the modified blocks in the disk cache are
dumped. At this time, traffic to the file system is halted and the modified blocks are rela
beled to the unwritten portion of the worm. After the dump, the file system traffic is con
tinued and the relabeled blocks are copied to the worm by a background process.

dump Each time the main file system is dumped, its root is appended to a subdirectory of the
dump file system. Since the dump file system is not mirrored with a disk cache, it is read-
only. The name of the newly added root is created from the date of the dump:
/yyyy/mmdds. Here yyyy is the full year, mm is the month number, dd is the day number
and s is a sequence number if more than one dump is done in a day. For the first dump, s
is null. For the subsequent dumps s is 1, 2, 3, etc.

The root of the main file system that is frozen on the first dump of March 1, 1992 will be
named /1992/0301/ in the dump file system.

Changes from fs
fs(4)�s IP configuration is ignored and the underlying system�s is used.

Various other fs(4) commands have been omitted since they (or equivalents) can now be executed
directly on the underlying CPU server, notably date and passwd (see auth/wrkey).

Files can be used directly as wren devices by giving a file name rooted at / or using double or sin
gle quotes. Such a file name can be appended to the w device instead of specifying target and
lun numbers.

fs(4)�s device names h for IDE disks and m for Marvell SATA disks are not supported; use −m to
map wren devices to appropriate names under /dev/sd*.

The file server kernel seems to have scanned PCI buses in reverse order from the other Plan 9 ker
nels, so systems with multiple SCSI cards may find controller numbering reversed. −m can be used
to compensate for this if you don�t want to change filsys declarations.

The file server kernel�s config field in NVRAM was overloaded in recent times to hold a secstore(1)
key for the CPU hostowner. Since cwfs runs on a CPU kernel, the location of its configuration block
must be supplied on the command line.

Disk labels are now implemented for l devices. At the first access of a side, cwfs will attempt to
read the label and verify that it has the correct side number and byte order; if either is wrong, it
will issue a warning. If the label cannot be read, cwfs will attempt to write a new label.

The original file server reserved the rest of the machines RAM for io buffers. Where cwfs running
under the Plan 9 kernel reserves a settable percentage of the remaining user pages. The percent
age is read from the environment variable fsmempercent which when not set is assumed to be
25% (default).

EXAMPLES
Place the root of the dump file system on /n/dump and show the modified times of the MIPS C
compiler over all dumps in February, 1992:

cwfs w0
9fs dump
ls −l /n/dump/1992/02??/mips/bin/vc

To get only one line of output for each version of the compiler:

ls −lp /n/dump/1992/02??/mips/bin/vc | uniq

SOURCE
/sys/src/cmd/cwfs

SEE ALSO
yesterday (1), fs(3), sd(3), fs(4), srv(4), fs(8), fsconfig(8)
Sean Quinlan, ��A Cached WORM File System��, Software � Practice and Experience, December,
1991
Ken Thompson, Geoff Collyer, ��The 64-bit Standalone Plan 9 File Server��

BUGS
For the moment, the file server serves both the old (9P1) and new (9P2000) versions of 9P, decid
ing which to serve by sniffing the first packet on each connection.

763

CWFS(4) CWFS(4)

File system block size and disk address size (32- or 64-bit) are fixed at compilation time, and this
is not easily changed.

764

DOSSRV(4) DOSSRV(4)

NAME
dossrv, 9660srv, dosmnt, eject � DOS and ISO9660 file systems

SYNOPSIS
dossrv [−rsv] [−f file] [service]

9660srv [−9Jsv] [−c clusters] [−f file] [service]

dosmnt n mtpt

eject [n]

DESCRIPTION
Dossrv is a file server that interprets DOS file systems. A single instance of dossrv can provide
access to multiple DOS disks simultaneously.

Dossrv posts a file descriptor named service (default dos) in the /srv directory. To access the
DOS file system on a device, use mount with the spec argument (see bind(1)) the name of the file
holding raw DOS file system, typically the disk. If spec is undefined in the mount, dossrv will use
file as the default name for the device holding the DOS system.

Normally dossrv creates a pipe to act as the communications channel between itself and its clients.
The −s flag instructs dossrv to use its standard input and output instead. The kernels use this
option if they are booting from a DOS disk. This flag also prevents the creation of an explicit ser
vice file in /srv.

The −v flag causes verbose output for debugging, while the −r flag makes the file system read-
only.

The file attribute flags used by the DOS file system do not map directly to those used by Plan 9.
Since there is no concept of user or group, permission changes via wstat (see stat(2)) will fail
unless the same (read, write, execute) permissions are specified for user, group, and other. For
example, removing write permission in Plan 9 corresponds to setting the read-only attribute in the
DOS file system. Most of the other DOS attributes are not accessible.

Setting the exclusive use flag (DMEXCL) in Plan 9 corresponds to setting the system use attribute in
the DOS file system. Such files are not actually restricted to exclusive use, but do merit special
treatment that helps in the creation of boot disks: when dossrv allocates a new block for such a file
(caused, say, by a write that fills the file�s last allocated block), it succeeds only if it can arrange for
the file to be stored contiguously on disk.

Since other operating systems do not guarantee that system files are laid out contiguously, the
DMAPPEND mode bit is set in file stat information only when the file is currently contiguous.
Attempts to set the DMAPPEND mode bit explicitly will cause dossrv to try to make the file contigu
ous, succeeding only if this is possible.

9660srv is similar to dossrv in specification, except that it interprets ISO9660 CD-ROM file sys
tems instead of DOS file systems. Some CDs contain multiple directory trees describing the same
set of files. 9660srv�s first choice in such a case is a standard ISO9660 tree with Plan 9 system
use fields; the second choice is a Microsoft ��Joliet�� tree, which allows long file names and Unicode
characters; the third choice is a standard ISO9660 or High Sierra tree. The −9 flag causes 9660srv
to ignore the Plan 9 system use fields, while the −J flag causes it to ignore the Joliet tree. The −c
option sets the size of the RAM cache to clusters clusters of 128KB. The default clusters is 16, but
a value of 5600 will cache an entire CD incrementally.

If the floppy drive has an ejection motor, eject will spit out the floppy from drive n, default 0.

SOURCE
/sys/src/cmd/dossrv
/sys/src/cmd/9660srv
/rc/bin/eject
/rc/bin/dosmnt

BUGS
The overloading of the semantics of the DMEXCL and DMAPPEND bits can be confusing.

765

EXECNET(4) EXECNET(4)

NAME
execnet � network interface to program execution

SYNOPSIS
execnet [−n name] [netdir]

DESCRIPTION
Execnet presents a network protocol directory (see, for example, ip(3)) called netdir/name (default
/net/exec).

Once the protocol directory exists, dialing (see dial(2)) strings of the form name!cmd will connect
to a newly executed instance of cmd.

SOURCE
/sys/src/cmd/execnet

SEE ALSO
dial(2), ip(3)

766

EXPORTFS(4) EXPORTFS(4)

NAME
exportfs, srvfs � file server plumbing

SYNOPSIS
exportfs [options]

srvfs [−dR] [−p perm] [−P patternfile] [−e exportprog] name path

DESCRIPTION
Exportfs is a user level file server that allows Plan 9 cpu servers, rather than file servers, to export
portions of a name space. It is usually started by other programs such as rcpu(1) after a secure
channel has been established. Exportfs then acts as a relay file server: operations in the imported
file tree are executed on the remote server and the results returned. This gives the appearance of
exporting a name space from a remote machine into a local file tree.

The options are:

−d −f dbgfile
Log all 9P traffic to dbgfile (default /tmp/exportdb).

−P patternfile
Restrict the set of exported files. Patternfile contains one regular expression per line, to be
matched against path names relative to the current working directory and starting with /.
For a file to be exported, all lines with a prefix + must match and all those with prefix −
must not match.

−R Make the served name space read only.

−r root
Serve the name space rooted at root.

−S service
Serve the result of mounting service. A separate mount is used for each attach(5) message,
to correctly handle servers in which each mount corresponds to a different client e.g. ,(
rio(4)).

−s equivalent to −r /; kept for compatibility.

−m msize
Set the maximum message size that exportfs should offer to send (see version(5)); this
helps tunneled 9P connections to avoid unnecessary fragmentation.

Srvfs invokes exportprog (default /bin/exportfs) to create a mountable file system from a
name space and posts it at /srv/name, which is created with mode perm (default 0600). The
name space is the directory tree rooted at path. The −d, −P, and −R options, if present, are
relayed to exportprog.

EXAMPLES
To export the archive of one user for one month, except for secrets,

cd /n/dump
echo ’+ ^/(2003(/10..(/usr(/glenda/?)?)?)?)?’ > /tmp/pattern
echo ’− \.(aes|pgp)$’ >> /tmp/pattern
exportfs −P /tmp/pattern

Use srvfs to enable mounting of an FTP file system (see ftpfs(4)) in several windows, or to publish
a /proc (see proc(3)) with a broken process so a remote person may debug the program:

srvfs ftp /n/ftp
srvfs broke /mnt/term/proc

Use srvfs to obtain a copy of a service to be manipulated directly by a user program like
nfsserver(8):

srvfs nfs.boot /srv/boot
aux/nfsserver −f /srv/nfs.boot

Use srvfs to spy on all accesses to a particular subtree:

767

EXPORTFS(4) EXPORTFS(4)

srvfs −d spy /
tail −f /tmp/exportdb &
mount /srv/spy /n/spy
cd /n/spy; ls

SOURCE
/sys/src/cmd/exportfs
/sys/src/cmd/srvfs.c

SEE ALSO
rcpu(1)

768

EXT2SRV(4) EXT2SRV(4)

NAME
ext2srv � ext2 file system

SYNOPSIS
ext2srv [−vrs] [−f file] [−p passwd] [−g group] [service]

DESCRIPTION
Ext2srv is a file server that interprets the Linux Second Extended File System. A single instance of
ext2srv can provide access to multiple ext2 partitions simultaneously.

Ext2srv posts a file descriptor named service (default ext2) in the /srv directory. To access an
ext2 file system on a device, use mount with the spec argument (see bind(1)) the name of the file
holding the raw ext2 file system, typically the disk or partition. If spec is undefined in the mount,
ext2srv will use file as the default name for the device holding the file system.

Normally ext2srv creates a pipe to act as the communications channel between itself and its
clients. The −s flag instructs ext2srv to use its standard input and output instead. This flag also
prevents the creation of an explicit service file in /srv.

The −v flag causes verbose output for debugging, while the −r flag (recommended) makes the file
system read-only. The optional −p and −g flags specify Unix-format password (respectively
group) files that give the mapping between the numeric user- and group-ID numbers in the ext2
file system and the strings reported by Plan 9 status inquiries.

There is no authentication or permission checking. Anyone who can access the ext2 file system
will have full access to all its files, including write access if ext2srv is not started with the −r flag,
irrespective of file ownership and permission flags.

Some file system state is cached in memory, and may be flushed only when the file system is
unmounted. Therefore if ext2srv is stopped or the machine is rebooted while an ext2 file system
is still mounted, the superblock on the device will have been marked �not valid� (unless the −r flag
was used), and a fsck will be required before that file system may be mounted again.

BUGS
There is no authentication or permission checking. The implementation has not tracked any
changes to the ext2 specification since it was written. There may be other bugs. It is advisable to
use ext2srv in read-only mode whenever possible.

AUTHOR
Bodet Laurent (bl@mime.univ-paris8.fr), with later updates by Russ Cox and Richard Miller.

769

FACTOTUM(4) FACTOTUM(4)

NAME
factotum, fgui, userpasswd � authentication agent

SYNOPSIS
auth/factotum [−DdknpuS] [−a asaddr] [−s srvname] [−m mtpt]

auth/factotum −g attribute=value ... attribute? ...

auth/fgui

auth/userpasswd fmt

DESCRIPTION
Factotum is a user-level file system that acts as the authentication agent for a user. It does so by
managing a set of keys. A key is a collection of information used to authenticate a particular
action. Stored as a list of attribute=value pairs, a key typically contains a user, an authentication
domain, a protocol, and some secret data.

Factotum presents a two level directory. The first level contains a single directory factotum,
which in turn contains:

rpc each open represents a new private channel to factotum
proto when read lists the protocols available
confirm for confiming the use of key
needkey allows external programs to control the addition of new keys
log a log of actions
ctl for maintaining keys; when read, it returns a list of keys. For secret attributes, only

the attribute name follow by a ? is returned.

In any authentication, the caller typically acts as a client and the callee as a server. The server
determines the authentication domain, sometimes after a negotiation with the client. Authentica
tion always requires the client to prove its identity to the server. Under some protocols, the
authentication is mutual. Proof is accomplished using secret information kept by factotum in con
junction with a cryptographic protocol.

Factotum can act in the role of client for any process possessing the same user id as it. For select
protocols such as p9sk1 and dp9ik it can also act as a client for other processes provided its
user id may speak for the other process� user id (see authsrv(6)). Factotum can act in the role of
server for any process.

Factotum�s structure is independent of any particular authentication protocol. Factotum supports
the following protocols:

p9any a metaprotocol used to negotiate which actual protocol to use.
p9sk1 legacy Plan 9 shared key protocol described in authsrv(6)�s ��Ticket Service�� and

��P9sk1�� sections.
dp9ik extended version of p9sk1 that adds password bruteforce resistance and forward

secrecy (see authsrv(6)�s ��Password authenticated key exchange�� and ��Dp9ik�� sec
tions).

p9cr legacy Plan 9 protocol that can use either p9sk1 keys or SecureID tokens.
apop the challenge/response protocol used by POP3 mail servers.
cram the challenge/response protocol also used by POP3 mail servers.
chap the challenge/response protocols used by PPP and PPTP.
mschap a proprietary Microsoft challenge/response protocol also used by PPP, PPTP and

CIFS.
mschapv2 version two of Microsofts challenge/response protocol used by WPA.
mschap2 Microsofts NTLMv2 challenge/response protocol used by CIFS.
rsa RSA public key decryption, used by SSH and TLS.
pass passwords in the clear.
vnc vnc(1)�s challenge/response.
wpapsk WPA passwords for wireless ethernet cards.

The options are:

�a supplies the address of the authentication server to use. Without this option, it will attempt
to find an authentication server by querying the connection server, the file <mtpt>/ndb,

770

FACTOTUM(4) FACTOTUM(4)

and finally the network database in /lib/ndb.

�m specifies the mount point to use, by default /mnt.

�s specifies the service name to use. Without this option, factotum does not create a service
file in /srv.

�D turns on 9P tracing, written to standard error.

�d turns on debugging, written to standard error.

�g causes the agent to prompt for the key, write it to the ctl file, and exit. The agent will
prompt for values for any of the attributes ending with a question mark (?) and will
append all the supplied attribute = value pairs. See the section on key templates below.

�n don�t look for a secstore.

�S indicates that the agent is running on a CPU server. On starting, it will attempt to get
p9sk1 and dp9ik keys from NVRAM using readnvram (see authsrv(2)), prompting for
anything it needs. It will never subsequently prompt for a key that it doesn�t have. This
option is typically used by the kernel at boot time.

�k causes the NVRAM to be written. It is only valid with the �S option. This option is typically
used by the kernel at boot time.

�u causes the agent to prompt for user id and writes it to /dev/hostowner. It is mutually
exclusive with �k and �S. This option is typically used by the kernel at boot time.

�p causes the agent not to mark itself �private� via proc(3), so that it can be debugged. It is
implied by �d.

Fgui is a graphic user interface for confirming key usage and entering new keys. It hides the win
dow in which it starts and waits reading requests from confirm and needkey. For each
requests, it unhides itself and waits for user input. See the sections on key confirmation and key
prompting below.

Userpasswd queries and prints a cleartext user/password pair from factotum for the
proto=pass key tuple specified in fmt. This can be used by shell scripts to do cleartext pass
word authentication.

Key Tuples
A key tuple is a space delimited list of attribute=value pairs. An attribute whose name begins with
an exclamation point (!) does not appear when reading the ctl file. The required attributes
depend on the authentication protocol.

Dp9ik, p9sk1 and p9cr all require a key with proto=dp9ik or proto=p9sk1, a dom
attribute identifying the authentication domain, a user name valid in that domain, and either a
!password or !hex attribute specifying the password or hexadecimal secret to be used. Here
is an example:

proto=dp9ik dom=9front user=glenda !password=secret

Apop, cram, chap, and mschap, require a key with a proto attribute whose value matches the
protocol, in addition to server, user, and !password attributes; e.g.

proto=apop server=mit.edu user=rsc !password=nerdsRus
Vnc is similar but does not require a user attribute.

Pass requires a key with proto=pass in addition to user and !password attributes; e.g.

proto=pass user=tb !password=does.it.matter

Rsa requires a key with proto=rsa in addition to all the hex attributes defining an RSA key: ek,
n, !p, !q, !kp, !kq, !c2, and !dk. By convention, programs using the RSA protocol also
require a service attribute set to ssh or tls.

All keys can have additional attributes that act either as comments or as selectors to distinguish
them in the auth(2) library calls.

The factotum owner can use any key stored by factotum. Any key may have one or more owner
attributes listing the users who can use the key as though they were the owner. For example, the
TLS and SSH host keys on a server often have an attribute owner=* to allow any user (and in par
ticular, none) to run the TLS or SSH server-side protocol.

771

FACTOTUM(4) FACTOTUM(4)

Any key may have a role attribute for restricting how it can be used. If this attribute is missing,
the key can be used in any role. The possible values are:

client
for authenticating outbound calls

server
for authenticating inbound calls

speakfor
for authenticating processes whose user id does not match factotum�s.

If a key has a disabled attribute (with any value), the key is not used during any protocols. Fac
totum automatically marks keys with disabled=by.factotum when they fail during certain
authentication protocols (in particular, the Plan 9 ones).

Whenever factotum runs as a server, it must have dp9ik or p9sk1 keys in order to communicate
with the authentication server for validating passwords and challenge/responses of other users.

Key Templates
Key templates are used by routines that interface to factotum such as auth_proxy and
auth_challenge (see auth(2)) to specify which key and protocol to use for an authentication.
Like a key tuple, a key template is also a list of attribute=value pairs. It must specify at least the
protocol and enough other attributes to uniquely identify a key, or set of keys, to use. The keys
chosen are those that match all the attributes specified in the template. The possible
attribute/value formats are:

attr=val The attribute attr must exist in the key and its value must exactly match val

attr? The attribute attr must exist in the key but its value doesn�t matter.

attr The attribute attr must exist in the key with a null value

Key templates are also used by factotum to request a key either via an RPC error or via the
needkey interface. The possible attribute/value formats are:

attr=val This pair must remain unchanged

attr? This attribute needs a value

attr The pair must remain unchanged

Control and Key Management
A number of messages can be written to the control file. The messages are:

key attribute−value−list
add a new key. This will replace any old key whose public, i.e. non ! attributes, match.

delkey attribute−value−list
delete a key whose attributes match those given.

debug
toggle debugging on and off, i.e., the debugging also turned on by the �d option.

By default when factotum starts it looks for a secstore(1) account on $auth for the user and, if one
exists, prompts for a secstore password in order to fetch the file factotum, which should contain
control file commands. An example would be
key dom=x.com proto=p9sk1 user=boyd !hex=26E522ADE2BBB2A229
key proto=rsa service=ssh size=1024 ek=3B !dk=...

where the first line sets a password for challenge/response authentication, strong against dictio
nary attack by being a long random string, and the second line sets a public/private keypair for
ssh authentication.

Confirming key use
The confirm file provides a connection from factotum to a confirmation server, normally the pro
gram auth/fgui. Whenever a key with the confirm attribute is used, factotum requires confirma
tion of its use. If no process has confirm opened, use of the key will be denied. However, if the
file is opened a request can be read from it with the following format:

confirm tag=tagno <key template>

772

FACTOTUM(4) FACTOTUM(4)

The reply, written back to confirm, consists of string:

tag=tagno answer=xxx

If xxx is the string yes then the use is confirmed and the authentication will proceed. Otherwise,
it fails.

Confirm is exclusive open and can only be opened by a process with the same user id as
factotum.

Prompting for keys
The needkey file provides a connection from factotum to a key server, normally the program
auth/fgui. Whenever factotum needs a new key, it first checks to see if needkey is opened. If it
isn�t, it returns a error to its client. If the file is opened a request can be read from it with the fol
lowing format:

needkey tag=tagno <key template>

It is up to the reader to then query the user for any missing fields, write the key tuple into the ctl
file, and then reply by writing into the needkey file the string:

tag=tagno

Needkey is exclusive open and can only be opened by a process with the same user id as
factotum.

The RPC Protocol
Authentication is performed by

1) opening rpc

2) setting up the protocol and key to be used (see the start RPC below),

3) shuttling messages back and forth between factotum and the other party (see the read
and write RPC�s) until done

4) if successful, reading back an AuthInfo structure (see authsrv(2)).

The RPC protocol is normally embodied by one of the routines in auth(2). We describe it here
should anyone want to extend the library.

An RPC consists of writing a request message to rpc followed by reading a reply message back.
RPC�s are strictly ordered; requests and replies of different RPC�s cannot be interleaved. Messages
consist of a verb, a single space, and data. The data format depends on the verb. The request
verbs are:

start attribute−value−list
start a new authentication. Attribute−value−pair−list must include a proto attribute, a
role attribute with value client or server, and enough other attributes to uniquely
identify a key to use. A start RPC is required before any others. The possible replies
are:

ok start succeeded.

error string
where string is the reason.

read get data from factotum to send to the other party. The possible replies are:

ok read succeeded, this is zero length message.

ok data
read succeeded, the data follows the space and is unformatted.

done authentication has succeeded, no further RPC�s are necessary

done haveai
authentication has succeeded, an AuthInfo structure (see auth(2)) can be
retrieved with an authinfo RPC

phase string
its not your turn to read, get some data from the other party and return it with a
write RPC.

773

FACTOTUM(4) FACTOTUM(4)

error string
authentication failed, string is the reason.

protocol not started
a start RPC needs to precede reads and writes

needkey attribute−value−list
a key matching the argument is needed. This argument may be passed as an argu
ment to factotum −g in order to prompt for a key. After that, the authentication
may proceed, i.e., the read restarted.

write data
send data from the other party to factotum. The possible replies are:

ok the write succeeded

needkey attribute−value−list
see above

toosmall n
the write is too short, get more data from the other party and retry the write. n
specifies the maximun total number of bytes.

phase string
its not your turn to write, get some data from factotum first.

done see above

done haveai
see above

authinfo
retrieve the AuthInfo structure. The possible replies are:

ok data
data is a marshaled form of the AuthInfo structure.

error string
where string is the reason for the error.

attr retrieve the attributes used in the start RPC. The possible replies are:

ok attribute−value−list

error string
where string is the reason for the error.

SOURCE
/sys/src/cmd/auth/factotum

SEE ALSO
authsrv(6)

774

FLASHFS(4) FLASHFS(4)

NAME
flashfs � journalling file system for flash memory

SYNOPSIS
aux/flashfs [−Dr] [−n nsect] [−z sectsize] [−f file] [−m mountpoint]

DESCRIPTION
Flashfs interprets the journal-based file system created by mkflashfs(8) and stored in file (default
/dev/flash/fs) so that it can be mounted into a Plan 9 file system. Flashfs is typically used to
create a stand alone file system from a small persistent storage device, such as an erasable flash
memory. It does not authenticate its clients and assumes each group has a single member with
the same name.

The −s option causes flashfs to post its channel on #s/flashfs. Flashfs mounts itself on
mountpoint (default /n/brzr). The −D option turns on 9P debugging output. The −r option
makes the file system read-only.

The files and directory structure are divided into sectsize (default 4096) byte blocks. Larger
blocks make large files more compact but take longer to access. Supplying the −n option forces
file to contain exactly nsect sectors.

SOURCE
/sys/src/cmd/aux/flashfs

SEE ALSO
paqfs(4), sacfs(4), mkflashfs(8)

775

FS(4) FS(4)

NAME
fs � file server, dump

SYNOPSIS
none

DESCRIPTION
The file server was the main file system for Plan 9. It was a stand-alone system that ran on a sepa
rate computer. It served the Plan 9 protocol via the IL/IP protocols on Ethernets. The name of the
main file server at Murray Hill was emelie.

The file server normally requires all users except none to provide authentication tickets on each
attach(5). This can be disabled using the noauth configuration command (see fsconfig(8)).

The group numbered 9999, normally called noworld, is special on the file server. Any user
belonging to that group has attenuated access privileges. Specifically, when checking such a
user�s access to files, the file�s permission bits are first ANDed with 0770 for normal files or 0771
for directories. The effect is to deny world access permissions to noworld users, except when
walking directories.

The user none is always allowed to attach to emelie without authentication but has minimal per
missions.

Emelie maintains three file systems on a combination of disks and write-once-read-many
(WORM) magneto-optical disks.

other
is a simple disk-based file system not backed by the worm.

main is a worm-based file system with a disk-based look-aside cache. The disk cache holds
modified worm blocks to overcome the write-once property of the worm. The cache also
holds recently accessed non-modified blocks to speed up the effective access time of the
worm. Occasionally (usually daily at 5AM) the modified blocks in the disk cache are
dumped. At this time, traffic to the file system is halted and the modified blocks are rela
beled to the unwritten portion of the worm. After the dump, the file system traffic is con
tinued and the relabeled blocks are copied to the worm by a background process.

dump Each time the main file system is dumped, its root is appended to a subdirectory of the
dump file system. Since the dump file system is not mirrored with a disk cache, it is read-
only. The name of the newly added root is created from the date of the dump:
/yyyy/mmdds. Here yyyy is the full year, mm is the month number, dd is the day number
and s is a sequence number if more than one dump is done in a day. For the first dump, s
is null. For the subsequent dumps s is 1, 2, 3, etc.

The root of the main file system that is frozen on the first dump of March 1, 1992 will be
named /1992/0301/ in the dump file system.

EXAMPLES
Place the root of the dump file system on /n/dump and show the modified times of the MIPS C
compiler over all dumps in February, 1992:

9fs dump
ls −l /n/dump/1992/02??/mips/bin/vc

To get only one line of output for each version of the compiler:

ls −lp /n/dump/1992/02??/mips/bin/vc | uniq

Make the other file system available in directory /n/emelieother:

mount −c /srv/boot /n/emelieother other

SOURCE
/sys/src/fs

SEE ALSO
yesterday (1), cwfs(4), srv(4), fs(8)
Sean Quinlan, ��A Cached WORM File System��, Software � Practice and Experience, December,

776

FS(4) FS(4)

1991

BUGS
For the moment, the file server serves both the old (third edition) and new (fourth edition) versions
of 9P, deciding which to serve by sniffing the first packet on each connection.

Required IL, thus now deprecated.

777

FTPFS(4) FTPFS(4)

NAME
ftpfs � file transfer protocol (FTP) file system

SYNOPSIS
ftpfs [−/dqntc] [−m mountpoint] [−a password] [−e ext] [−k keyspec] [−o os] [−r
remoteroot] system

DESCRIPTION
Ftpfs dials the TCP file transfer protocol (FTP) port, 21, on system and mounts itself (see bind(2))
on mountpoint (default /n/ftp) to provide access via FTP to files on the remote machine. Ftpfs
attempts to use FTP�s �passive� mode but falls back to using �active� mode if that fails. If required
by the remote machine, ftpfs will ask factotum(4) for a key matching the pattern

proto=pass service=ftp server=system user? !password? keyspec

(If factotum does not have such a key, factotum will prompt the user for one.)

The user names ftp and anonymous conventionally offer guest/read-only access to machines.
Anonymous FTP may be called without using factotum by using the −a option and specifying the
password.

By default the file seen at the mount point is the user�s remote home directory if he has one. The
option −/ forces the mount point to correspond to the remote root. The option −r forces the
mount point to correspond to the remote directory remoteroot.

To avoid seeing startup messages from the server use option −q. To see all messages from the
server use option −d.

By default ftpfs only caches while a file operation is in progress. The −c flag enables caching,
increasing performance but allowing outdated file and directory data to persist.

Some systems will hangup an ftp connection that has no activity for a given period. The −K option
causes ftp to send a NOP command every 15 seconds to attempt to keep the connection open.
This command can cause some servers to hangup, so you�ll have to feel your way.

The −t option causes ftpfs to negotiate TLS encryption with the server.

To terminate the connection, unmount (see bind(1)) the mount point.

Since there is no specified format for metadata retrieved in response to an FTP directory request,
ftpfs has to apply heuristics to steer the interpretation. Sometimes, though rarely, these heuristics
fail. The following options are meant as last resorts to try to steer interpretation.

A major clue to the heuristics is the operating system at the other end. Normally this can be deter
mined automatically using the FTP SYST command. However, in some cases the server doesn�t
implement the SYST command. The −o option will force the case by specifying the name of the
operating system. Known system types are: UNIX, SUN, TOPS, Plan9, VM, VMS, MVS,
NetWare, OS/2, TSO, and WINDOWS_NT.

Some systems and/or FTP servers return directory listings that don�t include the file extension.
The −e option allows the user to specify an extension to append to all remote files (other than
directories).

Finally, there are two FTP commands to retrieve the contents of a directory, LIST and NLST. LIST is
approximately equivalent to ls −l and NLST to ls. Ftpfs normally uses LIST. However, some
FTP servers interpret LIST to mean, give a wordy description of the file. Ftpfs normally notices this
and switches to using NLST. However, in some rare cases, the user must force the use of NLST
with the −n option.

EXAMPLE
You want anonymous FTP access to the system export.lcs.mit.edu. The first import(4)
command is only necessary if your machine does not have access to the desired system, but
another, called gateway in this example, does.

import gateway /net
ftpfs −a yourname@yourmachine export.lcs.mit.edu

SOURCE
/sys/src/cmd/ip/ftpfs

778

FTPFS(4) FTPFS(4)

SEE ALSO
bind(2)

BUGS
Symbolic links on remote Unix systems will always have mode 0777 and a length of 8.

After connecting to a TOPS-20 system, the mount point will contain only one directory, usually
/n/ftp/PS:<ANONYMOUS>. However, walking to any valid directory on that machine will suc
ceed and cause that directory entry to appear under the mount point.

If caching is active, remote changes that have been cached will not be visible. Attempting to walk
to directory/.flush.ftpfs will flush directory from the cache, thus forcing ftpfs to re-read it.

There is no way to issue the appropriate commands to handle special synthetic FTP file types such
as directories that automatically return a tar of their contents.

Ftpfs makes copies in /tmp of files being transferred, so its effects might not be immediate. If
there is enough main memory, you might want to run ramfs(4) first.

Filenames containing spaces will confuse ftpfs (and other FTP clients).

779

HGFS(4) HGFS(4)

NAME
hgfs � mercurial file system

SYNOPSIS
hgfs [−D] [−m mtpt] [−s service] [dir]

DESCRIPTION
Mercurial is a distributed version control system. It tracks and organizes files and keeps a change
history of them. The file revisions are stored as packed deltas in a repository that can be checked
out with the hg(1) program.

Hgfs serves a mercurial repository as a read-only filesystem where each file revision and its meta
data is accessible as files.

The repository may be specified by passing the working directory dir as the final argument. When
omitted, hgfs locates the repository by walking upwards from the current working directory until
the .hg sub-directory is found. If no mtpt was specified with −m , then hgfs will mount itself on
/mnt/hg (default). When a service name is given with the −s flag, the 9p service pipe
/srv/service is created and may be mounted from another namespace. The −D flag enables 9p
debug messages.

The root of the served filesystem contains directories each corresponding to a specific changeset
revision in the repository.

Revision directories are named by a revision id which takes the form [d.]h, where d is the decimal
revision number starting from 0 and h is the hexadecimal hash of the changeset. Both the revision
number d and the hash h are able to identify a revision uniquely; only one of them needs to be
given when walking the root directory. The hexadecimal hash may be shortened so long as the
resulting lookup yields a unique result. The special name tip corresponds to the latest revision
but does not appear in the directory listing.

In each revision directory the following files can be found:

rev contains the revision id of the changeset.

rev1 contains the parent revision id of the changeset.

rev2 If the changeset was a merge, contains the other parent revision id. Otherwise, a zero size
file.

log The log file contains a list of file names, separated by a newline, that where affected in
this changeset. Files that are listed in the log but are not accessible in the files or
changes directories have been deleted in this changeset.

who committer of the changeset.

why commit message of the changeset.

files
A directory that contains a snapshot of the tree at the time the changeset was committed.

To retrieve the nth past version of a file relative to the changeset, one can append .n to the
filename. Appending .revn yields a file that contains its revision id as text. Note that
appending .rev0 or .rev yields the file containing the revision id of the changeset when the
file was last modified and .0 yields the same file as when omitting the appendix.

changes
Same as files, but contains only the changed files of the changeset.

SOURCE
/sys/src/cmd/hgfs

SEE ALSO
hg(1)

780

HGFS(4) HGFS(4)

HISTORY
Hgfs first appeared in 9front (June, 2011).

781

HJFS(4) HJFS(4)

NAME
hjfs � file server

SYNOPSIS
hjfs [−A] [−f file] [−m mem] [−n name] [−a announce−string] ... [-r] [−S] [−s]

DESCRIPTION
Hjfs is an experimental file server with support for a cache and an archival dump on a single parti
tion.

The options are:

−A Require auth.
−f file Use file as the disk.
−m mem Allocate mem megabytes to use for cache.
−n name Use name as the name of the service.
−a announce−string

will announce and listen on the specified network address.
−r Ream the file system, erasing all of the old data.
−S Ignore permissions.
−s Read and write protocol messages on standard file descriptors zero and one.

SOURCE
/sys/src/cmd/hjfs

SEE ALSO
history(1), yesterday (1), cwfs(4), hjfs(8), prep(8), sd(3)

BUGS
Hjfs is a work in progress.

782

HTTPFILE(4) HTTPFILE(4)

NAME
httpfile � serve a single web file

SYNOPSIS
ip/httpfile [−9d] [−c count] [−f file] [−m mtpt] [−s srvname] url

DESCRIPTION
Httpfile serves the web page specified by the URL url as a new file file in the directory mtpt. The
default file is the last path element of the URL, and the default mtpt is the current directory.

Httpfile does not download large files all at once. Instead, it requests 64-kilobyte blocks as they
are needed to satisfy reads, caching a few blocks in memory at a time.

The −D and −d options enable a trace of the 9P traffic and general debugging messages.

The −s option causes httpfile to post the 9P service as /srv/srvname and disables the default
mount.

The −c option sets the number of file blocks kept cached in memory (default 32).

EXAMPLE
Mount an ISO image on a web server:

ip/httpfile http://www.r−36.net/9front/9front.iso
9660srv
mount /srv/9660 /n/iso 9front.iso

SOURCE
/sys/src/cmd/ip/httpfile.c

SEE ALSO
hget(1), webfs(4)

DIAGNOSTICS
Httpfile requires webfs(4) service mounted on /mnt/web to work.

783

IMPORT(4) IMPORT(4)

NAME
import � import a name space from a remote system

SYNOPSIS
import [options] system file [mountpoint]

import −B [options] mountpoint [cmd [args ...]]

DESCRIPTION
This tool is deprecated and has been replaced by rimport (see rcpu(1)).

Import allows an arbitrary file on a remote system to be imported into the local name space. Usu
ally file is a directory, so the complete file tree under the directory is made available.

A process is started on the remote machine, with authority of the user of import, to perform work
for the local machine using the oexportfs(4) service. The default port used is TCP 17007. If
mountpoint is omitted import uses the name of the remote file as the local mount point.

The options are:

−a −b −c −C Control the construction of union directories, as in mount and bind(1). Only valid
when file is a directory.

−A Skip the authentication protocol. This is useful for connecting to foreign systems
like Inferno.

−z Bypass the initial protocol request for which remote tree to serve. This is neces
sary when the remote oexportfs(4) is running with the −r or −S options which
pre-select a file tree to serve. The exception is if both sides are operating in the
−B backwards mode.

−B Run in ��backwards�� mode, described below.

−E enc Push an encryption protocol on its network connection. The supported protocols
are clear (the default, no protocol) and ssl. There are plans to make tls
available.

−e ’enc hash� Specify the encryption and hash algorithms to use for encrypting and authenti
cating the wire traffic (see ssl(3)). The defaults are rc4_256 and sha1.

−k keypattern Use keypattern to select a key to authenticate to the remote side (see auth(2)).

−p Push the aan(8) filter onto the connection to protect against temporary network
outages.

−n Specify announce string for aan(8) filter when run in ��backwards�� mode.

−s name Post the connection�s mountable file descriptor as /srv/name.

The −B option runs import in ��backwards�� mode. In this mode, import runs a p9any authentica
tion (as server) over its file descriptor 0 (expected to be an incoming network connection from
oexportfs −B), mounts the connection onto mntpt, and optionally runs cmd args.

EXAMPLES
Assume a machine kremvax that has IP interfaces for the company intranet and the global inter
net mounted on /net and /net.alt respectively. Any machine inside the company can get telnet out
to the global internet using:

import −a kremvax /net.alt
telnet /net.alt/tcp!ucbvax

Suppose that the machine moscvax has access to a private file server containing public web
pages that need to be served by the less-trusted server webvax. Webvax runs the following lis
tener (see listen(8)) on TCP port 999:

#!/bin/rc
import −B −s rowebfs /usr/web /bin/restarthttpd

When moscvax boots, it runs

784

IMPORT(4) IMPORT(4)

oexportfs −R −r /usr/web −B tcp!webvax!999

to serve a read-only copy of /usr/web to webvax. When webvax gets the call, import
mounts the served tree onto its own /usr/web and then runs /bin/restarthttpd to restart
httpd(8).

SOURCE
/sys/src/cmd/import.c

SEE ALSO
rcpu(1), bind(1), ssl(3), oexportfs(4), srv(4), aan(8), listen(8), cs in ndb(8)

785

IOSTATS(4) IOSTATS(4)

NAME
iostats � file system to measure I/O

SYNOPSIS
iostats [−d] [−C] [−f dbfile] cmd [args...]

DESCRIPTION
Iostats is a user-level 9p filter that interposes itself between a program and the regular file server,
which allows it to gather statistics of file system use at the level of the Plan 9 file system protocol,
9P. After a program exits a report is printed on standard error.

The report consists of three sections. The first section reports the amount of user data in read
and write messages sent by the program and the average rate at which the data was transferred.
The protocol line reports the amount of data sent as message headers, that is, protocol over
head. The rpc line reports the total number of file system transactions.

The second section gives the number of messages, the fastest, slowest, and average turn around
time and the amount of data involved with each 9P message type. The final section gives an I/O
summary for each file used by the program in terms of opens, reads and writes.

If the −d flag is present, a debugging log including all traffic is written to dbfile (default
iostats.out).

The −C flag sets the MCACHE flag on the mount which allows the kernel to cache (see bind(1)).

EXAMPLE
Display summary of file I/O incurred by ls(1):

iostats ls

Start a new shell, displaying all 9P traffic caused by the shell or its children:

iostats −df /fd/1 rc

SOURCE
/sys/src/cmd/iostats.c

SEE ALSO
dup(3), exportfs(4)

BUGS
Poor clock resolution means that large amounts of I/O must be done to get accurate rate figures.

Can be fooled by programs that do fresh mounts outside its purview, or by the use of names of
files with content that can vary by process (e.g., #d, /dev/cons).

786

KEYFS(4) KEYFS(4)

NAME
keyfs, warning � authentication database files

SYNOPSIS
auth/keyfs [−p] [−w [np]] [−mmntpt] [−r] [keyfile]

auth/warning [−n] [−p]

DESCRIPTION
Keyfs serves a two-level file tree for manipulating authentication information. It runs on the
machine providing authentication service for the local Plan 9 network, which may be a dedicated
authentication server or a CPU server. The programs described in auth(8) use keyfs as their inter
face to the authentication database.

Keyfs reads and decrypts file keyfile (default /adm/keys) using the DES or AES key, which is by
default read from #r/nvram (see rtc(3)). With option −p, keyfs prompts for a password from
which the key is derived. Keyfile holds a 41-byte (57-byte for AES) record for each user in the
database. Each record contains the user�s name, DES key, status, warning status, expiration date,
secret password and AES key. The name is a null-terminated UTF string NAMELEN bytes long.
The status is a byte containing binary 0 if the account is enabled, 1 if it is disabled. Warning sta
tus is a byte containing the number of user expiration notifications. The expiration date is four-
byte little-endian integer which represents the time in seconds since the epoch (see date(1)) at
which the account will expire. The secret password is a null-terminated UTF string SECRETLEN
bytes long. If any changes are made to the database that affect the information stored in keyfile, a
new version of the file is written.

If the −r option is given, the database is mounted �read-only� and no changes are permitted.

There are two authentication databases, one for Plan 9 user information, and one for SecureNet
user information. A user need not be installed in both databases but must be installed in the Plan
9 database to connect to a Plan 9 server.

Keyfs serves an interpretation of the keyfile in the file tree rooted at mntpt (default /mnt/keys).
Each user user in keyfile is represented as the directory mntpt/user.

Making a new directory in mntpt creates a new user entry in the database. Removing a directory
removes the user entry, and renaming it changes the name in the entry. Such changes are
reflected immediately in keyfile. Keyfs does not allow duplicate names when creating or renaming
user entries.

All files in the user directories except for key and aeskey contain UTF strings with a trailing new
line when read, and should be written as UTF strings with or without a trailing newline. Key con
tains the DESKEYLEN-byte encryption key for the user. Aeskey contains the AESKEYLEN-byte
encryption key.

The following files appear in the user directories.

key The authentication key for the user. If the user�s account is disabled or expired, read
ing this file returns an error. Writing key changes the key in the database.

aeskey The AES encryption key for the user.
secret The secret password.
log The number of consecutive failed authentication attempts for the user. Writing the

string bad increments this number; writing good resets it to 0. This number is not
stored in keyfile, and is initialized to 0 when keyfs starts. When the number reaches a
multiple of ten, keyfs temporarily disables the account for that many seconds. Reads
from the key or secret files during this time return the error ��user in purgatory.��

status The current status of the account, either ok or disabled. Writing ok enables the
account; writing disabled disables it.

expire The expiration time for the account. When read, it contains either the string never or
the time in seconds since the epoch that the account will expire. When written with
strings of the same form, it sets the expiration date for the user. If the expiration date
is reached, the account is not disabled, but key cannot be read without an error.

If the −w option is on, keyfs runs the command warning once every 24 hours to mail people about
expiring keys. Warnings are sent 14 days and 7 days prior to expiration. The argument to −w,

787

KEYFS(4) KEYFS(4)

either p or n, is passed to warning to restrict the warnings to the Plan 9 or SecureNet database.
The default for keyfs is not to call warning at all; warning’s own default is to warn about both.
The files /adm/netkeys.who and /adm/keys.who are used to find the mail addresses to
send to. The first word on each line identifies a user. Any subsequent strings on the line delim
ited �<� and �>� are considered mail addresses to send warnings to. If multiple lines match a user,
the last in the file is used. Changeuser (see auth(8)) adds lines to these files.

FILES
/adm/keys Encrypted key file for the Plan 9 database.
/adm/netkeys Encrypted key file for the SecureNet database.
/adm/keys.who List of users in the Plan 9 database.
/adm/netkeys.who List of users in the SecureNet database.
#r/nvram The non-volatile RAM on the server, which holds the key used to

decrypt key files.

SOURCE
/sys/src/cmd/auth/keyfs.c
/sys/src/cmd/auth/warning.c

SEE ALSO
authsrv(6), namespace(6), auth(8)

788

LNFS(4) LNFS(4)

NAME
lnfs � long name file system

SYNOPSIS
lnfs [−r] [−s srvname] mountpoint
unlnfs mountpoint

DESCRIPTION
Lnfs starts a process that mounts itself (see bind(2)) on mountpoint. It presents a filtered view of
the files under the mount point, allowing users to use long file names on file servers that do not
support file names longer than 27 bytes.

The names used in the underlying file system are the base32 encoding of the md5 hash of the
longer file name. The user need not know the mapping since lnfs does all the work. Lnfs main
tains a file .longnames in the directory mountpoint to record the long file names.

The options are:

−r allow only read access to the file system

−s provide a service name, srvname, to post in /srv. Without this option, no posting is per
formed.

Unlnfs renames files with shortened names to their actual long names. It is useful once you have
moved to a file server with true long name support.

FILES
.longnames

SOURCE
/sys/src/cmd/lnfs.c

/sys/src/cmd/unlnfs.c

BUGS
This exists only to shame us into getting a real long name file server working.

789

MNTGEN(4) MNTGEN(4)

NAME
mntgen � automatically generate mount points for file systems

SYNOPSIS
mntgen [−s service] [mnt]

DESCRIPTION
Mntgen mounts itself on mnt (default /n) after the current contents, creating subdirectories on
demand as they are accessed. It is intended to supply mount points automatically.

The −s option causes mntgen to post a 9P service file in /srv/service.

SOURCE
/sys/src/cmd/mntgen.c

790

NAMESPACE(4) NAMESPACE(4)

NAME
namespace � structure of conventional file name space

SYNOPSIS
none

DESCRIPTION
After a user�s profile has run, the file name space should adhere to a number of conventions if the
system is to behave normally. This manual page documents those conventions by traversing the
file hierarchy and describing the points of interest. It also serves as a guide to where things reside
in the file system proper. The traversal is far from exhaustive.

First, here is the appearance of the file server as it appears before any mounts or bindings.

/ The root directory.
/adm The administration directory for the file server.
/adm/users List of users known to the file server; see users(6).
/adm/keys Authentication keys for users.
/adm/netkeys SecureNet keys for users; see securenet(8).
/adm/timezone Directory of timezone files; see ctime(2).
/adm/timezone/EST.EDT

Time zone description for Eastern Time. Other such files are in this directory
too.

/adm/timezone/timezone
Time zone description for the local time zone; a copy of one of the other files
in this directory.

/bin
/dev
/env
/fd
/net
/proc
/srv
/shr
/tmp All empty unwritable directories, place holders for mounted services and

directories.
/mnt A directory containing mount points for applications.
/n A directory containing mount points for file trees imported from remote sys

tems.
/386
/68000
/68020
/alpha
/arm
/mips
/power
/sparc Each CPU architecture supported by Plan 9 has a directory in the root contain

ing architecture-specific files, to be selected according to $objtype or
$cputype (see 2c(1) and init(8)). Here we list only those for /386.

/386/init The initialization program used during bootstrapping; see init(8).
/386/bin Directory containing binaries for the Intel x86 architecture.
/386/bin/aux
/386/bin/ip
etc. Subdirectories of /386/bin containing auxiliary tools and collecting related

programs.
/386/lib Directory of object code libraries as used by 8l (see 2l(1)).
/386/include Directory of x86-specific C include files.
/386/9* The files in /386 beginning with a 9 are binaries of the operating system or

its bootstrap loader.

791

NAMESPACE(4) NAMESPACE(4)

/386/mkfile Selected by mk(1) when $objtype is 386, this file configures mk to compile
for the Intel x86 architecture.

/rc Isomorphic to the architecture-dependent directories, this holds executables
and libraries for the shell, rc(1).

/rc/bin Directory of shell executable files.
/rc/lib Directory of shell libraries.
/rc/lib/rcmain

Startup code for rc(1).
/rc/lib/rcmain.local

Site local startup code for rc(1).
/lib Collections of data, generally not parts of programs.
/lib/mammals
/lib/sky
etc. Databases.
/lib/ndb The network database used by the networking software; see ndb(6) and

ndb(8).
/lib/namespace

The file used by newns (see auth(2)) to establish the default name space; see
namespace(6).

/lib/font/bit Bitmap font files.
/lib/font/ttf TrueType font files.
/lib/rfc Directory of Internet �Requests For Comments�, ranging from trivia to specifi

cations.
/lib/rfc/grabrfc

Maintains RFC collection; usually run from cron (see auth(8)).
/sys System software.
/sys/include Directory of machine-independent C include files.
/sys/lib Pieces of programs not easily held in the various bins.
/sys/lib/acid Directory of acid(1) load modules.
/sys/lib/dist Software used to assemble the distribution�s installation floppy.
/sys/lib/troff

Directory of troff(1) font tables and macros.
/sys/lib/yaccpar

The yacc(1) parser.
/sys/man The manual.
/sys/doc Other system documentation.
/sys/log Log files created by various system services.
/sys/src Top-level directory of system sources.
/sys/src/cmd Source to the commands in the bin directories.
/sys/src/9 Source to the operating system for terminals and CPU servers.
/sys/src/fs Source to the operating system for file servers.
/sys/src/lib* Source to the libraries.
/usr A directory containing home directories of users.
/mail Directory of electronic mail; see mail(1).
/mail/box Directory of users� mail box files.
/mail/lib Directory of alias files, etc.
/acme Directory of tools for acme(1).
/cron Directory of files for cron(8).
/cfg/system System-specific files, often addenda to their namesakes, notably cpurc,

termrc, namespace, and consoledb.

The following files and directories are modified in the standard name space, as defined by
/lib/namespace (see namespace(6)).

/ The root of the name space. It is a kernel device, root(3), serving a number of
local mount points such as /bin and /dev as well as the bootstrap program
/boot. Unioned with / is the root of the main file server.

/boot Compiled into the operating system kernel, this file establishes the connection
to the main file server and starts init; see boot(8) and init(8).

/bin Mounted here is a union directory composed of /$objtype/bin,
/rc/bin, $home/bin/$objtype, $home/bin/rc, etc., so /bin is

792

NAMESPACE(4) NAMESPACE(4)

always the directory containing the appropriate executables for the current
architecture.

/dev Mounted here is a union directory containing I/O devices such as the console
(cons(3)), the interface to the raster display (draw(3)), etc. The window sys
tem, rio(1), prefixes this directory with its own version, overriding many
device files with its own, multiplexed simulations of them.

/env Mounted here is the environment device, env(3), which holds environment
variables such as $cputype.

/net Mounted here is a union directory formed of all the network devices available.
/net/cs The communications point for the connection server, ndb/cs (see ndb(8)).
/net/dns The communications point for the Domain Name Server, ndb/dns (see

ndb(8)).
/net/tcp
/net/udp Directories holding the IP protocol devices (see ip(3)).
/proc Mounted here is the process device, proc(3), which provides debugging

access to active processes.
/fd Mounted here is the dup device, dup(3), which holds pseudonyms for open

file descriptors.
/shr Mounted here is the global mountpoint device, shr(3), which holds mounted

filesystems visible in all namespaces.
/srv Mounted here is the service registry, srv(3), which holds connections to file

servers.
/srv/boot The communication channel to the main file server for the machine.
/mnt/wsys Mount point for the window system.
/mnt/term Mount point for the terminal�s name space as seen by the CPU server after a

cpu(1) command.
/n/kremvax A place where machine kremvax�s name space may be mounted.
/tmp Mounted here is each user�s private tmp, $home/tmp.

SEE ALSO
intro(1), namespace(6)

793

NFS(4) NFS(4)

NAME
nfs � Sun network file system client

SYNOPSIS
nfs [−DRv] [−p perm] [−s srvname] [−u passwd group] addr1 [addr2]

aux/portmap [−R] host cmd

aux/nfsmount [−R] host cmd

DESCRIPTION
Nfs translates between the Sun network file system protocol (NFS) and 9P, allowing 9P clients to
mount file systems on NFS servers. NFS servers comprise two separate services: a mount service
used to obtain the initial file handle, and a file service used to perform actual file system opera
tions. The Sun port mapper service is typically used to find these two services. If one address is
given, it is taken to be the address of a port mapper service; nfs queries the port mapper to find
the addresses of the NFS mount service and file service. If two addresses are given, the port map
per is bypassed; addr1 is used as the address of the NFS mount service, and addr2 is used as the
address of the file service.

The options are:

−D print all 9P messages.

−R print all NFS messages.

−v print verbose information about session startup.

−p perm
set the posted service file to have mode perm, which is assumed to be octal; the default is
600.

−s srvname
post the service as /srv/srvname; the default is /srv/addr1.

−u passwd group
translate user and group names using the passwd and group files, which are in the tradi
tional Unix format. The translation is used to present names for user and group in stat(5)
and wstat messages. The translation is also used to choose the user and group credentials
to present for a user. Without this option, users and groups are presented as decimal num
bers, and everyone attaches as uid �1 (nobody on most Unix systems).

Portmap and nfsmount are test programs to perform port mapper and NFS mount RPCs. They are
useful mainly to help debug problems with starting nfs itself. The −R option causes them to print
all RPC messages sent and received.

Portmap queries a Sun RPC portmap server, which maps integer (program, version, protocol) tri
ples to port numbers. Program and version are Sun RPC defined, while protocol is typically TCP (6)
or UDP (17). The commands are:

null a no-op

dump print the entire map

set prog vers proto port
add an entry to (or replace an entry in) the map

unset prog vers proto port
remove an entry from the map

getport prog vers proto
look for an entry with prog, vers, proto in the map, and return the corresponding port The
default command is dump. For running NFS over UDP, there must be an entry for the NFS
v3 mount daemon (100005, 3, 17) and the NFS v3 server itself (100003, 3, 17).

Nfsmount queries a Sun NFS mount server, which authenticates (ha!) connections and hands out
file handles naming the root of an exported file system. This handle is used as the basis for a con
versation with the NFS service daemon itself. The commands are:

794

NFS(4) NFS(4)

null a no-op

export
dump the export table; each line is a path followed by a list of machines or groups allowed
to mount that path

mnt path
attempt to acquire a file handle for path. the request has user and group id 1001 and
gnot as the system name.

umnt path
notify the mount daemon that a particular path is being unmounted by the requesting sys
tem

umntall
notify the mount daemon that all paths mounted by the requesting system are being
unmounted

dump should also dump an export table, but typically does nothing

EXAMPLE
We use this in our /rc/bin/9fs script to mount all the home directories served by bopp:

case bopp
if(! test −f /srv/bopp)

nfs −p 666 −u /lib/ndb/1127.passwd /lib/ndb/1127.group bopp
unmount /n/bopp >[2]/dev/null
for(i in u0 u1 u2 u3 u4 u5 u6 u7 u8 u9)

mount −a /srv/bopp /n/bopp /$i

SOURCE
/sys/src/cmd/nfs.c
/sys/src/libsunrpc

SEE ALSO
nfsserver(8), srv(4)

BUGS
The authentication employed by NFS is laughable. The server simply trusts the uid, gid, and group
list presented by the client.

Nfs speaks only NFS version 3. Older operating systems typically have reasonable NFS version 2
servers but crash when serving version 3.

795

NNTPFS(4) NNTPFS(4)

NAME
nntpfs � network news transport protocol (NNTP) file system

SYNOPSIS
nntpfs [−a] [−s service] [−m mountpoint] [system]

DESCRIPTION
Nntpfs dials the TCP network news transport protocol (NNTP) port, 119, on system (default
’$nntp’) and presents at mountpoint (default /mnt/news) a file system corresponding to the
news articles stored on system.

If the −s option is given, the file system is posted as /srv/service. If the −a option is given,
nntpfs authenticates to the system with a user name and password obtained from factotum(4). The
key specifier is

proto=pass service=nntp server=server user? !password?

The file system contains a directory per newsgroup, with dots turned into slashes, e.g.,
comp/os/plan9 for comp.os.plan9. Each newsgroup directory contains one numbered
directory per article. The directories follow the numbering used by the server. Each article direc
tory contains three files: article, header, and body. The article file contains the full text
of the article, while header and body contain only the header or body.

Each newsgroup directory contains a write-only post file that may be used to post news articles.
RFC1036-compliant articles should be written to it. The post file will only exist in a given news
group directory if articles are allowed to be posted to it. Other than that, the post file is not tied
to its directory�s newsgroup. The groups to which articles are eventually posted are determined by
the newsgroups: header lines in the posted article, not by the location of the post file in the
file system.

The qid version of a newsgroup directory is the largest numbered article directory it contains (~0,
if there are no articles).

The modification time on a newsgroup directory is the last time a new article was recorded during
this nntpfs session. To force a check for new articles, stat(2) the newsgroup directory.

To force a check for new newsgroups, stat(2) the root directory. Note that this causes the entire
list of groups, which can be about a megabyte, to be transferred.

To terminate the connection, unmount the mount point.

Nntpfs makes no effort to send ��keepalives�� so that servers do not hang up on it. Instead, it redi
als as necessary when hangups are detected.

EXAMPLE
Authenticate to a private news server:

% echo key proto=pass service=nntp server=nose.mit.edu \
user=rsc !password=secret >/mnt/factotum/ctl

% nntpfs −a nose.mit.edu

SOURCE
/sys/src/cmd/nntpfs.c

BUGS
Directories are presented for deleted articles; the files in them cannot be opened.

796

NUSB(4) NUSB(4)

NAME
audio, disk, ether, kb, serial, ptp, usbd - Universal Serial Bus drivers

SYNOPSIS
nusb/audio devid

nusb/disk [−d] devid

nusb/ether [−dD] [−t ethertype] [−a addr] devid

nusb/kb [−d] devid

nusb/serial [−d] devid

nusb/ptp [−dD] devid

nusb/usbd [−dD]

DESCRIPTION
These programs drive USB devices of specific classes via usb(3). Usually they are started by
nusbrc(8) upon attachment of the device to the bus. All drivers except usbd take the decimal usb
devid of the device they should handle as ther last argument. A driver�s instance handles only one
device at a time.

Drivers that provide file systems make them available as shares under /shr (see shr(3)) or
/shr/usb (which is bound after /dev by nusbrc(8)).

Options �d and �D trigger debug diagnostics and file system debugging diagnostics for most
drivers. Repeating any one of these may increase verbosity.

Hubs
Usbd enumerates the tree of USB hubs and configures the device on attachment. It provides a
filesystem with the file usbevent (usually seen as /dev/usbevent) which, when read, returns
a 6 column, space separated line of text, one for each event. The columns are: attach or
detach followed by addr vid did csp and hname . The addr is the decimal device address
assigned. Vid and did are formatted as 4 digit hexadecimal. Csp is the device class, subclass, pro
tocol indentifier formatted as 6 digit hexadecimal. Usbd assigns a stable device unique name
based on the device descriptor for hname . This information is read by nusbrc(8) and the addr and
hname are passed to a suitable driver as devid in the form addr:hname

Keyboards and mice
Kb supports USB keyboards and mice either as separate USB devices or as a single combined USB
device. Scan codes from the keyboard are sent to /dev/kbin to let kbdfs(8) process them.
Mouse events are sent to /dev/mousein in the same way.

Disks
Disk configures and manages USB mass storage devices. It provides a file system (usually seen
under /dev) that includes one directory per storage device, named sdUN[.M] in correspon
dence with the usb device unique name and the storage unit number (or LUN). The LUN is omited
for single lun devices.

The storage device directory contains the usual files served by sd(3): data, raw, and ctl.

The ctl file supplies the device geometry and partitions when read.

Ethernet
Ether handles USB ethernet devices. The file system provided is compatible to ether(3) and added
to the share usbnet (see shr(3)) which is bound after /net by nusbrc(8) so the device will
appear as /net/etherUN. Without specifying the −t option, the device is assumed to be a
CDC compliant ethernet communication device. Other devices might require setting an explicit
ethertype, such as rndis, smsc, a88772 or a88178 (see nusbrc(8)). On devices that support
it, the mac address can be set using the −a addr option.

Serial and JTAG ports
Serial provides a file system (usually seen under /dev) that includes one directory per USB serial
port, named eiaUN or eiaUN[.M]. In this directory there are two files, eiaU, similar to
eiaN in uart(3), and eiaUctl, which admits writes in the same format as eiaNctl in uart(3).
Reading from eiaUctl gives the serial port�s settings in the same format as eiaNstatus in

797

NUSB(4) NUSB(4)

uart(3). Options are similar to those of disk.

JTAG ports are similar but the files are named jtag and jtagctl.

Audio devices
Audio configures and manages a USB audio device. It implements a file system, (normally seen
under /dev) compatible to audio(3).

SOURCE
/sys/src/cmd/nusb

SEE ALSO
audio(3), ether(3), mouse(3), sd(3), uart(3), usb(3), shr(3), nusbrc(8), kbdfs(8)

BUGS
The various device drivers are generic USB drivers and may work only for certain devices of each
class.

USB ATA storage devices are not supported.

The serial driver works only for the Prolific chip and Ftdi, and control of the dcd and dsr signals
and some of the extra features are not implemented. For Ftdi, only the Sheevaplug and Guruplug
have been tried. There is support for the EHCI debug port, but it loses bytes.

798

OEXPORTFS(4) OEXPORTFS(4)

NAME
oexportfs � legacy exportfs for cpu and import

SYNOPSIS
oexportfs [options]

DESCRIPTION
Oexportfs is older version of the exportfs(4) program that handles an initial protocol to establish a
root directory for the exported name space. It also provides authentication and encryption using
the ssl(3) device.

It is used exclusively by the deprecated cpu(1) and import(4) services.

The options are:

−d −f dbgfile
Log all 9P traffic to dbgfile (default /tmp/exportdb).

−P patternfile
Restrict the set of exported files. Patternfile contains one regular expression per line, to be
matched against path names relative to the current working directory and starting with /.
For a file to be exported, all lines with a prefix + must match and all those with prefix −
must not match.

−R Make the served name space read only.

−r root
Serve the name space rooted at root.

−S service
Serve the result of mounting service. A separate mount is used for each attach(5) message,
to correctly handle servers in which each mount corresponds to a different client e.g. ,(
rio(4)).

−s equivalent to −r /; kept for compatibility.

−m msize
Set the maximum message size that oexportfs should offer to send (see version(5)); this
helps tunneled 9P connections to avoid unnecessary fragmentation.

−A address
Use the network address to announce aan(8) connections, if requested by the initial proto
col.

−a Authenticate the user with the p9any protocol before running the regular oexportfs session;
used when oexportfs is invoked to handle an incoming network connection. Exportfs cre
ates a new name space for each connection, using /lib/namespace by default (see
namespace(6)).

−B address
Dial address, authenticate as a p9any client, and then serve that network connection.
Requires setting the root of the name space with −r or −s. The remote system should run
import −B to handle the call. See import(4) for an example.

−e ’enc auth’
Set the encryption and authentication algorithms to use for encrypting the wire traffic (see
ssl(3)). The defaults are rc4_256 and sha1.

−N nsfile
Serve the name space described by nsfile.

−n Disallow mounts by user none.

SOURCE
/sys/src/cmd/exportfs/oexportfs.c

SEE ALSO
dial(2), exportfs(4), import(4), aan(8), listen(8)

799

PAQFS(4) PAQFS(4)

NAME
paqfs � compressed read-only file system

SYNOPSIS
paqfs [−disv] [−c cachesize] [−m mtpt] [−M mesgsize] [−S srvname] paqfile

DESCRIPTION
Paqfs interprets the compressed read-only file system created by mkpaqfs(8) and stored in paqfile
so that it can be mounted into a Plan 9 file system. Paqfs is typically used to create a stand alone
file system for a small persistent storage device, such as a flash ROM. It does not authenticate its
clients and assumes each group has a single member with the same name.

Options to paqfs are:

−c cachesize
The number of file system blocks to cache in memory. The default is 20 blocks.

−M mesgsize
The maximum 9P message size. The default is sufficient for 8K byte read message.

−d Output various debugging information to stderr.

−i Use file descriptors 0 and 1 as the 9P communication channel rather than create a pipe.

−q Suppress the output of the archive creation date and fingerprint to stderr.

−m mtpt
The location to mount the file system. The default is /n/paq.

−s Post the 9P channel on #s/srvname, default #s/paqfs, rather than mounting it on mtpt.

−S The name to post in #s. The default is paqfs.

−p Both post the 9P channel in #s and mount the paqfile in to the filesystem.

−v Verify the integrity of the paqfile. Before mounting the file system, the entire file is parsed
and the sha1 checksum of the file system data is compared to the checksum embedded in
the file. This option enables the use of paqfs with files that consist of a paq file system
concatenated with additional data.

SOURCE
/sys/src/cmd/paqfs/paqfs.c

SEE ALSO
mkpaqfs(8)

800

PLUMBER(4) PLUMBER(4)

NAME
plumber � file system for interprocess messaging

SYNOPSIS
plumber [−p plumbing]

DESCRIPTION
The plumber is a user-level file server that receives, examines, rewrites, and dispatches plumb(6)
messages between programs. Its behavior is programmed by a plumbing file (default
/usr/$user/lib/plumbing) in the format of plumb(6).

Its services are mounted on the directory /mnt/plumb (/mnt/term/mnt/plumb on the CPU
server) and consist of two pre-defined files, send and rules, and a set of output ports for dis
patching messages to applications. The service is also published as a srv(4) file, named in
$plumbsrv, for mounting elsewhere.

Programs use write (see read(2)) to deliver messages to the send file, and read(2) to receive
them from the corresponding port. For example, sam(1)�s plumb menu item or the B command
cause a message to be sent to /mnt/plumb/send; sam in turn reads from, by convention,
/mnt/plumb/edit to receive messages about files to open.

A copy of each message is sent to each client that has the corresponding port open. If none has it
open, and the rule has a plumb client or plumb start rule, that rule is applied. A plumb
client rule causes the specified command to be run and the message to be held for delivery
when the port is opened. A plumb start rule runs the command but discards the message. If
neither start or client is specified and the port is not open, the message is discarded and a
write error is returned to the sender.

The set of output ports is determined dynamically by the specification in the plumbing rules file: a
port is created for each unique destination of a plumb to rule.

The set of rules currently active may be examined by reading the file /mnt/plumb/rules;
appending to this file adds new rules to the set, while creating it (opening it with OTRUNC) clears
the rule set. Thus the rule set may be edited dynamically with a traditional text editor. However,
ports are never deleted dynamically; if a new set of rules does not include a port that was defined
in earlier rules, that port will still exist (although no new messages will be delivered there).

FILES
/usr/$user/lib/plumbing default rules file
/sys/lib/plumb directory to search for files in include statements
/mnt/plumb mount point for plumber(4).

SOURCE
/sys/src/cmd/plumb

SEE ALSO
plumb(1), plumb(2), plumb(6)

BUGS
Plumber�s file name space is fixed, so it is difficult to plumb messages that involve files in newly
mounted services.

801

PTRAP(4) PTRAP(4)

NAME
ptrap � plumber(4) filter

SYNOPSIS
ptrap port [!]regexp [+attr [!]regexp ...] ...

DESCRIPTION
Ptrap is a program that mounts itself over a plumber(4) service mounted at /mnt/plumb and fil
ters incoming messages according to the rules provided on the command line.

Ptrap accepts an arbitrary number of filters; each filter applies to a port, and may match over both
the data and attributes of plumb messages.

A filter is formatted as a port name, a data filter, and a list of attribute filters.

The data filter is a regex(6) that matches the plumbed data. The attribute filter consists of the
attribute name prefixed with a �+�, followed by a regex(6) that matches the contents of the
attribute. Any regex may be prefixed with a �!� in order to negate a match, causing all matches for
that regex to be discarded. All parts of a filter must match in order for a plumb message to be for
warded.

EXAMPLES
Start a sam(1) instance dedicated to editing kernel source code:

ptrap edit ’^/sys/src/9/’
sam

In another window, start a second sam(1) instance for all other editing jobs:

ptrap edit ’!^/sys/src/9/’
sam

Start an acme(1) instance instance dedicated to reading plumbed manual pages:

ptrap edit ’.*’ +action ’^showdata’ +filename ’^/man/’
acme −c1

SOURCE
/sys/src/cmd/ptrap.c

SEE ALSO
plumber(4), plumb(6)

BUGS
Multiple filters specified on the same port ignore all but the last one.

Ptrap would be more useful if it could inhibit sending the message to other clients.

As far as plumber(4) is concerned, even messages dropped by ptrap are "accepted", which means
rules that are supposed to apply to messages not accepted by clients are not invoked (e.g. a rule
starting an editor if no one is listening to the edit port will not work if there is a ptrap on that
port).

HISTORY
Ptrap first appeared in 9front (February, 2018).

802

RAMFS(4) RAMFS(4)

NAME
ramfs � memory file system

SYNOPSIS
ramfs [−Dipsu] [−m mountpoint] [−S srvname]

DESCRIPTION
Ramfs starts a process that mounts itself (see bind(2)) on mountpoint (default /tmp). The ramfs
process implements a file tree rooted at dir, keeping all files in memory. Initially the file tree is
empty.

The −D option enables a trace of general debugging messages.

The −i flag tells ramfs to use file descriptors 0 and 1 for its communication channel rather than
create a pipe. This makes it possible to use ramfs as a file server on a remote machine: the file
descriptors 0 and 1 will be the network channel from ramfs to the client machine.

The −p flag causes ramfs to make its memory �private� (see proc(3)) so that its files are not acces
sible through the debugging interface.

The −s (−S) flag causes ramfs to post its channel on /srv/ramfs (/srv/srvname) rather than
mounting it on mountpoint, enabling multiple clients to access its files. However, it does not
authenticate its clients and its implementation of groups is simplistic, so it should not be used for
precious data.

The −u option permits ramfs to consume as much memory as needed; without it, ramfs will limit
its consumption to some arbitrary amount, currently 768MB (enough to hold a CD image).

This program is useful mainly as an example of how to write a user-level file server. It can also be
used to provide high-performance temporary files.

SOURCE
/sys/src/cmd/ramfs.c

SEE ALSO
bind(2)

803

RATFS(4) RATFS(4)

NAME
ratfs � mail address ratification file system

SYNOPSIS
ratfs [−d] [−c configuration] [−f classification] [−m mountpoint]

DESCRIPTION
Ratfs starts a process that mounts itself (see bind(2)) on mountpoint (default /mail/ratify).
Ratfs is a persistent representation of the local network configuration and spam blocking list.
Without it each instance of smtpd(6) would need to reread and parse a multimegabyte list of
addresses and accounts.

Ratfs serves a control file, ctl, and several top level directories: trusted, deny, dial,
block, delay, and allow.

The control file is write only and accepts three possible commands:

reload rereads classification and configuration
debug file creates file and sends debugging output to it.
nodebug closes the debug file and turns off debugging

The directory trusted serves a file for each IP range from which all mail is trusted. The names
of the files are CIDR blocks; an IP address or an IP address followed by #n, where n is the number
of bits to match. To check if any IP address falls in a trusted range, it is sufficient to open the file
whose name is the IP address. For example, if trusted contains only the file
135.104.0.0#16, an attempt to open the file 135.104.9.1 will succeed while opening 10.1.1.1
will fail. To determine the particular range matched, dirfstat (see stat (2)) the open file and
the name field will be the matching CIDR range.

The trusted ranges come both from the ournet entries in the file configuration (default
/mail/lib/blocked) and from creates, typically done by imap4d (see ipserv(8)) and pop3
(see mail(1)) whenever they are used to read someone�s mail.

The remaining directories, allow, block, delay, deny, and dial, represent the contents of
the classification (default /mail/lib/smtpd.conf.ext). Each contains two directories; ip
and account. The ip directory has the same open semantics as the trusted directory, i.e., to
check if an IP address falls in that category, try to open a file whose name is the IP address. The
account directory is similar but is used for matching strings. Each file in the directory repre
sents a regular expression. To see if one of the strings matches one of the regular expressions,
try to open the file whose name is the string. If it succeeds, then there is a regular expression that
matches. To determine the regular expression, fstat the open file. The name field will be the
regular expression.

There is a direct mapping from entries in classification and files under allow, block, delay,
deny, and dial. A configuration file entry of the form:

dial 135.104.9.0/24
corresponds to the file dial/ip/135.104.9.0#24. An entry of the form

block .!gre
corresponds to the file block/account/.*!gre.

Both the configuration file and control file formats are described in smtpd(6).

SOURCE
/sys/src/cmd/ratfs

SEE ALSO
mail(1) smtpd(6) scanmail(8)

804

RDBFS(4) RDBFS(4)

NAME
rdbfs � remote kernel debugging file system

SYNOPSIS
rdbfs [−d] [−p pid] [−s srvname] [−t text] [device]

DESCRIPTION
Rdbfs presents in /proc/pid (default /proc/1) a set of process files for debugging a kernel
over the serial line device (default /dev/eia0). If the −s option is given, rdbfs will post its chan
nel in /srv/srvname (see srv(3)), allowing the session to be shared or reattached later.

The text file presented is just a copy of text (default /386/9pc). It can usually be ignored,
since the debuggers open kernel files directly rather than using /proc/n/text.

Kernels can be remotely debugged only when they are suspended and serving a textual debugging
protocol over their serial lines. (see cons(3))

Because the debugging protocol is textual, a console provided by consolefs(4) may be substituted
for the serial device.

SOURCE
/sys/src/cmd/rdbfs.c
/sys/src/9/port/rdb.c

SEE ALSO
acid(1), db(1), cons(3), consolefs(4)

805

RIO(4) RIO(4)

NAME
rio � window system files

SYNOPSIS
rio [−i ’cmd’] [−k ’kbdcmd’] [−s] [−b] [−f font]

DESCRIPTION
The window system rio serves a variety of files for reading, writing, and controlling windows.
Some of them are virtual versions of system files for dealing with the display, keyboard, and
mouse; others control operations of the window system itself. Rio posts its service in the /srv
directory, using a name constructed from a catenation of the user ID and a process id; the environ
ment variable $wsys is set to this service name within processes running under the control of
each invocation of rio. Similarly, rio posts a named pipe to access the window creation features
(see window in rio(1)) from outside its name space; this is named in $wctl.

A mount (see bind(1)) of $wsys causes rio to create a new window; the attach specifier in the
mount gives the coordinates of the created window. The syntax of the specifier is the same as the
arguments to window (see rio(1)). By default, the window is sized and placed automatically. It is
always necessary, however, to provide the process id of the process to whom to deliver notes gen
erated by DEL characters and hangups in that window. That pid is specified by including the string
−pid pid in the attach specifier. (See the Examples section q.v.)

When a window is created either by the window command (see rio(1)) or by using the menu sup
plied by rio, this server is mounted on /mnt/wsys and also /dev; the files mentioned here
appear in both those directories.

Some of these files supply virtual versions of services available from the underlying environment,
in particular the character terminal files cons and kbd (see kbdfs(8)), and the mouse files
mouse(3) and cursor, each specific to the window. Note that the draw(3) device multiplexes itself;
rio places windows but does not mediate programs� access to the display device.

Other files are unique to rio.

cons a virtual version of the standard terminal file from kbdfs(8). Rio supplies extra editing
features and a scroll bar (see rio(1)).

consctl controls interpretation of console input. Writing strings to it sets these modes: rawon
turns on raw mode; rawoff turns off raw mode; holdon turns on hold mode;
holdoff turns off hold mode. Closing the file makes the window revert to default
state (raw off, hold off).

kbd represents the raw keyboard events (see kbdfs(8)) for the corresponding window. While
open, navigation keys and input on the cons file is disabled.

cursor Like mouse (q.v.), a multiplexed version of the underlying device file, in this case rep
resenting the appearance of the mouse cursor when the mouse is within the corre
sponding window.

label initially contains a string with the process ID of the lead process in the window and the
command being executed there. It may be written and is used as a tag when the win
dow is hidden.

mouse is a virtual version of the standard mouse file (see mouse(3)). Opening it turns off
scrolling, editing, and rio-supplied menus in the associated window. In a standard
mouse message, the first character is m, but rio will send an otherwise normal message
with the first character r if the corresponding window has been resized. The applica
tion must then call getwindow (see graphics(2)) to re-establish its state in the newly
moved or changed window. Reading the mouse file blocks until the mouse moves or a
button changes. Mouse movements or button changes are invisible when the mouse
cursor is located outside the window, except that if the mouse leaves the window while
a button is pressed, it will continue receiving mouse data until the button is released.

screen is a read-only file reporting the depth, coordinates, and raster image corresponding to
the entire underlying display, in the uncompressed format defined in image(6).

snarf returns the string currently in the snarf buffer. Writing this file sets the contents of the
snarf buffer. When rio is run recursively, the inner instance uses the snarf buffer of
the parent, rather than managing its own.

806

RIO(4) RIO(4)

text returns the full contents of the window. Write appends to the window. Truncating
clears the windows contents.

wctl may be read or written. When read, it returns the location of the window as four deci
mal integers, padded to 12 characters as described in image(6): upper left x and y,
lower right x and y. Following these numbers are strings, also padded to 12 charac
ters, describing the window�s state: current or notcurrent; hidden or
visible. A subsequent read will block until the window changes size, location, or
state. When written to, wctl accepts messages to change the size or placement of
the associated window, and to create new windows. The messages are in a
command-line like format, with a command name, possibly followed by options intro
duced by a minus sign. The options must be separated by blanks, for example −dx
100 rather than −dx100.
The commands are resize (change the size and position of the window), move
(move the window), scroll (enable scrolling in the window), noscroll (disable
scrolling), set (change selected properties of the window), top (move the window to
the �top�, making it fully visible), bottom (move the window to the �bottom�, perhaps
partially or totally obscuring it), hide (hide the window), unhide (restore a hidden
window), current (make the window the recipient of keyboard and mouse input),
delete (close the window and terminate its associated processes) and new (make a
new window). The top and bottom commands do not change whether the window is
current or not. Neither top nor bottom has any options.
The resize, move, and new commands accept −minx n, −miny n, −maxx n, and
−maxy n options to set the position of the corresponding edge of the window. They
also accept an option −r minx miny maxx maxy to set all four at once. The resize
and new commands accept −dx n and −dy n to set the width and height of the win
dow. By default, rio will choose a convenient geometry automatically.
Finally, the new command accepts an optional shell command and argument string,
given as plain strings after any standard options, to run in the window instead of the
default rc −i (see rc(1)). The −pid pid option to new identifies the pid of the pro
cess whose �note group� should receive interrupt and hangup notes generated in the
window. The initial working directory of the new window may be set by a −cd
directory option. The −hide option causes the window to be created off-screen, in
the hidden state, while −scroll and −noscroll set the initial scrolling state of the
window; the default is that of the main program.
The set command accepts a set of parameters in the same style; only −pid pid is
implemented.
So programs outside name spaces controlled by rio may create windows, wctl new
messages may also be written to the named pipe identified by $wctl.

wdir is a read/write text file containing rio�s idea of the current working directory of the
process running in the window. It is used to fill in the wdir field of plumb(6) mes
sages rio generates from the plumb menu item on button 2. The file is writable so
the program may update it; rio is otherwise unaware of chdir(2) calls its clients make.
In particular, rc(1) maintains /dev/wdir in default rio(1) windows.

winid returns the unique and unchangeable ID for the window; it is a string of digits.
window is the virtual version of /dev/screen. It contains the depth, coordinates, and

uncompressed raster image corresponding to the associated window.
wsys is a directory containing a subdirectory for each window, named by the unique ID for

that window. Within each subdirectory are entries corresponding to several of the spe
cial files associated with that window: cons, consctl, label, mouse, etc.

EXAMPLES
Cause a window to be created in the upper left corner, and the word hi to be printed there.

mount $wsys /tmp ’new −r 0 0 128 64 −pid ’$pid
echo hi > /tmp/cons

Start sam(1) in a large horizontal window.

echo new −dx 800 −dy 200 −cd /sys/src/cmd sam > /dev/wctl

Print the screen image of window with id 123.

807

RIO(4) RIO(4)

lp /dev/wsys/123/window

SOURCE
/sys/src/cmd/rio

SEE ALSO
rio(1), draw(3), mouse(3), kbdfs(8), event(2), graphics(2).

808

SACFS(4) SACFS(4)

NAME
sacfs � compressed file system

SYNOPSIS
disk/sacfs [−i infd outfd] [−s] [−m mountpoint] file

DESCRIPTION
Sacfs interprets the compressed, block based file system created by mksacfs(8) and stored in file
so that it can be mounted into a Plan 9 file system. Sacfs is typically used to create a stand alone
file system from a small persistent storage device, such as a flash rom. It does not authenticate its
clients and assumes each group has a single member with the same name.

The −s flag causes sacfs to post its channel on #s/sacfs. The −i flag causes sacfs to use file
descriptors infd and outfd for its communication channel. If neither −s nor −i are given, sacfs
mounts itself on mountpoint (default /n/c:).

SOURCE
/sys/src/cmd/disk/sacfs/sacfs.c

SEE ALSO
mksacfs(8)

809

SNAP(4) SNAP(4)

NAME
snap, snapfs � create and mount process snapshots

SYNOPSIS
snap [−o file] pid...

snapfs [−a] [−m mtpt] [−s service] file...

DESCRIPTION
Snap and snapfs allow one to save and restore (static) process images, usually for debugging on a
different machine or at a different time.

Snap writes a snapshot (see snap(6)) of the named processes to file (default standard output). If
pid is a text string rather than a process id, snap will save all processes with that name that are
owned by the current user. Both memory and text images are saved.

Snapfs is a file server that recreates the /proc directories for the processes in the snapshot. By
default, it mounts the new directories into /proc before the current entries. The −m option can
be used to specify an alternate mountpoint, while −a will cause it to mount the new directories
after the current entries. The −s option causes it to serve requests via /srv/service.

EXAMPLE
Suppose page has hung viewing Postscript on your terminal, but the author is gone for the rest of
the month and you want to make sure the process is still around for debugging on his return. You
can save the errant processes with

snap −o page.snap ‘{psu | awk ’$NF ~ /page|gs/ {print $2}’}

When the author returns, he can add the process images to his name space by running

snapfs page.snap

and then use a conventional debugger to debug them.

SOURCE
/sys/src/cmd/snap

SEE ALSO
acid(1), db(1), proc(3), snap(6)

BUGS
The snapshots take up about as much disk space as the processes they contain did memory. Com
pressing them when not in use is recommended, as is storing them on a rewritable disk.

Pid as a non-numeric string is unimplemented; it has to be a number.

810

SRV(4) SRV(4)

NAME
srv, srvtls, 9fs � start network file service

SYNOPSIS
srv [−abcCemnNq] [−s seconds] [net!]system[!service] [srvname [mtpt]]

srvtls [−abcCnq] [−k keyspec] [net!]system[!service] [srvname [mtpt]]

9fs [net!]system [mountpoint]

DESCRIPTION
Srv dials the given machine and initializes the connection to serve the 9P protocol. By default, it
connects to the 9fs (9P) service, which for TCP is port 564. It then creates in /srv a file named
srvname. Users can then mount (see bind(1)) the service, typically on a name in /n, to access the
files provided by the remote machine. If srvname is omitted, the first argument to srv is used.
Option m directs srv to mount the service on /n/system or onto mtpt if it is given. Option q sup
presses complaints if the /srv file already exists. The a, b, c, C, and n, N options are used to
control the mount flags as in mount (see bind(1)). The e option causes srv to treat system as a
shell command to be executed rather than an address to be dialed. The s option causes srv to
sleep for the specified number of seconds after establishing the connection before posting and
mounting it.

The specified service must serve 9P. Usually service can be omitted; when calling some non-Plan-
9 systems, a service such as u9fs must be mentioned explicitly.

The 9fs command does the srv and the mount necessary to make available the files of system on
network net. The files are mounted on mountpoint, if given; otherwise they are mounted on
/n/system. If system contains / characters, only the last element of system is used in the /n
name.

9fs recognizes some special names, such as dump to make the dump file system available on
/n/dump. 9fs is an rc(1) script; examine it to see what local conventions apply.

Srvtls is an rc(1) command that uses tlsclient (see tlssrv(8)) to establish an mutual authenticated
and encrypted 9P connection to the t9fs service which by default listens on tcp port 17020.

EXAMPLES
To see kremvax�s and deepthought�s files in /n/kremvax and /n/deepthought:

9fs kremvax
9fs hhgttg /n/deepthought

FILES
/srv/* ports to file systems and servers posted by srv and 9fs

SOURCE
/sys/src/cmd/srv.c
/rc/bin/9fs
/rc/bin/srvtls

SEE ALSO
bind(1), auth(2), dial(2), srv(3), tlssrv(8), exportfs(4).

BUGS
Srv does not explicitly report failures of auth_proxy (see auth(2)); mount (see bind(1)) does.

811

SSHFS(4) SSHFS(4)

NAME
sshfs - secure file transfer protocol client

SYNOPSIS
sshfs [−abdRUGM] [−s service] [−m mtpt] [−r root] [−u uidfile] [−g gidfile]

[−− ssh−options] [user@]host | −c cmdline | −p

DESCRIPTION
Sshfs makes the file system on a remote host accessible through the secure file transfer protocol
(SFTP). By default sshfs launches ssh(1) to connect to host and log in as user. If −c is specified,
sshfs will instead launch the command specified by cmdline and if −p is specified, sshfs communi
cates with an SFTP server via stdin and stdout.

Unless −M is specified, sshfs will mount itself at the mountpoint specified by mtpt, or at /n/ssh
if −m is not specified. The default mount options are equivalent to calling mount (see bind(1)) with
−c. −a and −b have the same function as they do with mount.

If −s is specified, it will post itself in srv(3) with service name service. If the service file is
mounted, the attach name (the third argument to mount(1)) can be used to specify which directory
on the remote host will be mounted.

By default, relative paths are assumed relative to the user�s home directory. The −r option can be
used to specify an alternative base for relative paths. The initial mount at −m also uses this direc
tory. If an attach name starts with ~, the user�s home directory is substituted for ~.

Since the only supported version 3 of the SFTP protocol has no way to look up numeric user and
group IDs, sshfs will read the files /etc/passwd and /etc/group on the remote host to cre
ate a lookup table for them. The location of these files can be changed with −u and −g, whereas
−U and −G will inhibit reading them entirely. If these files cannot be accessed for any reason,
numeric IDs simply remain untranslated.

Further options:

-R Read access only.

-d Enable debugging output.

SOURCE
/sys/src/cmd/sshfs.c

BUGS
Currently only version 3 of the SFTP protocol is supported (which is the most common version in
use and the latest supported by openssh). Unfortunately there are problems with the version 3
specification and the code relies on openssh-specific behaviour in some corner cases. Version 4
and later also handle uid/gid translation at the server end which would remove the ugly depen
dence on reading remote configuration files.

Some 9P operations that should be atomic are not atomic because they do not map 1:1 to SFTP
operations. In particular there is no guarantee that a failed wstat (see stat(5)) did not change
some of the fields.

The code is naive about links and assumes files with distinct names to be distinct, assigning them
different QIDs.

File names with null bytes in them will confuse sshfs. Sshfs should probably escape them, as well
as control characters that might confuse other software.

HISTORY
Sshfs first appeared in 9front (Apr, 2017).

SEE ALSO
ssh(1)

812

SSHNET(4) SSHNET(4)

NAME
sshnet - secure file transfer protocol client

SYNOPSIS
sshnet [−m mtpt] [−s service] [user@]host
sshnet [−m mtpt] [−s service] −− ssh−options [user@]host

DESCRIPTION
The SSH protocol allows clients to make outgoing and incoming TCP calls via the server. Sshnet
establishes an SSH connection and, rather than execute a remote command, presents the remote
server�s TCP stack as a network stack (see the discussion of TCP in ip(3)) mounted at mtpt (default
/net), optionally posting a 9P service descriptor for the new file system as /srv/service. All
other arguments are passed to ssh(1) as is.

SOURCE
/sys/src/cmd/sshnet.c

SEE ALSO
ssh(1), ip(3)

813

TAPEFS(4) TAPEFS(4)

NAME
32vfs, cpiofs, tapfs, tarfs, tpfs, v6fs, v10fs, zipfs � mount archival file systems

SYNOPSIS
fs/32vfs [−b blocksize] [−m mountpoint] [−p passwd] [−g group] file
fs/cpiofs
fs/tapfs
fs/tarfs
fs/tpfs
fs/v6fs
fs/v10fs
fs/zipfs

DESCRIPTION
These commands interpret data from traditional tape or file system formats stored in file, and
mount their contents (read-only) into a Plan 9 file system. The optional −p and −g flags specify
Unix-format password (respectively group) files that give the mapping between the numeric user-
and group-ID numbers on the media and the strings reported by Plan 9 status inquiries. The −m
flag introduces the name at which the new file system should be attached; the default is
/n/tapefs.

32vfs interprets raw disk images of 32V systems, which are ca. 1978 research Unix systems for the
VAX (512 byte block size, the default), and also pre-FFS Berkeley VAX systems (1KB block size).

Cpiofs interprets cpio tape images.

Tarfs interprets tar tape images.

Tpfs interprets tp tapes from the Fifth through Seventh Edition research Unix systems.

Tapfs interprets tap tapes from the pre-Fifth Edition era.

V6fs interprets disk images from the Fifth and Sixth edition research Unix systems (512B block
size).

V10fs interprets disk images from the Tenth Edition research Unix systems (4KB block size).

Zipfs interprets zip archives (see gzip(1)).

SOURCE
These commands are constructed in a highly stereotyped way using the files fs.c and util.c in
/sys/src/cmd/tapefs, which in turn derive substantially from ramfs(4).

SEE ALSO
intro(5), ramfs(4).

814

TELCO(4) TELCO(4)

NAME
telco, faxreceive, faxsend, fax, telcofax, telcodata � telephone dialer network

SYNOPSIS
telco [−p] [−i source−id] [−v] dialer−devs

aux/faxsend address page1 ...

aux/faxreceive [−s spool−dir] [−v]

fax [−v] telno recipient [files]

service/telcofax

service/telcodata

DESCRIPTION
Telco is a file server that provides a network interface to Hayes telephone dialers. The interface is
the same as that provided by ip(3) and can be used by any program that makes network connec
tions using dial(2). The network addresses used by telco are telephone numbers.

The options are

−p use pulse dialing

−v verbose: write to the log file all communications with the dialer.

−i specify a source−id to be used during FAX transfers

Some control of outgoing calls can be encoded in the address. Normally, addresses are of the
form telco!number, where number is a decimal telephone number. However, commas in the tele
phone number can be used to insert pauses in the dialing process. Dialing options can be added
to the end of the address, separated by !�s. The dialing options are

compress turn on compression (default off)
baudrate a decimal number representing the highest baud rate with which to make the call
fax to make a Class 2 facsimile call (used by programs such as faxsend)

Telco also answers incoming calls. Upon receiving a facsimile call, telco starts the script
/rc/bin/service/telcofax. For data calls it starts /rc/bin/service/telcodata.
Each is started with the network connection as both standard input and standard output and with
two arguments, the file name of the network connection, e.g., /net/telco/0/data, and the
type of modem. Currently, the only modem types supported are:

MT1432 Multitech�s 14400 baud modem
MT2834 Multitech�s 28800 baud modem
ATT14400 the 14400 baud modem in Safaris
VOCAL the 14400 baud Vocal modem

All other modems are assumed to be compatible with the standard Hayes command subset.

Faxreceive is normally started by /rc/bin/service/telcofax. It reads and spools a CCITT
Group 3 (G3) encoded FAX, and then starts the script /sys/lib/fax/receiverc, passing it
four arguments: the spool file name, Y (for success) or N, the number of pages, and the id string
passed by the caller. This script sends by mail(1) notification to a list of recipients kept in the file
/mail/faxqueue/faxrecipients; the script and the list should be edited to match local
needs. Faxreceive’s options are:

−s specify a different spool directory; the default is /mail/faxqueue.

−v verbose: write to the log file all communications with the modem.

Faxsend transmits a FAX to address. Page1 and all arguments that follow are names of files con
taining G3 encoded FAX images, one per page.

Fax is a shell script that converts to G3 format PostScript, G3, text, or other files acceptable to
lp(1) and queues the result to be transmitted to a FAX machine. A standard cover sheet, derived
from /sys/lib/fax/h.ps, is sent before the message. Telno is the destination telephone
number. Recipient is the name of the recipient to be placed on the cover sheet. If no files are
specified, standard input is converted and sent. The −v option invokes page(1) on the generated
G3 files instead of transmitting them via FAX machine.

815

TELCO(4) TELCO(4)

EXAMPLE
Start the dialer on a PC, then use con to phone out.

telco /dev/eia1
con −l telco!18005551212

The connection will be made at the highest negotiable baud rate. To use the best negotiable com
pression scheme as well:

con −l telco!18005551212!compress

FILES
/mail/faxqueue/*
/rc/bin/service/telcodata
/rc/bin/service/telcofax
/sys/log/telco
/sys/lib/fax/receiverc
/mail/faxqueue/faxrecipients
/sys/lib/fax/h.ps
/sys/log/fax

SOURCE
/sys/src/cmd/telco/*
/sys/src/cmd/fax/*

SEE ALSO
con(1), ip(3)

BUGS
These programs require the Class 2 facsimile interface. This means that faxsend and faxreceive
will not work on most portable computers since they have Class 1 interfaces.

The modem specific information is currently built into the source. This should be in a user modifi
able file.

816

TFTPFS(4) TFTPFS(4)

NAME
tftpfs � trivial file transfer protocol (TFTP) file system

SYNOPSIS
ip/tftpfs [−D] [−s srvname] [−m mtpt] [−x net] [ipaddr]

DESCRIPTION
Tftpfs serves files from a TFTP server as a filesystem. TFTP is mostly used by bootloaders to down
load kernel images for network bootstrap (see dhcpd(8)). As the protocol has no way of distin
guishing files from directories, the final path segment needs to conain a dot (.) character to be rec
ognized as a file. To access files that have no dot in the filename, a trailing dot has to be added
and will be stripped before it is passed to the server.

The −D option enables 9P debugging messages.

The −s option causes tftpfs to post the 9P service as /srv/srvname and disables the default
mount.

The default mountpoint /n/tftp can be changed with the −B mtpt option.

The −x option specifies an alternate network directory (e.g., /net.alt).

The ip address of the server can be passed in as the last program argument, ipaddr,
or in the mount spec (see bind(1)) on a per mount basis.

EXAMPLE
Boot a kernel from a tftp server (note the final dot in the kernel path).

ip/tftpfs 10.192.254.53
echo reboot /n/tftp/386/9pc. >/dev/reboot

SOURCE
/sys/src/cmd/ip/tftpfs.c

SEE ALSO
dhcpd(8).

817

TRUETYPEFS(4) TRUETYPEFS(4)

NAME
truetypefs � TrueType font file system

SYNOPSIS
truetypefs [−F fontpath]

DESCRIPTION
Truetypefs serves a read-only filesystem at /n/ttf that generates fonts and subfonts from True
Type fonts which can be used in the Plan 9 graphics system.

By default, fonts are loaded from /lib/font/ttf/. The −F flag may be used to set the path
TrueType fonts are loaded from.

Truetypefs generates subfonts when they are accessed. Fonts are specified via a TrueType font file
name followed by a font size. For example, /n/ttf/unifont.ttf.16/font is a font(6) file
generated for GNU Unifont at a size of 16.

EXAMPLES
Use size 16 GNU Unifont for acme(1):

truetypefs
font=/n/ttf/unifont.ttf.16/font
acme −c 1 /lib/glass

SOURCE
/sys/src/cmd/truetypefs.c

SEE ALSO
ttf(2), font(6), subfont(2)

HISTORY
Truetypefs first appeared in 9front (October, 2018).

818

UPASFS(4) UPASFS(4)

NAME
upasfs � mail file server

SYNOPSIS
upas/fs [−DSbdfilnps][−c cachtarg][−f mailbox][−m mntpoint]

DESCRIPTION
Fs is a user level file system that caches mailboxes and presents them as a file system. A user nor
mally starts fs in his/her profile after starting plumber(4) and before starting a window system,
such as rio(1) or acme(1). The file system is used by nedmail(1), acme(1)�s mail reader, and
imap4d and pop3 (both pop3(8)) to parse messages. Fs also generates plumbing messages used
by biff and faces(1) to provide mail announcements.

The mailbox itself becomes a directory under /mail/fs. Each message in the mailbox becomes
a numbered directory in the mailbox directory, and each attachment becomes a numbered direc
tory in the message directory. Since an attachment may itself be a mail message, this structure
can recurse ad nauseam.

Each message and attachment directory contains the files:

body the message minus the RFC2822 style headers
cc the address(es) from the CC: header
date the date in the message, or if none, the time of delivery
digest an SHA1 digest of the message contents
disposition inline or file
filename a name to use to file an attachment
flags persistant message flags as per IMAP
ffrom the parsed name of the sender
from the from address in the From: header, or if none, the address on the enve

lope.
header the RFC822 headers
info described below, essentially a summary of the header info
inreplyto contents of the in−reply−to: header
lines the number of lines in the message body
messageid the parsed RFC2822 MessageID
mimeheader the mime headers
raw the undecoded MIME message
rawbody the undecoded message body
rawheader the undecoded message header
references the parsed MessageIDs of each referenced message, one per line
replyto the address to send any replies to.
subject the contents of the subject line
to the address(es) from the To: line.
type the MIME content type
unixheader the envelope header from the mailbox
unixdate the date portion of the Unix From line.
unixdatesec the mdir filename for mdir messages. The portion before the dot is always

the date from the Unix From line in seconds since epoch.

The info file contains the following information, one item per line. Lists of addresses are single
space separated.

sender address
recipient addresses
cc addresses
reply address
envelope date
subject
MIME content type
MIME disposition
filename

819

UPASFS(4) UPASFS(4)

SHA1 digest
bcc addresses
in−reply−to: contents
RFC822 date
message senders
message id
number of lines in body
size of message
message flags
unixdatesec
name from From: header

Deleting message directories causes the message to be removed from the mailbox.

The mailbox is scanned and the structure updated whenever the mailbox changes. Message direc
tories are not renumbered. The results of the scan are recorded in mailbox.idx.

The file /mail/fs/ctl is used to direct fs to open, close, rename, create or remove new mail
boxes, and also to delete or flag groups of messages atomically. The messages that can be writ
ten to this file are:

open path mboxname opens a new mailbox. path is the file to open, and mboxname is
the name that appears under /mail/fs.

close mboxname close mboxname. The close takes affect only after all files open
under /mail/fs/mboxname have been closed.

create mboxname create a new mailbox, mboxname. The mailbox type must sup
port creation.

rename [−t] old new rename the mailbox old to new. The t flag truncates rather than
removes the old mailbox. The renaming takes effect immedately.
While mailboxes of any type may be renamed, it is not possible to
use rename to convert folder types.

remove [−rt] mboxname remove mboxname. The r flag removes any subfolders while the
t flag truncates, rather than removes.

delete mboxname number ...
Delete the messages with the given numbers from mboxname.

flag mboxname flags number ...
flag the given messages.

The flags file records persistant message flags. These flags are a superset of the standard IMAP
message flags. Flags are stored in order. Unset flags are represented by a �-� while set flags are
represented by the following ordered characters

a answered
D deleted
d draft
f flagged
r recent
s seen
S stored

Messages of the form [+−]flags may be written to the flags file. Fs maintains the r flag. Mail
readers are expected to maintain other flags.

The options are:

−D Trace 9P protocol messages.
−S Log to console in addition to the standard places.
−b stands for biffing. Each time new mail is received, a message is printed to

standard output containing the sender address, subject, and number of bytes.
It is intended for people telnetting in who want mail announcements.

−c cachetarg attempt to keep the cache below cachetarg bytes.
−d loud debugging.
−f file use file as the mailbox instead of the default,

/mail/box/username/mbox.

820

UPASFS(4) UPASFS(4)

−i chatty index debugging.
−l logging. Turn on logging via syslog (and to the console with -S) to the file

/sys/log/fs.
−m mntpt mount on mntpt rather than the default /mail/fs.
−n Don�t open a mailbox initially. Overridden by -f.
−p turn off plumbing. Unless this is specified, fs sends a message to the plumb

port, seemail, from source mailfs for each message received or deleted.
The message contains the attributes sender=<contents of from file>,
filetype=mail, mailtype=deleted or new, and length=<message length in
bytes>. The contents of the message is the full path name of the directory
representing the message.

−s causes fs to put itself in /srv with a name of the form
/srv/upasfs.user.

Fs will exit once all references to its directory have disappeared.

Fs interprets mailbox file names of the form /proto/host/user to mean access an account on
host using the given protocol. Authentication is delegated to factotum(4). The final /user may be
omitted, in which case the user name is gleaned from the key held by factotum. The following pro
tocols are supported:

pop cleartext POP with password authentication
apop cleartext POP with challenge-response (APOP) authentication
poptls TLS-encrypted POP with password authentication
apoptls TLS-encrypted POP with challenge-response (APOP) authentication
imap cleartext IMAP with CRAM-MD5 or password authentication
imaps TLS-encrypted IMAP CRAM-MD5 or password authentication

The two IMAP protocols allow an optional fourth field specifying a mailbox name, for example
/imap/server/user/stored.

Poptls and apoptls connect to port 110 in plaintext and start TLS using the POP STLS com
mand. Imaps connects to port 993 and starts TLS before initiating the IMAP conversation. There
should probably be pops, apops, and imaptls protocols as well. (Pops and apops would
connect to port 995 and start TLS before initiating the POP conversation, and imaptls would
connect to port 143 in plaintext and start TLS using the IMAP STARTTLS command. (That�s the
nice thing about standards�there�s so many to choose from.))

FILES
/mail/box/* mail directories
/mail/box/*/mbox mailbox files
/mail/box/*/mbox.idx mailbox indicies
/mail/box/*/L.mbox mutual exclusion lock for altering mbox (mbox format only)

SOURCE
/sys/src/cmd/upas/fs

SEE ALSO
aliasmail(8), faces(1), filter(1), mail(1), marshal(1), mdir(6), mlmgr(1), nedmail(1), pop3(8),
qer(8), rewrite(6), send(8), upasfs(4),
Erik Quanstrom ��Scaling Upas��, Proceedings of IWP9, October, 2008.

821

VACFS(4) VACFS(4)

NAME
vacfs � a Venti-based file system

SYNOPSIS
vacfs [−dips] [−c cachesize] [−h host] [−m mtpt] [−S srvname] vacfile

DESCRIPTION
Vacfs interprets the file system created by vac(1) so that it can be mounted into a Plan 9 file hier
archy. The data for the file system is stored on venti(8) with a root fingerprint specified in vacfile.
Vacfs is currently rather limited: access is read-only, clients are not authenticated, and groups are
assumed to contain a single member with the same name. These restrictions should eventually be
removed.

Options to vacfs are:

−c cachesize The number of file system blocks to cache in memory. The default is 1000 blocks.

−d Print debugging information to standard error.

−h host The network address of the Venti server. The default is taken from the environment
variable venti. If this variable does not exist, then the default is the metaname
$venti, which can be configured via ndb(6).

−i Use file descriptors 0 and 1 as the 9P communication channel rather than create a
pipe.

−m mtpt The location to mount the file system. The default is /n/vac.

−p Disables permission checking.

−s Post the 9P channel in /srv/vacfs rather than mounting it on mtpt.

−S srvname Post the 9P channel in /srv/srvname rather than mounting it on mtpt.

SOURCE
/sys/src/cmd/vac

SEE ALSO
vac(1), venti(8)

822

WADFS(4) WADFS(4)

NAME
wadfs � WAD file system

SYNOPSIS
wadfs [−Dr] [−m mtpt] [−S srvname] [WAD]

DESCRIPTION
Wadfs serves a file tree mounted at mtpt (default /mnt/wad) that provides access to a WAD file�s
contents.

The command line options are:

−D Enable 9P debugging messages.
−r Set read-only file tree.
−S srvname Post channel on /srv/srvname.
−m mtpt Set mountpoint.

A WAD is a concatenation of uncompressed files, referred to as lumps. A lump may contain either
data, or be used as a marker to indicate the beginning or end of a section, segregating lumps of
the same format.

Wadfs represents section start markers as directories, and regular lumps and end markers as files.
For convenience, lump file names are in lower case, and are translated to the upper case internally.

At startup, if the path to a WAD file is provided as argument, wadfs will attempt to parse it and
construct a file tree. Otherwise, wadfs starts with a blank tree instead.

Two additional files are provided in the file system�s root directory: SIG and WAD. Reading from
and writing to SIG allows accessing and changing the WAD�s type. The only possible values are
PWAD (the default) and IWAD.

WAD returns the new WAD file resulting from the recompilation of the lump tree.

WAD file structure
There are few restrictions on the structure of WAD files. Excepting maps, sections can nest and
may have no end marker, or one named differently than the section itself. Regular sections typi
cally have one-letter names, and nested sections use the same name appended by a digit. By con
vention, lump names may only contain visible printing ASCII characters, excepting lower-case let
ters. Map sections do not end at a marker but at the next non map lump, and use hardcoded
names, depending on game version.

Wadfs imposes a number of additional restrictions on structure and naming:

" Lump names may not contain upper-case letters and the / character.

" A map section may only contain map lumps, which use hardcoded names. Ordering is signifi
cant, but is handled automatically. Map sections may not nest.

" Regular sections may not nest beyond one level, and may not contain more than one end
marker. End markers may not exist outside of a section. Directory names omit the start
marker�s _START suffix.

" Excepting map lumps, no two lumps, including markers, may have the same name.

" Once created, a lump may not be renamed so as to change its type.

Error recovery
Upon parsing the initial WAD file, if one of the restrictions for WAD file structure outlined in the
sections above is not respected, a warning is issued, and the offending lump is potentially
skipped. Some recovery is attempted, but one must systematically recheck the tree. When dupli
cate non marker lumps are encountered, each will overwrite the previous entry.

EXAMPLES
Open doom2.wad and play a MUS file:

% games/wadfs /sys/games/lib/doom/doom2.wad
createfile SW18_7: file already exists
% games/mus /mnt/wad/d_romero | games/midi

823

WADFS(4) WADFS(4)

Now create a blank WAD, then one section FF; copy a flat from doom2.wad to the directory, then
rename the end marker to F_END to have the doom engine find the flat; finally, compile and save
the new WAD file.

% games/wadfs −m /mnt/wad2
% cd /mnt/wad2
% mkdir ff
adding end marker FF_END
% cp ../wad/f/f1/f_sky1 ff/
% mv ff/ff_end ff/f_end
% cp WAD /sys/games/lib/doom/sky.wad

SOURCE
/sys/src/games/wadfs.c

SEE ALSO
games(1), mus(1)

HISTORY
Wadfs first appeared in 9front (August, 2017).

BUGS
Many WAD files in the wild do not conform to all the rules exposed above, in particular ones using
DeHackEd engine modifications. WAD�s using end markers outside of a section, typically F_END,
will lose them.

Repairing broken WAD files can be a pain.

824

WEBCOOKIES(4) WEBCOOKIES(4)

NAME
webcookies � HTTP cookie manager

SYNOPSIS
webcookies [−f cookiefile] [−m mtpt] [−s service]

DESCRIPTION
Webcookies manages a set of HTTP cookies, which are used to associate HTTP requests with persis
tent state (such as user profiles) on many web servers.

Webcookies reads cookiefile (default $home/lib/webcookies) and mounts itself at mtpt
(default /mnt/webcookies). If service is specified, cookiefs will post a service file descriptor in
/srv/service.

The cookie file contains one cookie per line; each cookie comprises some number of attr=value
pairs. Cookie attributes are:

name=name The name of the cookie on the remote server.
value=value The value associated with that name on the remote server. The actual data

included when a cookie is sent back to the server is ��name=value�� (where,
confusingly, name and value are the values associated with the name and
value attributes.

domain=domain The domain within which the cookie can be used. If domain is an IP address,
the cookie can only be used when connecting to a web server at that IP
address. If domain is a pattern beginning with a dot, the cookie can only be
used for servers whose name has domain as a suffix. For example, a cookie
with domain=.bell−labs.com may be used on the web sites www.bell−
labs.com and www.research.bell−labs.com .

path=path The cookie can only be used for URLs with a path (the part after
http://hostname) beginning with path.

version=version The version of the HTTP cookie specification, specified by the server.
comment=comment

A comment, specified by the server.
expire=expire The cookie expires at time expire, which is a decimal number of seconds

since the epoch.
secure=1 The cookie may only be used over secure (https) connections.
explicitdomain=1

The domain associated with this cookie was set by the server (rather than
inferred from a URL).

explicitpath=1
The path associated with this cookie was set by the server (rather than
inferred from a URL).

netscapestyle=1
The server presented the cookie in ��Netscape style,�� which does not conform
to the cookie standard, RFC2109. It is assumed that when presenting the
cookie to the server, it must be sent back in Netscape style as well.

Webcookies serves a directory containing two files. The first, cookies, is a textual representa
tion of the cookie file, which can be edited to change the set of cookies currently held. The sec
ond, http, is intended to be used by HTTP clients to access cookies. Upon opening http, the
client must write a full URL to it. After writing the URL, reading from the file will yield any HTTP
Cookie: headers that should be included in the request for this particular URL. Once the request
has been made, any Set−Cookie: lines in the HTTP response header should be written to the
file to save them for next time. If cookiefs decides not to accept the cookie (as outlined in
RFC2109, section 4.3.4), no indication is given.

SOURCE
/sys/src/cmd/webcookies.c

SEE ALSO
webfs(4), hget(1)

825

WEBFS(4) WEBFS(4)

NAME
webfs � world wide web file system

SYNOPSIS
webfs [−Dd] [−A useragent] [−T timeout] [−m mtpt] [−s service]

DESCRIPTION
Webfs presents a file system interface to the parsing and retrieving of URLs. Webfs mounts itself at
mtpt (default /mnt/web), and, if service is specified, will post a service file descriptor in
/srv/service. The −d flag enables general debug printing to standard error while the −D flag
enables 9P debug prints.

If the environment variable httpproxy is set, all HTTP request initiated by webfs will be made
through that proxy url.

Webfs presents a three-level file system suggestive of the network protocol hierarchies ip(3) and
ether(3).

The top level contains the two files: ctl, and clone.

The top level ctl file is used to maintain parameters global to the instance of webfs. Reading the
ctl file yields the current values of the parameters. Writing strings of the form ��attr value��

sets a particular attribute.

The following global parameters can be set:

useragent
Sets the HTTP user agent string.

timeout
Sets the request timeout in milliseconds.

flushauth url
Flushes any associated authentication information for resources under url or all resources if
no url was given.

preauth url realm
Preauthenticates all resources under url with the given realm using HTTP Basic authentica
tion. This will cause webfs to preemptively send the resulting authorization information not
waiting for the server to respond with an HTTP 401 Unauthorized status.

The top-level directory also contains numbered directories corresponding to connections, which
may be used to fetch a single URL. To allocate a connection, open the clone file and read a num
ber n from it. After opening, the clone file is equivalent to the file n/ctl. A connection is
assumed closed once all files in its directory have been closed, and is then will be reallocated.

Each connection has a URL attribute url associated with it. This URL may be an absolute URL
such as http://www.lucent.com/index.html or a relative URL such as ../index.html . The baseurl
attribute sets the URL against which relative URLs are interpreted. Once the URL has been set by
writing to the ctl file of the connection, its pieces can be retrieved via individual files in the
parsed directory:

parsed/url
http://pete:secret@www.example.com:8000/cgi/search?q=kittens#results

parsed/scheme
http

parsed/user
pete

parsed/pass
secret

parsed/host
www.example.com

parsed/port
8000

826

WEBFS(4) WEBFS(4)

parsed/path
/cgi/search

parsed/query
q=kittens

parsed/fragment
results

If there is associated data to be posted with the request, it can be written to postbody. Opening
postbody or body initiates the request. If the request fails, then opening the body or writing to
postbody file will fail and return a error string.

When the body file has been opened, response headers appear as files in the connection direc
tory. For example reading the contenttype file yields the MIME content type of the body data.
If the request was redirected, the URL represented by the parsed directory will change to the
final destination.

The resulting data may be read from body as it arrives.

The following is a list of attributes that can be set to do a connection prior initiating the request:

url,baseurl
See above.

useragent
Sets a custom useragent string to be used with the request.

contenttype
Sets the MIME content type of the postbody.

request
Usually, the HTTP method used is POST when postbody file is opend first or GET other
wise. This can be overridden with the request attribute so send arbitrary HTTP requests.

headers
Adds arbitrary HTTP headers to be send with the request.

EXAMPLE
/rc/bin/hget is a simple client.

SOURCE
/sys/src/cmd/webfs

SEE ALSO
webcookies(4), hget(1)

DIAGNOSTICS
For cookies to work, webcookies(4), should be running and mounted on /mnt/webcookies oth
erwise cookies will be ignored.

HISTORY
Webfs first appeared in Plan 9 from Bell Labs. It was rewritten from scratch for 9front (January,
2012).

827

WIKIFS(4) WIKIFS(4)

NAME
wikifs, wikipost � wiki file system

SYNOPSIS
wikifs [−DM] [−a announce]... [−m mtpt] [−p perm] [−s service] dir

ip/httpd/wikipost [−b inbuf] [−d domain] [−r remoteip] [−w webroot] [−N netdir] method
version uri [search]

DESCRIPTION
A wiki is a web server that facilitates easy editing of the pages it contains. Wikifs presents a wiki in
two forms: as web pages to be served via httpd(8) and as text files to be viewed via the acme(1)
wiki client (see /acme/wiki/guide).

Wikifs presents a file system interface to the wiki data stored in dir. By default, wikifs mounts itself
at /mnt/wiki; the −m flag specifies a different mount point, and the −M flag causes wikifs not to
mount at all. Wikifs also announces 9P network services on the addresses given as arguments to
−a options. If the −s option is given, wikifs will post a service file descriptor in /srv/service
with permission perm (default 600). The −D flag causes a transcript of the 9P conversation to be
written to standard error.

The wiki holds both the current pages and also all versions of all pages that have ever existed. All
pages have time stamps associated with them. When a user wants to edit a page, he reads the cur
rent page from the wiki, noting the time stamp on the page. When a user writes changes to a
page, he includes the time stamp of the page he started with. If the page has been updated by
someone else while he was editing, the write will fail. This is called a ��conflicting write.�� The sub
mission is still saved in the history, so that the user can compare the page he submitted with the
changes that were made while he was editing.

Each version of each page is described by a text file containing one or more metadata lines fol
lowed by the page contents. The metadata lines begin with a capital letter specifying the type of
data. Currently the metadata types are:

D The date this page was written, in decimal seconds since the epoch.

A The author of this version of the page. Typically the rest of the line takes the form name
ip−address.

X This page�s contents were submitted but rejected due to a conflicting write.

After the metadata comes the actual page contents; each line of page contents is prefixed with a #
character.

The directory dir/d contains all the wiki data. Typically it is world-writable so that wikifs can run
as none. Each page on the wiki has a unique sequence number n; for each page, the d directory
contains three files n, n.hist, and L.n. The file n holds the current version of the page: the first
line of n is the page title, followed by page metadata and contents as described above. The
append-only file n.hist holds the history of the page. The first line of n.hist is the title of
the page. The rest of the file is the metadata and contents of every version of the page that has
been submitted to the wiki. L.n is a lock file for the page: it must be held while reading or writing
n and n.hist. The lock files allow multiple instances of wikifs to coexist peacefully. Finally, the
map file (with associated lock L.map) provides a mapping from sequence numbers to page titles.
Each map line is a decimal n, a single space, and then the title. Since titles are presented as
names by wikifs, they cannot contain slashes.

Wikifs presents a three-level file system. The top level contains per-page directories named by the
page titles with spaces turned into underscores. Each page also has a number associated with it
(see the discussion of the wiki data files below). The number corresponding to a page may also be
used to access it, although directory listings will always present the title. The new file is used to
add new or revised pages to the wiki: writes to the file should be in the usual textual format: a title
line, metadata lines, and page contents. Once all the contents have been written, a final zero-
length message should be written to mark the end of the page. This last write will return an error
if a conflicting write has occurred. After writing the file, the client may read from new to obtain
the canonical title for the page, as presented by the file system.

828

WIKIFS(4) WIKIFS(4)

The page directories contain subdirectories representing the history of the page, named by the
decimal time stamp corresponding to each version. In addition to these history directories, the
page directories contain the following files:

current
The current raw data file for the page.

diff.html
A web page listing the contents of every version of the page that has ever appeared on the
wiki. The text is grey by default: differences between versions appear in black.

edit.html
A web form for editing the current version of the page.

history.html
A web page listing the time stamps of the historical versions of the page. Each time stamp
links to a page showing just that version.

history.txt
A textual formatting of the history. Each time stamp is prefixed with the name of the direc
tory corresponding to that version.

index.html
An HTML formatting of the current version of the page.

index.txt
A textual formatting of the current version of the page.

werror.html
An HTML error page to be returned by wikipost on conflicting writes.

The HTML files are generated from the templates with the same names in dir, except that
index.html and index.txt are generated from the templates page.html and page.txt.

The history directories are similar to the page directories but only contain current,
index.html, and index.txt. This index.html and index.txt are generated from the
templates oldpage.html and oldpage.txt.

The httpd(8) helper program wikipost is used to process editing requests posted to the web server
by users. It expects the posted form to contain these (usually hidden) fields: TITLE, the title of
the page; VERSION, the time stamp of the page that is being edited; service, the service name
associated with this wiki (wikipost looks for /srv/wiki.service); and base, the base for wiki
URLs in the response.

After mounting the wiki, wikipost writes a page update request to /mnt/wiki/new and then
returns the contents of one HTML file in /mnt/wiki/title. If the write succeeds, wikipost returns
index.html. if the write fails due to a conflicting write, wikipost returns werror.html.

EXAMPLE
The Plan 9 wiki at Bell Labs is started by running:

wikifs −p 666 −s wiki.plan9 −a tcp!*!wiki /sys/lib/wiki

The wiki is mounted for httpd(8) by an entry in /lib/namespace.httpd:
wiki
mount −b #s/wiki.plan9 /usr/web/wiki/plan9

Notice that the wiki service was explicitly posted with mode 666 so that httpd (running as none)
would be able to mount it.

In the Plan 9 distribution, the directory /sys/lib/wiki contains sample files similar to those
used to start the current Plan 9 wiki.

SOURCE
/sys/src/cmd/wikifs
/sys/src/cmd/ip/httpd/wikipost.c

SEE ALSO
The original wiki, http://c2.com/cgi/wiki?WikiWikiWeb
/acme/wiki/guide

829

INTRO(5) INTRO(5)

NAME
intro � introduction to the Plan 9 File Protocol, 9P

SYNOPSIS
#include <fcall.h>

DESCRIPTION
A Plan 9 server is an agent that provides one or more hierarchical file systems � file trees � that
may be accessed by Plan 9 processes. A server responds to requests by clients to navigate the
hierarchy, and to create, remove, read, and write files. The prototypical server is a separate
machine that stores large numbers of user files on permanent media; such a machine is called,
somewhat confusingly, a file server. Another possibility for a server is to synthesize files on
demand, perhaps based on information on data structures inside the kernel; the proc(3) kernel
device is a part of the Plan 9 kernel that does this. User programs can also act as servers.

A connection to a server is a bidirectional communication path from the client to the server. There
may be a single client or multiple clients sharing the same connection. A server�s file tree is
attached to a process group�s name space by bind(2) and mount calls; see intro(2). Processes in
the group are then clients of the server: system calls operating on files are translated into requests
and responses transmitted on the connection to the appropriate service.

The Plan 9 File Protocol, 9P, is used for messages between clients and servers. A client transmits
requests (T−messages) to a server, which subsequently returns replies (R−messages) to the client.
The combined acts of transmitting (receiving) a request of a particular type, and receiving (trans
mitting) its reply is called a transaction of that type.

Each message consists of a sequence of bytes. Two-, four-, and eight-byte fields hold unsigned
integers represented in little-endian order (least significant byte first). Data items of larger or vari
able lengths are represented by a two-byte field specifying a count, n, followed by n bytes of data.
Text strings are represented this way, with the text itself stored as a UTF-8 encoded sequence of
Unicode characters (see utf(6)). Text strings in 9P messages are not NUL-terminated: n counts the
bytes of UTF-8 data, which include no final zero byte. The NUL character is illegal in all text
strings in 9P, and is therefore excluded from file names, user names, and so on.

Each 9P message begins with a four-byte size field specifying the length in bytes of the complete
message including the four bytes of the size field itself. The next byte is the message type, one of
the constants in the enumeration in the include file <fcall.h>. The next two bytes are an iden
tifying tag, described below. The remaining bytes are parameters of different sizes. In the mes
sage descriptions, the number of bytes in a field is given in brackets after the field name. The
notation parameter[n] where n is not a constant represents a variable-length parameter: n[2] fol
lowed by n bytes of data forming the parameter. The notation string[s] (using a literal s character)
is shorthand for s[2] followed by s bytes of UTF-8 text. (Systems may choose to reduce the set of
legal characters to reduce syntactic problems, for example to remove slashes from name compo
nents, but the protocol has no such restriction. Plan 9 names may contain any printable character
(that is, any character outside hexadecimal 00-1F and 80-9F) except slash.) Messages are trans
ported in byte form to allow for machine independence; fcall(2) describes routines that convert to
and from this form into a machine-dependent C structure.

MESSAGES
size[4] Tversion tag[2] msize[4] version[s]
size[4] Rversion tag[2] msize[4] version[s]

size[4] Tauth tag[2] afid[4] uname[s] aname[s]
size[4] Rauth tag[2] aqid[13]

size[4] Rerror tag[2] ename[s]

size[4] Tflush tag[2] oldtag[2]
size[4] Rflush tag[2]

size[4] Tattach tag[2] fid[4] afid[4] uname[s] aname[s]
size[4] Rattach tag[2] qid[13]

830

INTRO(5) INTRO(5)

size[4] Twalk tag[2] fid[4] newfid[4] nwname[2] nwname*(wname[s])
size[4] Rwalk tag[2] nwqid[2] nwqid*(wqid[13])

size[4] Topen tag[2] fid[4] mode[1]
size[4] Ropen tag[2] qid[13] iounit[4]

size[4] Tcreate tag[2] fid[4] name[s] perm[4] mode[1]
size[4] Rcreate tag[2] qid[13] iounit[4]

size[4] Tread tag[2] fid[4] offset[8] count[4]
size[4] Rread tag[2] count[4] data[count]

size[4] Twrite tag[2] fid[4] offset[8] count[4] data[count]
size[4] Rwrite tag[2] count[4]

size[4] Tclunk tag[2] fid[4]
size[4] Rclunk tag[2]

size[4] Tremove tag[2] fid[4]
size[4] Rremove tag[2]

size[4] Tstat tag[2] fid[4]
size[4] Rstat tag[2] stat[n]

size[4] Twstat tag[2] fid[4] stat[n]
size[4] Rwstat tag[2]

Each T-message has a tag field, chosen and used by the client to identify the message. The reply
to the message will have the same tag. Clients must arrange that no two outstanding messages on
the same connection have the same tag. An exception is the tag NOTAG, defined as
(ushort)~0 in <fcall.h>: the client can use it, when establishing a connection, to override
tag matching in version messages.

The type of an R-message will either be one greater than the type of the corresponding T-message
or Rerror, indicating that the request failed. In the latter case, the ename field contains a string
describing the reason for failure.

The version message identifies the version of the protocol and indicates the maximum message
size the system is prepared to handle. It also initializes the connection and aborts all outstanding
I/O on the connection. The set of messages between version requests is called a session.

Most T-messages contain a fid, a 32-bit unsigned integer that the client uses to identify a ��cur
rent file�� on the server. Fids are somewhat like file descriptors in a user process, but they are not
restricted to files open for I/O: directories being examined, files being accessed by stat(2) calls,
and so on � all files being manipulated by the operating system � are identified by fids. Fids are
chosen by the client. All requests on a connection share the same fid space; when several clients
share a connection, the agent managing the sharing must arrange that no two clients choose the
same fid.

The fid supplied in an attach message will be taken by the server to refer to the root of the
served file tree. The attach identifies the user to the server and may specify a particular file tree
served by the server (for those that supply more than one).

Permission to attach to the service is proven by providing a special fid, called afid, in the
attach message. This afid is established by exchanging auth messages and subsequently
manipulated using read and write messages to exchange authentication information not
defined explicitly by 9P. Once the authentication protocol is complete, the afid is presented in
the attach to permit the user to access the service.

A walk message causes the server to change the current file associated with a fid to be a file in
the directory that is the old current file, or one of its subdirectories. Walk returns a new fid that
refers to the resulting file. Usually, a client maintains a fid for the root, and navigates by walks
from the root fid.

A client can send multiple T-messages without waiting for the corresponding R-messages, but all
outstanding T-messages must specify different tags. The server may delay the response to a
request and respond to later ones; this is sometimes necessary, for example when the client reads
from a file that the server synthesizes from external events such as keyboard characters.

831

INTRO(5) INTRO(5)

Replies (R-messages) to auth, attach, walk, open, and create requests convey a qid field
back to the client. The qid represents the server�s unique identification for the file being accessed:
two files on the same server hierarchy are the same if and only if their qids are the same. (The
client may have multiple fids pointing to a single file on a server and hence having a single qid.)
The thirteen-byte qid fields hold a one-byte type, specifying whether the file is a directory,
append-only file, etc., and two unsigned integers: first the four-byte qid version, then the eight-
byte qid path. The path is an integer unique among all files in the hierarchy. If a file is deleted
and recreated with the same name in the same directory, the old and new path components of the
qids should be different. The version is a version number for a file; typically, it is incremented
every time the file is modified.

An existing file can be opened, or a new file may be created in the current (directory) file. I/O
of a given number of bytes at a given offset on an open file is done by read and write.

A client should clunk any fid that is no longer needed. The remove transaction deletes files.

The stat transaction retrieves information about the file. The stat field in the reply includes the
file�s name, access permissions (read, write and execute for owner, group and public), access and
modification times, and owner and group identifications (see stat(2)). The owner and group identi
fications are textual names. The wstat transaction allows some of a file�s properties to be
changed.

A request can be aborted with a flush request. When a server receives a Tflush, it should not
reply to the message with tag oldtag (unless it has already replied), and it should immediately send
an Rflush. The client must wait until it gets the Rflush (even if the reply to the original mes
sage arrives in the interim), at which point oldtag may be reused.

Because the message size is negotiable and some elements of the protocol are variable length, it is
possible (although unlikely) to have a situation where a valid message is too large to fit within the
negotiated size. For example, a very long file name may cause a Rstat of the file or Rread of
its directory entry to be too large to send. In most such cases, the server should generate an error
rather than modify the data to fit, such as by truncating the file name. The exception is that a long
error string in an Rerror message should be truncated if necessary, since the string is only advi
sory and in some sense arbitrary.

Most programs do not see the 9P protocol directly; instead calls to library routines that access files
are translated by the mount driver, mnt(3), into 9P messages.

DIRECTORIES
Directories are created by create with DMDIR set in the permissions argument (see stat(5)). The
members of a directory can be found with read(5). All directories must support walks to the
directory .. (dot-dot) meaning parent directory, although by convention directories contain no
explicit entry for .. or . (dot). The parent of the root directory of a server�s tree is itself.

ACCESS PERMISSIONS
Each file server maintains a set of user and group names. Each user can be a member of any num
ber of groups. Each group has a group leader who has special privileges (see stat(5) and
users(6)). Every file request has an implicit user id (copied from the original attach) and an
implicit set of groups (every group of which the user is a member).

Each file has an associated owner and group id and three sets of permissions: those of the owner,
those of the group, and those of ��other�� users. When the owner attempts to do something to a
file, the owner, group, and other permissions are consulted, and if any of them grant the
requested permission, the operation is allowed. For someone who is not the owner, but is a mem
ber of the file�s group, the group and other permissions are consulted. For everyone else, the
other permissions are used. Each set of permissions says whether reading is allowed, whether
writing is allowed, and whether executing is allowed. A walk in a directory is regarded as execut
ing the directory, not reading it. Permissions are kept in the low-order bits of the file mode: owner
read/write/execute permission represented as 1 in bits 8, 7, and 6 respectively (using 0 to number
the low order). The group permissions are in bits 5, 4, and 3, and the other permissions are in
bits 2, 1, and 0.

The file mode contains some additional attributes besides the permissions. If bit 31 (DMDIR) is
set, the file is a directory; if bit 30 (DMAPPEND) is set, the file is append-only (offset is ignored in
writes); if bit 29 (DMEXCL) is set, the file is exclusive-use (only one client may have it open at a

832

INTRO(5) INTRO(5)

time); if bit 27 (DMAUTH) is set, the file is an authentication file established by auth messages; if
bit 26 (DMTMP) is set, the contents of the file (or directory) are not included in nightly archives.
(Bit 28 is skipped for historical reasons.) These bits are reproduced, from the top bit down, in the
type byte of the Qid: QTDIR, QTAPPEND, QTEXCL, (skipping one bit) QTAUTH, and QTTMP. The
name QTFILE, defined to be zero, identifies the value of the type for a plain file.

833

ATTACH(5) ATTACH(5)

NAME
attach, auth � messages to establish a connection

SYNOPSIS
size[4] Tauth tag[2] afid[4] uname[s] aname[s]
size[4] Rauth tag[2] aqid[13]

size[4] Tattach tag[2] fid[4] afid[4] uname[s] aname[s]
size[4] Rattach tag[2] qid[13]

DESCRIPTION
The attach message serves as a fresh introduction from a user on the client machine to the
server. The message identifies the user (uname) and may select the file tree to access (aname).
The afid argument specifies a fid previously established by an auth message, as described below.

As a result of the attach transaction, the client will have a connection to the root directory of the
desired file tree, represented by fid. An error is returned if fid is already in use. The server�s idea
of the root of the file tree is represented by the returned qid.

If the client does not wish to authenticate the connection, or knows that authentication is not
required, the afid field in the attach message should be set to NOFID, defined as
(u32int)~0 in <fcall.h>. If the client does wish to authenticate, it must acquire and vali
date an afid using an auth message before doing the attach.

The auth message contains afid, a new fid to be established for authentication, and the uname
and aname that will be those of the following attach message. If the server does not require
authentication, it returns Rerror to the Tauth message.

If the server does require authentication, it returns aqid defining a file of type QTAUTH (see
intro(5)) that may be read and written (using read and write messages in the usual way) to exe
cute an authentication protocol. That protocol�s definition is not part of 9P itself.

Once the protocol is complete, the same afid is presented in the attach message for the user,
granting entry. The same validated afid may be used for multiple attach messages with the
same uname and aname.

ENTRY POINTS
An attach transaction will be generated for kernel devices (see intro(3)) when a system call eval
uates a file name beginning with #. Pipe(2) generates an attach on the kernel device pipe(3). The
mount system call (see bind(2)) generates an attach message to the remote file server. When
the kernel boots, an attach is made to the root device, root(3), and then an attach is made to
the requested file server machine.

An auth transaction is generated by the fauth(2) system call or by the first mount system call on
an uninitialized connection.

SEE ALSO
auth(2), fauth(2), version(5), authsrv(6)

834

CLUNK(5) CLUNK(5)

NAME
clunk � forget about a fid

SYNOPSIS
size[4] Tclunk tag[2] fid[4]
size[4] Rclunk tag[2]

DESCRIPTION
The clunk request informs the file server that the current file represented by fid is no longer
needed by the client. The actual file is not removed on the server unless the fid had been opened
with ORCLOSE.

Once a fid has been clunked, the same fid can be reused in a new walk or attach request.

Even if the clunk returns an error, the fid is no longer valid.

ENTRY POINTS
A clunk message is generated by close and indirectly by other actions such as failed open calls.

835

ERROR(5) ERROR(5)

NAME
error � return an error

SYNOPSIS
size[4] Rerror tag[2] ename[s]

DESCRIPTION
The Rerror message (there is no Terror) is used to return an error string describing the failure
of a transaction. It replaces the corresponding reply message that would accompany a successful
call; its tag is that of the failing request.

By convention, clients may truncate error messages after ERRMAX−1 bytes; ERRMAX is defined in
<libc.h>.

836

FLUSH(5) FLUSH(5)

NAME
flush � abort a message

SYNOPSIS
size[4] Tflush tag[2] oldtag[2]
size[4] Rflush tag[2]

DESCRIPTION
When the response to a request is no longer needed, such as when a user interrupts a process
doing a read(2), a Tflush request is sent to the server to purge the pending response. The mes
sage being flushed is identified by oldtag. The semantics of flush depends on messages arriving
in order.

The server should answer the flush message immediately. If it recognizes oldtag as the tag of a
pending transaction, it should abort any pending response and discard that tag. In either case, it
should respond with an Rflush echoing the tag (not oldtag) of the Tflush message. A
Tflush can never be responded to by an Rerror message.

The server may respond to the pending request before responding to the Tflush. It is possible
for a client to send multiple Tflush messages for a particular pending request. Each subsequent
Tflush must contain as oldtag the tag of the pending request (not a previous Tflush). Should
multiple Tflushes be received for a pending request, they must be answered in order. A
Rflush for any of the multiple Tflushes implies an answer for all previous ones. Therefore,
should a server receive a request and then multiple flushes for that request, it need respond only
to the last flush.

When the client sends a Tflush, it must wait to receive the corresponding Rflush before reus
ing oldtag for subsequent messages. If a response to the flushed request is received before the
Rflush, the client must honor the response as if it had not been flushed, since the completed
request may signify a state change in the server. For instance, Tcreate may have created a file
and Twalk may have allocated a fid. If no response is received before the Rflush, the flushed
transaction is considered to have been canceled, and should be treated as though it had never
been sent.

Several exceptional conditions are handled correctly by the above specification: sending multiple
flushes for a single tag, flushing after a transaction is completed, flushing a Tflush, and flushing
an invalid tag.

837

OPEN(5) OPEN(5)

NAME
open, create � prepare a fid for I/O on an existing or new file

SYNOPSIS
size[4] Topen tag[2] fid[4] mode[1]
size[4] Ropen tag[2] qid[13] iounit[4]

size[4] Tcreate tag[2] fid[4] name[s] perm[4] mode[1]
size[4] Rcreate tag[2] qid[13] iounit[4]

DESCRIPTION
The open request asks the file server to check permissions and prepare a fid for I/O with subse
quent read and write messages. The mode field determines the type of I/O: 0 (called OREAD
in <libc.h>), 1 (OWRITE), 2 (ORDWR), and 3 (OEXEC) mean read access, write access, read
and write access, and execute access, to be checked against the permissions for the file. In addi
tion, if mode has the OTRUNC (0x10) bit set, the file is to be truncated, which requires write per
mission (if the file is append-only, and permission is granted, the open succeeds but the file will
not be truncated); if the mode has the ORCLOSE (0x40) bit set, the file is to be removed when the
fid is clunked, which requires permission to remove the file from its directory. All other bits in
mode should be zero. It is illegal to write a directory, truncate it, or attempt to remove it on close.
If the file is marked for exclusive use (see stat(5)), only one client can have the file open at any
time. That is, after such a file has been opened, further opens will fail until fid has been clunked.
All these permissions are checked at the time of the open request; subsequent changes to the
permissions of files do not affect the ability to read, write, or remove an open file.

The create request asks the file server to create a new file with the name supplied, in the direc
tory (dir) represented by fid, and requires write permission in the directory. The owner of the file
is the implied user id of the request, the group of the file is the same as dir, and the permissions
are the value of

perm & (~0666 | (dir.perm & 0666))
if a regular file is being created and

perm & (~0777 | (dir.perm & 0777))
if a directory is being created. This means, for example, that if the create allows read permis
sion to others, but the containing directory does not, then the created file will not allow others to
read the file.

Finally, the newly created file is opened according to mode, and fid will represent the newly
opened file. Mode is not checked against the permissions in perm. The qid for the new file is
returned with the create reply message.

Directories are created by setting the DMDIR bit (0x80000000) in the perm.

The names . and .. are special; it is illegal to create files with these names.

It is an error for either of these messages if the fid is already the product of a successful open or
create message.

An attempt to create a file in a directory where the given name already exists will be rejected; in
this case, the create system call (see open(2)) uses open with truncation. The algorithm used by
the create system call is: first walk to the directory to contain the file. If that fails, return an error.
Next walk to the specified file. If the walk succeeds, send a request to open and truncate the
file and return the result, successful or not. If the walk fails, send a create message. If that fails,
it may be because the file was created by another process after the previous walk failed, so (once)
try the walk and open again.

For the behavior of create on a union directory, see bind(2).

The iounit field returned by open and create may be zero. If it is not, it is the maximum
number of bytes that are guaranteed to be read from or written to the file without breaking the I/O
transfer into multiple 9P messages; see read(5).

ENTRY POINTS
Open and create both generate open messages; only create generates a create message. The
iounit associated with an open file may be discovered by calling iounit(2).

838

OPEN(5) OPEN(5)

For programs that need atomic file creation, without the race that exists in the open−create
sequence described above, the kernel does the following. If the OEXCL (0x1000) bit is set in the
mode for a create system call, the open message is not sent; the kernel issues only the
create. Thus, if the file exists, create will draw an error, but if it doesn�t and the create
system call succeeds, the process issuing the create is guaranteed to be the one that created
the file.

839

READ(5) READ(5)

NAME
read, write � transfer data from and to a file

SYNOPSIS
size[4] Tread tag[2] fid[4] offset[8] count[4]
size[4] Rread tag[2] count[4] data[count]

size[4] Twrite tag[2] fid[4] offset[8] count[4] data[count]
size[4] Rwrite tag[2] count[4]

DESCRIPTION
The read request asks for count bytes of data from the file identified by fid, which must be
opened for reading, starting offset bytes after the beginning of the file. The bytes are returned
with the read reply message.

The count field in the reply indicates the number of bytes returned. This may be less than the
requested amount. If the offset field is greater than or equal to the number of bytes in the file, a
count of zero will be returned.

For directories, read returns an integral number of directory entries exactly as in stat (see
stat(5)), one for each member of the directory. The read request message must have offset
equal to zero or the value of offset in the previous read on the directory, plus the number of
bytes returned in the previous read. In other words, seeking other than to the beginning is illegal
in a directory (see seek(2)).

The write request asks that count bytes of data be recorded in the file identified by fid, which
must be opened for writing, starting offset bytes after the beginning of the file. If the file is
append-only, the data will be placed at the end of the file regardless of offset. Directories may not
be written.

The write reply records the number of bytes actually written. It is usually an error if this is not
the same as requested.

Because 9P implementations may limit the size of individual messages, more than one message
may be produced by a single read or write call. The iounit field returned by open(5), if non-zero,
reports the maximum size that is guaranteed to be transferred atomically.

ENTRY POINTS
Read and write messages are generated by the corresponding calls. Because they include an
offset, the pread and pwrite calls correspond more directly to the 9P messages. Although seek(2)
affects the offset, it does not generate a message.

840

REMOVE(5) REMOVE(5)

NAME
remove � remove a file from a server

SYNOPSIS
size[4] Tremove tag[2] fid[4]
size[4] Rremove tag[2]

DESCRIPTION
The remove request asks the file server both to remove the file represented by fid and to clunk
the fid, even if the remove fails. This request will fail if the client does not have write permission
in the parent directory.

It is correct to consider remove to be a clunk with the side effect of removing the file if permis
sions allow.

If a file has been opened as multiple fids, possibly on different connections, and one fid is used to
remove the file, whether the other fids continue to provide access to the file is implementation-
defined. The Plan 9 file servers (like fs(4)) remove the file immediately: attempts to use the other
fids will yield a ��phase error.�� U9fs follows the semantics of the underlying Unix file system, so
other fids typically remain usable.

ENTRY POINTS
Remove messages are generated by remove.

841

STAT(5) STAT(5)

NAME
stat, wstat � inquire or change file attributes

SYNOPSIS
size[4] Tstat tag[2] fid[4]
size[4] Rstat tag[2] stat[n]

size[4] Twstat tag[2] fid[4] stat[n]
size[4] Rwstat tag[2]

DESCRIPTION
The stat transaction inquires about the file identified by fid. The reply will contain a machine-
independent directory entry, stat, laid out as follows:

size[2] total byte count of the following data

type[2]
for kernel use

dev[4] for kernel use

qid.type[1]
the type of the file (directory, etc.), represented as a bit vector corresponding to the high 8
bits of the file�s mode word.

qid.vers[4]
version number for given path

qid.path[8]
the file server�s unique identification for the file

mode[4]
permissions and flags

atime[4]
last access time

mtime[4]
last modification time

length[8]
length of file in bytes

name[s]
file name; must be / if the file is the root directory of the server

uid[s]
owner name

gid[s]
group name

muid[s]
name of the user who last modified the file

Integers in this encoding are in little-endian order (least significant byte first). The convM2D and
convD2M routines (see fcall(2)) convert between directory entries and a C structure called a Dir.

The mode contains permission bits as described in intro(5) and the following: 0x80000000
(DMDIR, this file is a directory), 0x40000000 (DMAPPEND, append only), 0x20000000
(DMEXCL, exclusive use), 0x04000000 (DMTMP, temporary); these are echoed in Qid.type.
Writes to append-only files always place their data at the end of the file; the offset in the write
message is ignored, as is the OTRUNC bit in an open. Exclusive use files may be open for I/O by
only one fid at a time across all clients of the server. If a second open is attempted, it draws an
error. Servers may implement a timeout on the lock on an exclusive use file: if the fid holding the
file open has been unused for an extended period (of order at least minutes), it is reasonable to
break the lock and deny the initial fid further I/O. Temporary files are not included in nightly
archives.

842

STAT(5) STAT(5)

The two time fields are measured in seconds since the epoch (Jan 1 00:00 1970 GMT). The mtime
field reflects the time of the last change of content (except when later changed by wstat). For a
plain file, mtime is the time of the most recent create, open with truncation, or write; for a
directory it is the time of the most recent remove, create, or wstat of a file in the directory.
Similarly, the atime field records the last read of the contents; also it is set whenever mtime is
set. In addition, for a directory, it is set by an attach, walk, or create, all whether successful
or not.

The muid field names the user whose actions most recently changed the mtime of the file.

The length records the number of bytes in the file. Directories and most files representing devices
have a conventional length of 0.

The stat request requires no special permissions.

The wstat request can change some of the file status information. The name can be changed by
anyone with write permission in the parent directory; it is an error to change the name to that of an
existing file. The length can be changed (affecting the actual length of the file) by anyone with
write permission on the file. It is an error to attempt to set the length of a directory to a non-zero
value, and servers may decide to reject length changes for other reasons. The mode and mtime
can be changed by the owner of the file or the group leader of the file�s current group. The direc
tory bit cannot be changed by a wstat; the other defined permission and mode bits can. The gid
can be changed: by the owner if also a member of the new group; or by the group leader of the
file�s current group if also leader of the new group (see intro(5) for more information about per
missions and users(6) for users and groups). None of the other data can be altered by a wstat
and attempts to change them will trigger an error. In particular, it is illegal to attempt to change
the owner of a file. (These conditions may be relaxed when establishing the initial state of a file
server; see fsconfig(8).)

Either all the changes in wstat request happen, or none of them does: if the request succeeds, all
changes were made; if it fails, none were.

A wstat request can avoid modifying some properties of the file by providing explicit ��don�t
touch�� values in the stat data that is sent: zero-length strings for text values and the maximum
unsigned value of appropriate size for integral values. As a special case, if all the elements of the
directory entry in a Twstat message are ��don�t touch�� values, the server may interpret it as a
request to guarantee that the contents of the associated file are committed to stable storage
before the Rwstat message is returned. (Consider the message to mean, ��make the state of the
file exactly what it claims to be.��)

A read of a directory yields an integral number of directory entries in the machine independent
encoding given above (see read(5)).

Note that since the stat information is sent as a 9P variable-length datum, it is limited to a maxi
mum of 65535 bytes.

ENTRY POINTS
Stat messages are generated by fstat and stat.

Wstat messages are generated by fwstat and wstat.

BUGS
To make the contents of a directory, such as returned by read(5), easy to parse, each directory
entry begins with a size field. For consistency, the entries in Twstat and Rstat messages also
contain their size, which means the size appears twice. For example, the Rstat message is for
matted as ��(4+1+2+2+n)[4] Rstat tag[2] n[2] (n-2)[2] type[2] dev[4]...,�� where n is the value
returned by convD2M.

843

VERSION(5) VERSION(5)

NAME
version � negotiate protocol version

SYNOPSIS
size[4] Tversion tag[2] msize[4] version[s]
size[4] Rversion tag[2] msize[4] version[s]

DESCRIPTION
The version request negotiates the protocol version and message size to be used on the con
nection and initializes the connection for I/O. Tversion must be the first message sent on the
9P connection, and the client cannot issue any further requests until it has received the
Rversion reply. The tag should be NOTAG (value (ushort)~0) for a version message.

The client suggests a maximum message size, msize, that is the maximum length, in bytes, it
will ever generate or expect to receive in a single 9P message. This count includes all 9P protocol
data, starting from the size field and extending through the message, but excludes enveloping
transport protocols. The server responds with its own maximum, msize, which must be less than
or equal to the client�s value. Thenceforth, both sides of the connection must honor this limit.

The version string identifies the level of the protocol. The string must always begin with the
two characters ��9P��. If the server does not understand the client�s version string, it should
respond with an Rversion message (not Rerror) with the version string the 7 characters
��unknown��.

The server may respond with the client�s version string, or a version string identifying an earlier
defined protocol version. Currently, the only defined version is the 6 characters ��9P2000��. Ver
sion strings are defined such that, if the client string contains one or more period characters, the
initial substring up to but not including any single period in the version string defines a version of
the protocol. After stripping any such period-separated suffix, the server is allowed to respond
with a string of the form 9Pnnnn, where nnnn is less than or equal to the digits sent by the client.

The client and server will use the protocol version defined by the server�s response for all subse
quent communication on the connection.

A successful version request initializes the connection. All outstanding I/O on the connection is
aborted; all active fids are freed (�clunked�) automatically. The set of messages between version
requests is called a session.

ENTRY POINTS
The version message is generated by the fversion system call. It is also generated automati
cally, if required, by a mount or fauth system call on an uninitialized connection.

844

WALK(5) WALK(5)

NAME
walk � descend a directory hierarchy

SYNOPSIS
size[4] Twalk tag[2] fid[4] newfid[4] nwname[2] nwname*(wname[s])
size[4] Rwalk tag[2] nwqid[2] nwqid*(qid[13])

DESCRIPTION
The walk request carries as arguments an existing fid and a proposed newfid (which must not be
in use unless it is the same as fid) that the client wishes to associate with the result of traversing
the directory hierarchy by �walking� the hierarchy using the successive path name elements
wname. The fid must represent a directory unless zero path name elements are specified.

The fid must be valid in the current session and must not have been opened for I/O by an open or
create message. If the full sequence of nwname elements is walked successfully, newfid will
represent the file that results. If not, newfid (and fid) will be unaffected. However, if newfid is in
use or otherwise illegal, an Rerror is returned.

The name ��..�� (dot-dot) represents the parent directory. The name ��.�� (dot), meaning the cur
rent directory, is not used in the protocol.

It is legal for nwname to be zero, in which case newfid will represent the same file as fid and the
walk will usually succeed; this is equivalent to walking to dot. The rest of this discussion
assumes nwname is greater than zero.

The nwname path name elements wname are walked in order, ��elementwise��. For the first ele
mentwise walk to succeed, the file identified by fid must be a directory, and the implied user of the
request must have permission to search the directory (see intro(5)). Subsequent elementwise walks
have equivalent restrictions applied to the implicit fid that results from the preceding elementwise
walk.

If the first element cannot be walked for any reason, Rerror is returned. Otherwise, the walk will
return an Rwalk message containing nwqid qids corresponding, in order, to the files that are vis
ited by the nwqid successful elementwise walks; nwqid is therefore either nwname or the index of
the first elementwise walk that failed. The value of nwqid cannot be zero unless nwname is zero.
Also, nwqid will always be less than or equal to nwname. Only if it is equal, however, will newfid
be affected, in which case newfid will represent the file reached by the final elementwise walk
requested in the message.

A walk of the name ��..�� in the root directory of a server is equivalent to a walk with no name
elements.

If newfid is the same as fid, the above discussion applies, with the obvious difference that if the
walk changes the state of newfid, it also changes the state of fid; and if newfid is unaffected, then
fid is also unaffected.

To simplify the implementation of the servers, a maximum of sixteen name elements or qids may
be packed in a single message. This constant is called MAXWELEM in fcall(2). Despite this restric
tion, the system imposes no limit on the number of elements in a file name, only the number that
may be transmitted in a single message.

ENTRY POINTS
A call to chdir(2) causes a walk. One or more walk messages may be generated by any of the
following calls, which evaluate file names: bind, create, exec, mount, open, remove, stat,
unmount, wstat. The file name element . (dot) is interpreted locally and is not transmitted in
walk messages.

845

INTRO(6) INTRO(6)

NAME
intro � introduction to file formats

DESCRIPTION
This section of the manual describes file formats and other miscellany such as troff macro pack
ages.

846

A.OUT(6) A.OUT(6)

NAME
a.out � object file format

SYNOPSIS
#include <a.out.h>

DESCRIPTION
An executable Plan 9 binary file has up to six sections: a header, the program text, the data, a
symbol table, a PC/SP offset table (MC68020 only), and finally a PC/line number table. The
header, given by a structure in <a.out.h>, contains 4-byte integers in big-endian order:

typedef struct Exec {
long magic; /* magic number */
long text; /* size of text segment */
long data; /* size of initialized data */
long bss; /* size of uninitialized data */
long syms; /* size of symbol table */
long entry; /* entry point */
long spsz; /* size of pc/sp offset table */
long pcsz; /* size of pc/line number table */

} Exec;

#define HDR_MAGIC 0x00008000

#define _MAGIC(f, b) ((f)|((((4*(b))+0)*(b))+7))
#define A_MAGIC _MAGIC(0, 8) /* 68020 */
#define I_MAGIC _MAGIC(0, 11) /* intel 386 */
#define J_MAGIC _MAGIC(0, 12) /* intel 960 (retired) */
#define K_MAGIC _MAGIC(0, 13) /* sparc */
#define V_MAGIC _MAGIC(0, 16) /* mips 3000 BE */
#define X_MAGIC _MAGIC(0, 17) /* att dsp 3210 (retired) */
#define M_MAGIC _MAGIC(0, 18) /* mips 4000 BE */
#define D_MAGIC _MAGIC(0, 19) /* amd 29000 (retired) */
#define E_MAGIC _MAGIC(0, 20) /* arm */
#define Q_MAGIC _MAGIC(0, 21) /* powerpc */
#define N_MAGIC _MAGIC(0, 22) /* mips 4000 LE */
#define L_MAGIC _MAGIC(0, 23) /* dec alpha (retired) */
#define P_MAGIC _MAGIC(0, 24) /* mips 3000 LE */
#define U_MAGIC _MAGIC(0, 25) /* sparc64 */
#define S_MAGIC _MAGIC(HDR_MAGIC, 26) /* amd64 */
#define T_MAGIC _MAGIC(HDR_MAGIC, 27) /* powerpc64 */
#define R_MAGIC _MAGIC(HDR_MAGIC, 28) /* arm64 */

Sizes are expressed in bytes. The size of the header is not included in any of the other sizes.

When a Plan 9 binary file is executed, a memory image of three segments is set up: the text seg
ment, the data segment, and the stack. The text segment begins at a virtual address which is a
multiple of the machine-dependent page size. The text segment consists of the header and the
first text bytes of the binary file. The entry field gives the virtual address of the entry point of
the program. The data segment starts at the first page-rounded virtual address after the text seg
ment. It consists of the next data bytes of the binary file, followed by bss bytes initialized to
zero. The stack occupies the highest possible locations in the core image, automatically growing
downwards. The bss segment may be extended by brk(2).

The next syms (possibly zero) bytes of the file contain symbol table entries, each laid out as:

uchar value[4];
char type;
char name[n]; /* NUL−terminated */

The value is in big-endian order and the size of the name field is not pre-defined: it is a zero-
terminated array of variable length.

847

A.OUT(6) A.OUT(6)

The type field is one of the following characters with the high bit set:

T text segment symbol
t static text segment symbol
L leaf function text segment symbol
l static leaf function text segment symbol
D data segment symbol
d static data segment symbol
B bss segment symbol
b static bss segment symbol
a automatic (local) variable symbol
p function parameter symbol

A few others are described below. The symbols in the symbol table appear in the same order as
the program components they describe.

The Plan 9 compilers implement a virtual stack frame pointer rather than dedicating a register;
moreover, on the MC680X0 architectures there is a variable offset between the stack pointer and
the frame pointer. Following the symbol table, MC680X0 executable files contain a spsz-byte
table encoding the offset of the stack frame pointer as a function of program location; this section
is not present for other architectures. The PC/SP table is encoded as a byte stream. By setting the
PC to the base of the text segment and the offset to zero and interpreting the stream, the offset
can be computed for any PC. A byte value of 0 is followed by four bytes that hold, in big-endian
order, a constant to be added to the offset. A byte value of 1 to 64 is multiplied by four and
added, without sign extension, to the offset. A byte value of 65 to 128 is reduced by 64, multi
plied by four, and subtracted from the offset. A byte value of 129 to 255 is reduced by 129, multi
plied by the quantum of instruction size (e.g. two on the MC680X0), and added to the current PC
without changing the offset. After any of these operations, the instruction quantum is added to
the PC.

A similar table, occupying pcsz-bytes, is the next section in an executable; it is present for all
architectures. The same algorithm may be run using this table to recover the absolute source line
number from a given program location. The absolute line number (starting from zero) counts the
newlines in the C-preprocessed source seen by the compiler. Three symbol types in the main sym
bol table facilitate conversion of the absolute number to source file and line number:

f source file name components

z source file name

Z source file line offset

The f symbol associates an integer (the value field of the �symbol�) with a unique file path name
component (the name of the �symbol�). These path components are used by the z symbol to rep
resent a file name: the first byte of the name field is always 0; the remaining bytes hold a zero-
terminated array of 16-bit values (in big-endian order) that represent file name components from
f symbols. These components, when separated by slashes, form a file name. The initial slash of a
file name is recorded in the symbol table by an f symbol; when forming file names from z sym
bols an initial slash is not to be assumed. The z symbols are clustered, one set for each object file
in the program, before any text symbols from that object file. The set of z symbols for an object
file form a history stack of the included source files from which the object file was compiled. The
value associated with each z symbol is the absolute line number at which that file was included in
the source; if the name associated with the z symbol is null, the symbol represents the end of an
included file, that is, a pop of the history stack. If the value of the z symbol is 1 (one), it repre
sents the start of a new history stack. To recover the source file and line number for a program
location, find the text symbol containing the location and then the first history stack preceding the
text symbol in the symbol table. Next, interpret the PC/line offset table to discover the absolute
line number for the program location. Using the line number, scan the history stack to find the set
of source files open at that location. The line number within the file can be found using the line
numbers in the history stack. The Z symbols correspond to #line directives in the source; they
specify an adjustment to the line number to be printed by the above algorithm. The offset is asso
ciated with the first previous z symbol in the symbol table.

SEE ALSO
db(1), acid(1), 2a(1), 2l(1), nm(1), strip(1), mach(2), symbol(2)

848

A.OUT(6) A.OUT(6)

BUGS
There is no type information in the symbol table; however, the −a flags on the compilers will pro
duce symbols for acid(1).

849

AR(6) AR(6)

NAME
ar � archive (library) file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar(1) is used to combine several files into one. Archives are used mainly as
libraries to be searched by the loaders 2l(1) et al.

A file produced by ar has a magic string at the start, followed by the constituent files, each pre
ceded by a file header. The magic number and header layout as described in the include file are:

#define ARMAG "!<arch>\n"
#define SARMAG 8

#define ARFMAG "‘\n"

struct ar_hdr {
char name[16];
char date[12];
char uid[6];
char gid[6];
char mode[8];
char size[10];
char fmag[2];

};
#define SAR_HDR 60

The name is a blank-padded string. The fmag field contains ARFMAG to help verify the presence
of a header. The other fields are left-adjusted, blank-padded numbers. They are decimal except
for mode, which is octal. The date is the modification date of the file (see stat(2)) at the time of its
insertion into the archive. The mode is the low 9 bits of the file permission mode. The length of
the header is SAR_HDR. Because the ar_hdr structure is padded in an architecture-dependent
manner, the structure should never be read or written as a unit; instead, each field should be read
or written independently.

Each file begins on an even (0 mod 2) boundary; a newline is inserted between files if necessary.
Nevertheless size reflects the actual size of the file exclusive of padding.

When all members of an archive are object files of the same architecture, ar automatically adds an
extra file, named __.SYMDEF, as the first member of the archive. This file contains an index
used by the loaders to locate all externally defined text and data symbols in the archive.

There is no provision for empty areas in an archive file.

SEE ALSO
ar(1), 2l(1), nm(1), stat(2)

BUGS
The uid and gid fields are unused in Plan 9. They provide compatibility with Unix ar format.

850

AUTHSRV(6) AUTHSRV(6)

NAME
authsrv, p9any, p9sk1, dp9ik � authentication protocols

DESCRIPTION
This manual page describes the protocols used to authorize connections, confirm the identities of
users and machines, and maintain the associated databases. The machine that provides these ser
vices is called the authentication server (AS). The AS may be a stand-alone machine or a general-
use machine such as a CPU server. The network database ndb(6) holds for each public machine,
such as a CPU server or file server, the name of the authentication server that machine uses.

Each machine contains four values important to authentication; a 56-bit DES key, a 128-bit AES
key, a 28-byte authentication ID, and a 48-byte authentication domain name. The ID is a user
name and identifies who is currently responsible for the kernel running on that machine. The
domain name identifies the machines across which the ID is valid. Together, the ID and domain
name identify the owner of a key.

When a terminal boots, factotum(4) prompts for user name and password. The user name
becomes the terminal�s authentication ID. The password is converted using passtokey (see
authsrv(2)) into a 56-bit DES and 128-bit AES keys and saved in memory. The authentication
domain is set to the null string. If possible, factotum validates the key with the AS before saving it.
For Internet machines the correct AS to ask is found using dhcpd(8).

When a CPU or file server boots, factotum reads the key, ID, and domain name from non-volatile
RAM. This allows servers to reboot without operator intervention.

The details of any authentication are mixed with the semantics of the particular service they are
authenticating so we describe them one case at a time. The following definitions will be used in the
descriptions:

Ks server�s host ID�s key
Kc client�s host ID�s key
Kn a nonce key created for a ticket (key)
K{m} message m encrypted with key K
CHc an 8-byte random challenge from a client (chal)
CHs an 8-byte random challenge from a server (chal)
IDs server�s ID (authid)
DN server�s authentication domain name (authdom)
IDc client�s ID (hostid, cuid)
IDr client�s desired ID on server (uid, suid)
YAc client � AS DH public key
YBc AS � client DH public key
YAs server � AS DH public key
YBs AS � server DH public key
RNc client�s 32-byte random string
RNs server�s 32-byte random string

The parenthesized names are the ones used in the Ticketreq and Ticket structures in
<authsrv.h>.

The message type constants AuthTreq, AuthChal, AuthPass, AuthOK, AuthErr, AuthMod,
AuthApop, AuthOKvar, AuthChap, AuthMSchap, AuthCram, AuthVNC, and AuthPAK (type) are
defined in <authsrv.h>, as are the encrypted message types AuthTs, AuthAs, AuthAc, AuthTp,
and AuthHr (num).

Ticket Service
When a client and server wish to authenticate to each other, they do so using tickets issued by the
AS. Obtaining tickets from the AS is the client�s responsibility.

The protocol to obtain a ticket pair is:

C→A: AuthTreq, IDs, DN, CHs, IDc, IDr

A→C: AuthOK, Kc{AuthTc, CHs, IDc, IDr, Kn}, Ks{AuthTs, CHs, IDc, IDr, Kn}

The two tickets are identical except for their type fields and the keys with which they are
encrypted. The client and server can each decrypt one of the tickets, establishing a shared secret

851

AUTHSRV(6) AUTHSRV(6)

Kn.

The tickets can be viewed as a statement by the AS that ��a client possessing the Kn key is allowed
to authenticate as IDr.��

The presence of the server challenge CHs in the ticket allows the server to verify the freshness of
the ticket pair.

The AS sets the IDr in the tickets to the requested IDr only if IDc is allowed to speak for (q.v.) IDr.
If not, the AS sets IDr to the empty string.

If the users IDc or IDs do not exist, the AS silently generates one-time random keys to use in place
of Kc or Ks, so that clients cannot probe the AS to learn whether a user name is valid.

P9sk1
The Plan 9 shared key protocol p9sk1 allows a client and server to authenticate each other. The
protocol is:

C→S: CHc
The client starts by sending a random challenge to the server.

S→C: AuthTreq, IDs, DN, CHs, �, �

The server replies with a ticket request giving its id and authentication domain along with
its own random challenge.

C→S: Ks{AuthTs, CHs, IDc, IDr, Kn}, Kn{AuthAc, CHs}
The client adds IDc and IDr to the ticket request and obtains a ticket pair from the AS as
described above. The client relays the server�s ticket along with an authenticator, the
AuthAc message. The authenticator proves to the server that the client knows Kn and is
therefore allowed to authenticate as IDr. (The inclusion of CHs in the authenticator avoids
replay attacks.)

S→C: Kn{AuthAs, CHc}
The server replies with its own authenticator, proving to the client that it also knows Kn and
therefore Ks .

The 64-bit shared secret Kn is used as the session secret.

Password authenticated key exchange
Initially, the server and client keys Ks and Kc were equivalent to the password derived 56-bit DES
keys, which made the encrypted tickets subject to offline dictionary attacks and provided too small
a key space against brute force attacks on current hardware.

The AuthPAK protocol is used to establish new 256-bit random keys with the AS for Ks and Kc
before each ticket request on the connection.

The protocol is based on SPAKE2EE, where a hash of the user�s secret is used to encypt the public
keys of a Elliptic-Curve Diffie-Hellman key exchange. The user�s ID and 128-bit AES key is hashed
and mapped (using Elligator2) into two curve points PM and PN, called the pakhash. Both sides
generate a random number xa/xb and make the public keys YA/YB as: YA=xa*G+PM,
YB=xb*G+PN. After the public keys have been exchanged, each side calculates the shared secret
as: Z=xa*(YB−PN)=xb*(YA−PM) . The shared secret Z is then hashed with the transmitted public
keys YA|YB producing the 256-bit pakkey .

The pakkey is then used in place of Ks and Kc to authenticate and encrypt tickets from the AS
using Chacha20/Poly1305 AEAD for the next following request made on the connection.

The protocol (for AuthTreq) to establish keys Ks and Kc with the AS for IDs and IDc is:

C→A: AuthPAK, IDs, DN, CHs, IDc, IDr, YAs, YAc

A→C: AuthOK, YBs, YBc

The protocol (for AuthApop, AuthChap...) to establish a single server key Ks for IDs:

C→A: AuthPAK, �, DN, CHs, IDs, IDc, YAs

A→C: AuthOK, YBs

The protocol (for AuthPass) to establish a single client key Kc for IDc:

C→A: AuthPAK, �, �, CHc, �, IDc, YAc

852

AUTHSRV(6) AUTHSRV(6)

A→C: AuthOK, YBc

Dp9ik
The dp9ik protocol is an extended version of p9sk1 that adds the random strings RNc and RNs in
the authenticator messages for the session key derivation and uses the password authenticated
key exchange as described above to derive the ticket encryption keys Ks and Kc:

C→S: CHc
The client starts by sending a random challenge to the server.

S→C: AuthPAK, IDs, DN, CHs, �, �, YAs
The server generates a new public key YAs and replies with a AuthPAK request giving its IDs
and authentication domain DNs along with its own random challenge CHs and its public key
YAs.

C→S: YBs, Ks{AuthTs, CHs, IDc, IDr, Kn}, Kn{AuthAc, CHs, RNc}
The client generates its own public key YAc and adds it along with IDc and IDr to the
AuthPAK request and obtains the public keys YBs and YBc from the AS response. At this
point, client and AS have completed their authenticated key exchange and derive Kc as
described above. Then the client requests a ticket pair using the same message but with
AuthPAK type changed to AuthTreq. It decrypts his ticket with Kc extracting the shared
secret Kn. The client relays the server�s YBs and ticket along with an authenticator, the
AuthAc message. The server finishes his authenticated key exchange using YBs and derives
Ks to decrypt his ticket to extract the shared secret Kn. When the decryption of the clients
authenticator using Kn is successfull then this proves to the server that the client knows Kn
and is therefore allowed to authenticate as IDr. The random string RNc is used in the
derivation of the session secret.

S→C: Kn{AuthAs, CHc, RNs}
The server replies with its own authenticator, proving to the client that it also knows Kn and
contributes its random string RNs for the session secret.

The 2048-bit session secret is derived with HKDF-SHA256 hashing the concatenated random
strings RNc|RNs with the the shared secret key Kn.

P9any
P9any is the standard Plan 9 authentication protocol. It consists of a negotiation to determine a
common protocol, followed by the agreed-upon protocol.

The negotiation protocol is:

S→C: proto@authdom proto@authdom ...

C→S: proto dom

Each message is a NUL-terminated UTF string. The server begins by sending a list of proto,
authdom pairs it is willing to use. The client responds with its choice.

A second version of this protocol exists (indicated by the v.2 prefix before the list) where the
server sends an explicit confirmation with a OK message before the agreed-upon protocol starts.

S→C: v.2 proto@authdom proto@authdom ...

C→S: proto dom

S→C: OK

The p9any protocol is the protocol used by all Plan 9 services. The file server runs it over special
authentication files (see fauth(2) and attach(5)). Other services, such as cpu(1), exportfs(4) and
tlssrv(8) run p9any over the network and then use the session secret to derive an ssl(3) or tls(3)
key to encrypt the rest of their communications.

Password Change
Users connect directly to the AS to change their passwords. The protocol is:

C→A: AuthPass, �, �, CHc, �, IDc
The client sends a password change ticket request.

A→C: Kc{AuthTp, CHc, IDc, IDc, Kn}
The server responds with a ticket containing the key Kn encrypted with the client�s key Kc

853

AUTHSRV(6) AUTHSRV(6)

C→A: Kn{AuthPass, old, new, changesecret, secret}
The client decrypts the ticket using the old password and then sends back an encrypted
password request (Passwordreq structure) containing the old password and the new
password. If changesecret is set, the AS also changes the user�s secret, the password used
for non-Plan 9 authentications.

A→C: AuthOK or AuthErr, 64-byte error message
The AS responds with simply AuthOK or with AuthErr followed by a 64-byte error message.

Authentication Database
An ndb(2) database file /lib/ndb/auth exists for the AS. This database maintains ��speaks
for�� relationships, i.e., it lists which users may speak for other users when authenticating. The
attribute types used by the AS are hostid and uid. The value in the hostid is a client host�s
ID. The values in the uid pairs in the same entry list which users that host ID may speak for. A
uid value of * means the host ID may speak for all users. A uid value of !user means the host ID
may not speak for user. For example:

hostid=bootes
uid=!sys uid=!adm uid=*

is interpreted as bootes may speak for any user except sys and adm. This property is used
heavily on CPU servers.

Foreign Protocols
The AS accepts ticket request messages of types other than AuthTreq to allow users to authenti
cate using non-Plan 9 protocols. In these situations, the server communicates directly with the AS.
Some protocols must begin without knowing the client�s name. They ignore the client name in the
ticket request. All the protocols end with the AS sending an AuthOK message containing a server
ticket and authenticator.

AuthOK messages always have a fixed but context-dependent size. The occasional variable-
length OK message starts with a AuthOKvar byte and a five-byte space-padded decimal length of
the data that follows.

Anywhere an AuthOK message is expected, a AuthErr message may be substituted.

S→A: AuthChal, �, DN, CHs, IDs, IDc

A→S: AuthOK, challenge

S→A: response

A→S: AuthOK, Ks{AuthTs, CHs, IDc, IDc, Kn}, Kn{AuthAc, CHs}

This protocol allows the use of handheld authenticators such as SecureNet keys and
SecureID tokens in programs such as telnetd and ftpd (see ipserv(8)).

Challenge and response are text strings, NUL -padded to 16 bytes (NETCHLEN). The
challenge is a random five-digit decimal number. When using a SecureNet key or netkey
(see passwd(1)), the response is an eight-digit decimal or hexadecimal number that is an
encryption of the challenge using the user�s DES key.

When using a SecureID token, the challenge is ignored. The response is the user�s PIN fol
lowed by the six-digit number currently displayed on the token. In this case, the AS
queries an external RADIUS server to check the response. Use of a RADIUS server requires
an entry in the authentication database. For example:

radius=server−name secret=xyzzy
uid=howard rid=trickey
uid=sape rid=smullender

In this example, the secret xyzzy is the hash key used in talking to the RADIUS server.
The uid/rid lines map from Plan 9 user ids to RADIUS ids. Users not listed are assumed
to have the same id in both places.

S→A: AuthApop, �, DN, CHs, IDs, �

A→S: AuthOKvar, challenge

S→A: AuthApop, �, DN, CHs, IDs, IDc; hexadecimal MD5 checksum

854

AUTHSRV(6) AUTHSRV(6)

A→S: AuthOK, Ks{AuthTs, CHs, IDc, IDc, Kn}, Kn{AuthAc, CHs}

This protocol implements APOP authentication (see pop3(8)). After receiving a ticket
request of type AuthApop, the AS generates a random challenge of the form
<random@domain>. The client then replies with a new ticket request giving the user name
followed by the MD5 checksum of the challenge concatenated with the user�s secret. If the
response is correct, the authentication server sends back a ticket and authenticator. If the
response is incorrect, the client may repeat the ticket request/MD5 checksum message to
try again.

The AuthCram protocol runs identically to the AuthApop protocol, except that the expected
MD5 checksum is the keyed MD5 hash using the user�s secret as the key (see hmac_md5 in
sechash(2)).

S→A: AuthChap, �, DN, CHs, IDs, �

A→S: challenge

S→A: pktid, IDc, response

A→S: AuthOK, Ks{AuthTs, CHs, IDc, IDc, Kn}, Kn{AuthAc, CHs}

This protocol implements CHAP authentication (see ppp(8)). The challenge is eight random
bytes. The response is a 16-byte MD5 checksum over the packet id, user�s secret, and
challenge. The reply packet is defined as OChapreply in <authsrv.h>.

S→A: AuthMSchap, �, DN, CHs, IDs, �

A→S: challenge

S→A: IDc, lm−response, nt−response

A→S: AuthOK, Ks{AuthTs, CHs, IDc, IDc, Kn}, Kn{AuthAc, CHs}

This protocol implements Microsoft�s MS-CHAP authentication (see ppp(8)). The challenge
is eight random bytes. The two responses are Microsoft�s LM and NT hashes. Only the NT
hash may be used to authenticate, as the LM hash is considered too weak. The reply
packet is defined as OMSchapreply in <authsrv.h>.

S→A: AuthVNC, �, DN, CHs, IDs, IDc

A→S: AuthOKvar, challenge

S→A: response

A→S: AuthOK, Ks{AuthTs, CHs, IDc, IDc, Kn}, Kn{AuthAc, CHs}

This protocol implements VNC authentication (see vncs in vnc(1)). The challenge is 16 ran
dom bytes, and the response is a DES ECB encryption of the challenge. The method by
which VNC converts the user�s secret into a DES key is weak, considering only the first eight
bytes of the secret.

FILES
/lib/ndb/auth database file
/lib/ndb/auth.* hash files for /lib/ndb/auth

SEE ALSO
auth(2), fauth(2), cons(3), attach(5), auth(8)

855

COLOR(6) COLOR(6)

NAME
color � representation of pixels and colors

DESCRIPTION
To address problems of consistency and portability among applications, Plan 9 uses a fixed color
map, called rgbv, on 8-bit-per-pixel displays. Although this avoids problems caused by multi
plexing color maps between applications, it requires that the color map chosen be suitable for
most purposes and usable for all. Other systems that use fixed color maps tend to sample the
color cube uniformly, which has advantages�mapping from a (red, green, blue) triple to the color
map and back again is easy�but ignores an important property of the human visual system: eyes
are much more sensitive to small changes in intensity than to changes in hue. Sampling the color
cube uniformly gives a color map with many different hues, but only a few shades of each. Contin
uous tone images converted into such maps demonstrate conspicuous artifacts.

Rather than dice the color cube into subregions of size 6×6×6 (as in Netscape Navigator) or
8×8×4 (as in previous releases of Plan 9), picking 1 color in each, the rgbv color map uses a
4×4×4 subdivision, with 4 shades in each subcube. The idea is to reduce the color resolution by
dicing the color cube into fewer cells, and to use the extra space to increase the intensity resolu
tion. This results in 16 grey shades (4 grey subcubes with 4 samples in each), 13 shades of each
primary and secondary color (3 subcubes with 4 samples plus black) and a reasonable selection of
colors covering the rest of the color cube. The advantage is better representation of continuous
tones.

The following function computes the 256 3-byte entries in the color map:

void
setmaprgbv(uchar cmap[256][3])
{

uchar *c;
int r, g, b, v;
int num, den;
int i, j;

for(r=0,i=0; r!=4; r++)
for(v=0; v!=4; v++,i+=16)
for(g=0,j=v−r; g!=4; g++)
for(b=0; b!=4; b++,j++){
c = cmap[i+(j&15)];
den = r;
if(g > den)

den = g;
if(b > den)

den = b;
if(den == 0) /* would divide check; pick grey shades */

c[0] = c[1] = c[2] = 17*v;
else{

num = 17*(4*den+v);
c[0] = r*num/den;
c[1] = g*num/den;
c[2] = b*num/den;

}
}

}

There are 4 nested loops to pick the (red,green,blue) coordinates of the subcube, and the value
(intensity) within the subcube, indexed by r, g, b, and v, whence the name rgbv. The peculiar
order in which the color map is indexed is designed to distribute the grey shades uniformly
through the map�the i�th grey shade, 0<= i<=15 has index i×17, with black going to 0 and white
to 255. Therefore, when a call to draw converts a 1, 2 or 4 bit-per-pixel picture to 8 bits per
pixel (which it does by replicating the pixels� bits), the converted pixel values are the appropriate
grey shades.

856

COLOR(6) COLOR(6)

The rgbv map is not gamma-corrected, for two reasons. First, photographic film and television
are both normally under-corrected, the former by an accident of physics and the latter by NTSC�s
design. Second, we require extra color resolution at low intensities because of the non-linear
response and adaptation of the human visual system. Properly gamma-corrected displays with
adequate low-intensity resolution pack the high-intensity parts of the color cube with colors
whose differences are almost imperceptible. Either reason suggests concentrating the available
intensities at the low end of the range.

On �true-color� displays with separate values for the red, green, and blue components of a pixel,
the values are chosen so 0 represents no intensity (black) and the maximum value (255 for an 8-
bit-per-color display) represents full intensity (e.g., full red). Common display depths are 24 bits
per pixel, with 8 bits per color in order red, green, blue, and 16 bits per pixel, with 5 bits of red, 6
bits of green, and 5 bits of blue.

Colors may also be created with an opacity factor called alpha, which is scaled so 0 represents
fully transparent and 255 represents opaque color. The alpha is premultiplied into the other chan
nels, as described in the paper by Porter and Duff cited in draw(2). The function setalpha (see
allocimage(2)) aids the initialization of color values with non-trivial alpha.

The packing of pixels into bytes and words is odd. For compatibility with VGA frame buffers, the
bits within a pixel byte are in big-endian order (leftmost pixel is most significant bits in byte),
while bytes within a pixel are packed in little-endian order. Pixels are stored in contiguous bytes.
This results in unintuitive pixel formats. For example, for the RGB24 format, the byte ordering is
blue, green, red.

To maintain a constant external representation, the draw(3) interface as well as the various graph
ics libraries represent colors by 32-bit numbers, as described in color(2).

SEE ALSO
color(2), graphics(2), draw(2)

857

FACE(6) FACE(6)

NAME
face � face files

DESCRIPTION
The directories /usr/$user/lib/face and /lib/face contain a hierarchy of images of
people. In those directories are subdirectories named by the sizes of the corresponding image
files: 48x48x1 (48 by 48 pixels, one bit per pixel); 48x48x2 (48 by 48 pixels, two (grey) bits per
pixel); 48x48x4 (48 by 48 pixels, four (grey) bits per pixel); 48x48x8 (48 by 48 pixels, eight
(color-mapped) bits per pixel); 512x512x8 (512 by 512 pixels, eight (color-mapped) bits per
pixel); 512x512x24 (512 by 512 pixels, twenty-four bits per pixel (3 times 8 bits per color)).
The large files serve no special purpose; they are stored as images (see image(6)). The small files
are the �icons� displayed by faces and seemail (see faces(1)); for depths less than 4, their for
mat is special.

One- and two-bit deep icons are stored as text, one line of the file to one scan line of display.
Each line is divided into 8-bit, 16-bit, or 32-bit big-endian words, stored as a list of comma-
separated hexadecimal C constants, such as:

0x9200, 0x1bb0, 0x003e,

This odd format is historical and the programs that read it are somewhat forgiving about blanks
and the need for commas.

The files lib/face/*/.dict hold a correspondence between users at machines and face files.
The format is

machine/user directory/file.ver

The machine is the domain name of the machine sending the message, and user the name of the
user sending it, as recorded in /sys/log/mail. The directory is a further subdirectory of (say)
/lib/face/48x48x1, named by a single letter corresponding to the first character of the user
names. The file is the name of the file, typically but not always the user name, and ver is a num
ber to distinguish different images, for example to distinguish the image for Bill Gates from the
image for Bill Joy, both of which might otherwise be called b/bill. For example, Bill Gates might
be represented by the line

microsoft.com/bill b/bill.1

If multiple entries exist for a user in the various .dict files, faces chooses the highest pixel size
less than or equal to that of the display on which it is running.

Finally, or rather firstly, the file /lib/face/.machinelist contains a list of machine/domain
pairs, one per line, to map any of a set of machines to a single domain name to be looked up in
the .dict files. The machine name may be a regular expression, so for example the entry

.*research\.bell−labs\.com astro

maps any of the machines in Bell Labs Research into the shorthand name astro, which then
appears as a domain name in the .dict files.

SEE ALSO
mail(1), tweak(1), image(6)

858

FONT(6) FONT(6)

NAME
font, subfont � external format for fonts and subfonts

SYNOPSIS
#include <draw.h>

DESCRIPTION
Fonts and subfonts are described in cachechars(2).

External fonts are described by a plain text file that can be read using openfont. The format of the
file is a header followed by any number of subfont range specifications. The header contains two
numbers: the height and the ascent, both in pixels. The height is the inter-line spacing and the
ascent is the distance from the top of the line to the baseline. These numbers are chosen to dis
play consistently all the subfonts of the font. A subfont range specification contains two or three
numbers and a file name. The numbers are the inclusive range of characters covered by the sub
font, with an optional starting position within the subfont, and the file name names an external file
suitable for readsubfont (see graphics(2)). The minimum number of a covered range is mapped to
the specified starting position (default zero) of the corresponding subfont. If the subfont file name
does not begin with a slash, it is taken relative to the directory containing the font file. Each field
must be followed by some white space. Each numeric field may be C-format decimal, octal, or
hexadecimal.

External subfonts are represented in a more rigid format that can be read and written using
readsubfont and writesubfont (see subfont(2)). The format for subfont files is: an image containing
character glyphs, followed by a subfont header, followed by character information. The image has
the format for external image files described in image(6). The subfont header has 3 decimal
strings: n, height, and ascent. Each number is right-justified and blank padded in 11 charac
ters, followed by a blank. The character info consists of n+1 6-byte entries, each giving the
Fontchar x (2 bytes, low order byte first), top, bottom, left, and width. The x field of
the last Fontchar is used to calculate the image width of the previous character; the other fields
in the last Fontchar are irrelevant.

Note that the convention of using the character with value zero (NUL) to represent characters of
zero width (see draw(2)) means that fonts should have, as their zeroth character, one with non-
zero width.

FILES
/lib/font/bit/* font directories

SEE ALSO
graphics(2), draw(2), cachechars(2), subfont(2)

859

GALAXY(6) GALAXY(6)

NAME
galaxy � representations of n-body simulations

DESCRIPTION
Files of this format are interpreted by galaxy(1) as describing the inital condition of n-body simu
lations or the saved state of simulation in progress. A galaxy file is a UTF stream of instruction
lines. The instruction is given by the first space delimited word. The following instructions are
accepted.

MKBODY
The rest of the line must contain 5 white space delimited double-precision floating point
numbers. They represent a body�s x coordinate, y coordinate, x velocity component, y
velocity component, and size respectively.

ORIG The rest of the line must contain 2 white space delimited double-precision floating point
numbers. They represent the current location of the origin with respect to the view window
of galaxy(1).

DT The rest of the line must contain a double-precision floating point number which deter
mines the time-scale of the simulation.

SCALE
The rest of the line must contain a double-precision floating point number which deter
mines the scale of the view of the simulation.

GRAV The rest of the line must contain a double-precision floating point number which deter
mines the gravitational constant of the simulation.

SEE ALSO
galaxy(1)

860

HTMLROFF(6) HTMLROFF(6)

NAME
htmlroff � HTML formatting and typesetting

DESCRIPTION
Htmlroff(1) accepts troff input with a few extensions and changes. This manual describes the
changes to the input language, assuming a working knowledge of troff itself.

Name lengths
Request, macro, string, and number names can be longer than two letters, as in:

.html c <center>

.de footnote
Footnote here.
..
.footnote
.ds string "hello
*[string]
.nr number 1
\n[number]

HTML output
Two new requests:

.html id [<html>]

.ihtml id [<ihtml>]

.html and .ihtml insert HTML into the output. The requests are only for opening new HTML
tags. To close previously-opened tags, repeat the request with the same id. For example, the
input:

.html t <table><tr>

.html td <td>Cell 1

.html td <td>Cell 2

.html td

.html t

produces this output:

<table><tr><td>Cell 1</td><td>Cell 2</td></tr></table>

The .html request is intended for block-level HTML constructs (those that can contain <p>) and
maintains the HTML tag stack automatically. Intermediate tags need not be explicitly closed:
removing the final .html t line in the example above would produce the same output. The spe
cial id − closes the HTML tags immediately after printing them.

The .ihtml request is similar to .html but is intended for inline HTML constructs such as
or <i> (those that can be contained within <p>). Unlike .html, .ihtml treats the open HTML
tags as a set rather than a stack: each must be explicitly closed. Although it treats the tags as a
set, .ihtml treats nesting properly in the output, closing and reopening tags as necessary. For
example, the input:

.ihtml style

.ihtml link
Bold
.ihtml style <i>
and italic, still linked.
.ihtml link <a>
Unlinked.
.ihtml style

produces this output:

Bold
<i>and italic, still linked.</i>
<i>Unlinked.</i>

861

HTMLROFF(6) HTMLROFF(6)

Outside of .html and .ihtml requests, the characters <, >, and & are treated as normal charac
ters, not HTML markers, and are translated to <, >, and & on output. To embed the
raw HTML markers, use \<, \>, and \@ [sic].

Font changes
Htmlroff interprets the usual \f, .ft, \s, and .ps requests to change the font and point size.
After applying each such change to its internal registers, htmlroff invokes the .font macro to
emit corresponding HTML. The default definition of .font is:

.de font

.ihtml f1

.ihtml f

.ihtml f <span style=

.if \n(.f==2 .ihtml f1 <i>

.if \n(.f==3 .ihtml f1

.if \n(.f==4 .ihtml f1 <i>

.if \n(.f==5 .ihtml f1 <tt>

.if \n(.f==6 .ihtml f1 <tt><i>

..

Input files can redefine .font like any other request or macro.

Paragraphs
Htmlroff implements line height, text adjustment, and margins by wrapping all output text in <p
style="..."> tags. This behavior can be disabled by setting the .paragraph number regis
ter to zero. Setting the .margin register to zero eliminates only the margin annotations.

Subscripts and superscripts
Htmlroff interprets the \u, \d, and \v requests to move vertically during output. It emits output
vertically offset up the page inside <sup> tags and output vertically offset down the page inside
<sub> tags. This heuristic handles simple equations formatted by eqn(1).

Conditional input
To make it easier to write input files that can be formatted by both troff and htmlroff, htmlroff
adds a new condition h which evaluates true in .if and .ie requests. The t condition continues
to evaluate true, to accomodate input files trying to distinguish between troff and nroff. To write a
conditional matching troff alone, use �.if !h .if t�.

Htmlroff ’s handling of conditional input does not match troff�s exactly. For example,

.if 0 \{\

.de xx

..

.\}

redefines the xx macro in troff but not in htmlroff. Do not write files depending on this behavior,
as this bug may be fixed in the future. Htmlroff also mishandles \} in some cases. To work
around them, use .\} on a line by itself, as in the last example.

Diversions
Diversions in htmlroff use the alignment in effect at the time of the diversion when output. In par
ticular,

.di xx
Line here.
.di
.nf
.ce
.xx

produces a centered line in troff but not in htmlroff. The solution is to center inside the diversion,
as in

.di xx

.if h .ce 999
Line here
.di

862

HTMLROFF(6) HTMLROFF(6)

Traps
Htmlroff implements traps at vertical position 0, which run when the first character is about to be
printed. Other position traps are ignored. Input traps are implemented.

Input pipes
Htmlroff adds a new request .inputpipe stop cmd that redirects htmlroff�s input into a pipe to
cmd. The redirection stops on encountering the line stop, optionally followed by white space and
extra text. This is a dangerous and clumsy request, as htmlroff stops interpreting its input during
the redirection, so stop must be found in the input itself, not in a macro that the input might
appear to call. Although clumsy, .inputpipe allows input files to invoke troff to handle compli
cated input. For example, tmac.html redefines the PS macro that marks the beginning of a
pic(1) picture:

.nr png −1 1

.de PS

.ds pngbase "*[basename]

.if ’*[pngbase]’’ .ds pngbase \\n(.B

.ds pngfile *[pngbase]\\n+[png].png

.html − <center></center>

.inputpipe .PE troff2png >*[pngfile]

..

This macro invokes the shell script troff2png to run troff and convert the Postscript output to a
PNG image file. Before starting the program, the macro creates a new file name for the image and
prints HTML referring to it. The .B register holds the final path element (the base name) of the
current input file.

Unimplemented
Tabs are set every eight spaces and cannot be changed.

Some requests, such as .tl, are unimplemented for lack of a good implementation. Workarounds
can be defined as necessary in input files.

SEE ALSO
htmlroff(1), mhtml(6)

863

IMAGE(6) IMAGE(6)

NAME
image � external format for images

SYNOPSIS
#include <draw.h>

DESCRIPTION
Images are described in graphics(2), and the definition of pixel values is in color(6). Fonts and
images are stored in external files in machine-independent formats.

Image files are read and written using readimage and writeimage (see allocimage(2)),or
readmemimage and writememimage (see memdraw(2)). An uncompressed image file starts
with 5 strings: chan, r.min.x, r.min.y, r.max.x, and r.max.y. Each is right-justified
and blank padded in 11 characters, followed by a blank. The chan value is a textual string
describing the pixel format (see strtochan in graphics(2) and the discussion of channel
descriptors below), and the rectangle coordinates are decimal strings. The rest of the file contains
the r.max.y−r.min.y rows of pixel data. A row consists of the byte containing pixel
r.min.x and all the bytes up to and including the byte containing pixel r.max.x-1. For
images with depth d less than eight, a pixel with x-coordinate = x will appear as d contiguous bits
in a byte, with the pixel�s high order bit starting at the byte�s bit number d×(x mod (8/d)), where
bits within a byte are numbered 0 to 7 from the high order to the low order bit. Rows contain inte
gral number of bytes, so there may be some unused pixels at either end of a row. If d is greater
than 8, the definition of images requires that it be a multiple of 8, so pixel values take up an inte
gral number of bytes.

The loadimage and unloadimage functions described in allocimage(2) also deal with rows in
this format, stored in user memory.

The channel format string is a sequence of two-character channel descriptions, each comprising a
letter (r for red, g for green, b for blue, a for alpha, m for color-mapped, k for greyscale, and x
for ��don�t care��) followed by a number of bits per pixel. The sum of the channel bits per pixel is
the depth of the image, which must be either a divisor or a multiple of eight. It is an error to have
more than one of any channel but x. An image must have either a greyscale channel; a color
mapped channel; or red, green, and blue channels. If the alpha channel is present, it must be at
least as deep as any other channel.

The channel string defines the format of the pixels in the file, and should not be confused with
ordering of bytes in the file. In particular ’r8g8b8’ pixels have byte ordering blue, green, and
red within the file. See color(6) for more details of the pixel format.

A venerable yet deprecated format replaces the channel string with a decimal ldepth, which is the
base two logarithm of the number of bits per pixel in the image. In this case, ldepths 0, 1, 2, and
3 correspond to channel descriptors k1, k2, k4, and m8, respectively.

Compressed image files start with a line of text containing the word compressed, followed by a
header as described above, followed by the image data. The data, when uncompressed, is laid out
in the usual form.

The data is represented by a string of compression blocks, each encoding a number of rows of the
image�s pixel data. Compression blocks are at most 6024 bytes long, so that they fit comfortably
in a single 9P message. Since a compression block must encode a whole number of rows, there is
a limit (about 5825 bytes) to the width of images that may be encoded. Most wide images are in
subfonts, which, at 1 bit per pixel (the usual case for fonts), can be 46600 pixels wide.

A compression block begins with two decimal strings of twelve bytes each. The first number is
one more than the y coordinate of the last row in the block. The second is the number of bytes of
compressed data in the block, not including the two decimal strings. This number must not be
larger than 6000.

Pixels are encoded using a version of Lempel & Ziv�s sliding window scheme LZ77, best described
in J A Storer & T G Szymanski �Data Compression via Textual Substitution�, JACM 29#4, pp. 928-
951.

The compression block is a string of variable-length code words encoding substrings of the pixel
data. A code word either gives the substring directly or indicates that it is a copy of data occurring

864

IMAGE(6) IMAGE(6)

previously in the pixel stream.

In a code word whose first byte has the high-order bit set, the rest of the byte indicates the length
of a substring encoded directly. Values from 0 to 127 encode lengths from 1 to 128 bytes. Subse
quent bytes are the literal pixel data.

If the high-order bit is zero, the next 5 bits encode the length of a substring copied from previous
pixels. Values from 0 to 31 encode lengths from 3 to 34 bytes. The bottom two bits of the first
byte and the 8 bits of the next byte encode an offset backward from the current position in the
pixel data at which the copy is to be found. Values from 0 to 1023 encode offsets from 1 to 1024.
The encoding may be �prescient�, with the length larger than the offset, which works just fine: the
new data is identical to the data at the given offset, even though the two strings overlap.

Some small images, in particular 48×48 face files as used by seemail (see faces(1) and face(6))
and 16×16 cursors, can be stored textually, suitable for inclusion in C source. Each line of text
represents one scan line as a comma-separated sequence of hexadecimal bytes, shorts, or words
in C format. For cursors, each line defines a pair of bytes. (It takes two images to define a cursor;
each must be stored separately to be processed by programs such as tweak(1).) Face files of one
bit per pixel are stored as a sequence of shorts, those of larger pixel sizes as a sequence of longs.
Software that reads these files must deduce the image size from the input; there is no header.
These formats reflect history rather than design.

SEE ALSO
jpg(1), tweak(1), graphics(2), draw(2), allocimage(2), color(6), face(6), font(6)

865

KEYBOARD(6) KEYBOARD(6)

NAME
keyboard � how to type characters

DESCRIPTION
Keyboards are idiosyncratic. It should be obvious how to type ordinary ASCII characters, back
space, tab, escape, and newline. In Plan 9, the key labeled Return or Enter generates a new
line (0x0A); if there is a key labeled Line Feed, it generates a carriage return (0x0D); Plan 9
eschews CRLFs. All control characters are typed in the usual way; in particular, control-J is a line
feed and control-M a carriage return. On the PC and some other machines, the key labeled Caps
Lock acts as an additional control key.

The delete character (0x7F) may be generated by a different key, one near the extreme upper
right of the keyboard. On the Next it is the key labeled * (not the asterisk above the 8). On the
SLC and Sparcstation 2, delete is labeled Num Lock (the key above Backspace labeled Delete
functions as an additional backspace key). On the other keyboards, the key labeled Del or
Delete generates the delete character.

The view character (0x80), used by rio(1), acme(1), and sam(1), causes windows to scroll forward.
It is generally somewhere near the lower right of the main key area. The scroll character is gener
ated by the VIEW key on the Gnot, the Alt Graph key on the SLC, and the arrow key � on the
other terminals. As a convenience for sloppy typists, some programs interpret � and � keys,
which lie on either side of �, as view keys as well. The arrow key � scrolls backward.

Characters in Plan 9 are runes (see utf(6)). Any rune can be typed using a compose key followed by
several other keys. The compose key is also generally near the lower right of the main key area:
the NUM PAD key on the Gnot, the Alternate key on the Next, the Compose key on the SLC,
the Option key on the Magnum, and either Alt key on the PC. After typing the compose key,
type a lower case x and up to six hexadecimal characters (digits and a to f) followed by a semi
colon (if the sequence is less than six digits long) to type a single rune with the value represented
by the typed number. There are shorthands for many characters, comprising the compose key fol
lowed by a two- or three-character sequence. There are several rules guiding the design of the
sequences, as illustrated by the following examples. The full list is too long to repeat here, but is
contained in the file /lib/keyboard in a format suitable for grep(1) or look(1).

A repeated symbol gives a variant of that symbol, e.g., ?? yields ¿ .

ASCII digraphs for mathematical operators give the corresponding operator, e.g., <= yields
d.

Two letters give the corresponding ligature, e.g., AE yields Æ.

Mathematical and other symbols are given by abbreviations for their names, e.g., pg yields
¶.

Chess pieces are given by a w or b followed by a letter for the piece (k for king, q for
queen, r for rook, n for knight, b for bishop, or p for pawn), e.g., wk for a white king.

Greek letters are given by an asterisk followed by a corresponding latin letter, e.g., *d
yields ´.

Cyrillic letters are given by an at sign followed by a corresponding latin letter or letters,
e.g., @ya yields O.

Script letters are given by a dollar sign followed by the corresponding regular letter, e.g.,
$F yields 1.

A digraph of a symbol followed by a letter gives the letter with an accent that looks like the
symbol, e.g., ,c yields ç.

Two digits give the fraction with that numerator and denominator, e.g., 12 yields ½.

The letter s followed by a character gives that character as a superscript, e.g., s1 yields q.
These characters are taken from the Unicode block 0x2070; the 1, 2, and 3 superscripts in
the Latin-1 block are available by using a capital S instead of s.

Sometimes a pair of characters give a symbol related to the superimposition of the charac
ters, e.g., cO yields ©.

866

KEYBOARD(6) KEYBOARD(6)

A mnemonic letter followed by $ gives a currency symbol, e.g., l$ yields £.

Note the difference between ß (ss) and µ (micron) and the Greek ² and ¼.

FILES
/lib/keyboard sorted table of characters and keyboard sequences

SEE ALSO
intro(1), ascii(1), tcs(1), acme(1), rio(1), sam(1), cons(3), utf(6)

867

KEYS.WHO(6) KEYS.WHO(6)

NAME
keys.who � biographic information for key holders

DESCRIPTION
When auth/changeuser (see auth(8)) creates or modifies an account, it writes a line of biographical
information to /adm/keys.who. The line contains the following fields, separated by | charac
ters:

name login name

postid company-wide user name

full name
full name of the user

dept department of the user

email...
one or more fields containing email addresses to be notified when the key is about to
expire

The program auth/warning, which has fallen into disrepair, once read keys.who and mailed expiry
warnings.

EXAMPLE
rsc|rscox|Russell S Cox|11276|rsc|dmr|rob

SEE ALSO
keyfs(4), auth(8)

868

MAN(6) MAN(6)

NAME
man � macros to typeset manual

SYNOPSIS
nroff −man file ...

troff −man file ...

DESCRIPTION
These macros are used to format pages of this manual.

Except in .LR and .RL requests, any text argument denoted t in the request summary may be
zero to six words. Quotes " ... " may be used to include blanks in a �word�. If t is empty, the
special treatment is applied to the next text input line (the next line that doesn�t begin with dot).
In this way, for example, .I may be used to italicize a line of more than 6 words, or .SM followed
by .B to make small letters in �bold� font.

A prevailing indent distance is remembered between successive indented paragraphs, and is reset
to default value upon reaching a non-indented paragraph. Default units for indents i are ens.

The fonts are

R roman, the main font, preferred for diagnostics
I italic, preferred for parameters, short names of commands, names of manual pages, and

naked function names
B �bold�, actually the constant width font, preferred for examples, file names, declarations,

keywords, names of struct members, and literals (numbers are rarely literals)
L also the constant width font. In troff L=B; in nroff arguments of the macros .L, .LR, and

.RL are printed in quotes; preferred only where quotes really help (e.g. lower-case literals
and punctuation).

Type font and size are reset to default values before each paragraph, and after processing font- or
size-setting macros.

The −man macros admit equations and tables in the style of eqn(1) and tbl(1), but do not support
arguments on .EQ and .TS macros.

These strings are predefined by −man:

*R �®�, �(Reg)� in nroff.
*S Change to default type size.

FILES
/sys/lib/tmac/tmac.an

SEE ALSO
troff(1), man(1)

REQUESTS
Request Cause If no Explanation

Break Argument
.B t no t=n.t.l.* Text t is �bold�.
.BI t no t=n.t.l. Join words of t alternating bold and italic.
.BR t no t=n.t.l. Join words of t alternating bold and Roman.
.DT no Restore default tabs.
.EE yes End displayed example
.EX yes Begin displayed example
.HP i yes i=p.i.* Set prevailing indent to i. Begin paragraph with hanging indent.
.I t no t=n.t.l. Text t is italic.
.IB t no t=n.t.l. Join words of t alternating italic and bold.
.IP x i yes x="" Same as .TP with tag x.
.IR t no t=n.t.l. Join words of t alternating italic and Roman.
.L t no t=n.t.l. Text t is literal.
.LP yes Same as .PP.
.LR t no Join 2 words of t alternating literal and Roman.
.PD d no d=.4v Interparagraph distance is d.

869

MAN(6) MAN(6)

.PP yes Begin paragraph. Set prevailing indent to default.

.RE yes End of relative indent. Set prevailing indent to amount of starting .RS.

.RI t no t=n.t.l. Join words of t alternating Roman and italic.

.RL t no Join 2 or 3 words of t alternating Roman and literal.

.RS i yes i=p.i. Start relative indent, move left margin in distance i. Set prevailing indent to
default for nested indents.

.SH t yes t="" Subhead; reset paragraph distance.

.SM t no t=n.t.l. Text t is small.

.SS t no t="" Secondary subhead.

.TF s yes Prevailing indent is wide as string s in font L; paragraph distance is 0.

.TH n c x yes Begin page named n of chapter c; x is extra commentary, e.g. �local�, for page
head. Set prevailing indent and tabs to default.

.TP i yes i=p.i. Set prevailing indent to i. Restore default indent if i=0. Begin indented para
graph with hanging tag given by next text line. If tag doesn�t fit, place it on
separate line.

.1C yes Equalize columns and return to 1-column output

.2C yes Start 2-column nofill output

* n.t.l. = next text line; p.i. = prevailing indent

BUGS
There�s no way to fool troff into handling literal double quote marks " in font-alternation macros,
such as .BI.
There is no direct way to suppress column widows in 2-column output; the column lengths may be
adjusted by inserting .sp requests before the closing .1C.

870

MAP(6) MAP(6)

NAME
map � digitized map formats

DESCRIPTION
Files used by map(7) are a sequence of structures of the form:

struct {
signed char patchlatitude;
signed char patchlongitude;
short n;
union {

struct {
short latitude;
short longitude;

} point[n];
struct {

short latitude;
short longitude;
struct {

signed char latdiff;
signed char londiff;

} point[�n];
} highres;

} segment;
};
where short stands for 16-bit integers and there is no padding within or between structs.
Shorts are stored in little-endian order, low byte first. To assure portability, map accesses them
bytewise.

Fields patchlatitude and patchlongitude tell to what 10-degree by 10-degree patch of
the earth�s surface a segment belongs. Their values range from �9 to 8 and from �18 to 17,
respectively, and indicate the coordinates of the southeast corner of the patch in units of 10
degrees.

Each segment of |n| points is connected; consecutive segments are not necessarily related. Lati
tude and longitude are measured in units of 0.0001 radian. If n is negative, then differences to
the first and succeeding points are measured in units of 0.00001 radian. Latitude is counted posi
tive to the north and longitude positive to the west.

The patches are ordered lexicographically by patchlatitude then patchlongitude. A
printable index to the first segment of each patch in a file named data is kept in an associated file
named data.x. Each line of an index file contains patchlatitude, patchlongitude and
the byte position of the patch in the map file. Both the map file and the index file are ordered by
patch latitude and longitude.

SEE ALSO
map(7)
The data comes from the World Data Bank I and II and U.S. Government sources: the Census
Bureau, Geological Survey, and CIA.

871

MDIR(6) MDIR(6)

NAME
mdir � mail directory format

SYNOPSIS
The mdir format is used by Upas as a replacement for tradition mailbox format. An mdir mailbox
is a directory containing any number of messages stored one message per file. Individual mes
sages are stored in the same format they would be in a traditional mailbox; each message is a
valid mailbox with a single message. The message files are named with the UNIX seconds corre
sponding to the date on the From line, a �.� separator and a two digit sequence starting with 00.

One mdir may contain other mdirs but (currently) this relationship is in name only. The mail box
/mail/box/a does not contain any messages from /mail/box/a/b, according to upasfs(4).

SEE ALSO
splitmbox(8), upasfs(4)

872

MHTML(6) MHTML(6)

NAME
mhtml � macros for formatting HTML

SYNOPSIS
pic | tbl | eqn | htmlroff [−man | −ms] −mhtml file ...

DESCRIPTION
This package of htmlroff(1) macro definitions provides convenient macros for formatting HTML. It
is usually used along with troff(1) macro packages such as man(6) and ms(6). Mhtml replaces
some macros defined in the other packages, so it should be listed after them on the htmlroff com
mand line.

The following macros are defined:

.HTML title
Print an HTML header marking the output as HTML 4.01 loose transitional encoded in UTF.
If given, the title is printed inside <title> tags. This macro opens the <html> tag,
opens and closes the <head> section, and opens <body>. It invokes the .HEAD macro
inside the <head> section. To add arbitrary lines to the header, append to .HEAD before
invoking .HTML.

.FS, .FE
Accumulate footnotes and print them at the end of the document under a Notes heading.
These replace the macros in ms(6). To emit the notes accumulated so far, invoke .NOTES.

.PS, .PE
Replace input bracketed .PS and .PE with a PNG image corresponding to the output of
running troff(1) on the input.

.TS, .TE
Identical to .PS and .PE.

.B1 margin width, .B2
Format the input between .B1 and .B2 inside a box, with margin (default 10) pixels
between the box and the text. The box is set to be width (default 60) percent of the cur
rent output width.

FILES
/sys/lib/tmac/tmac.html

SEE ALSO
htmlroff(1), htmlroff(6), ms(6)

873

MNIHONGO(6) MNIHONGO(6)

NAME
mnihongo � macros for typesetting Japanese

SYNOPSIS
troff −mnihongo ...

DESCRIPTION
Mnihongo provides a simple troff(1) post-processor that formats Unicode characters that might be
Japanese text. It looks up the characters in the bitmap font
/lib/font/bit/pelm/unicode.9x24.font and generates bitmap images embedded in
the output.

During troff processing, widths of the Japanese characters are taken from the troff font Jp, which
is at best a simple approximation to the truth.

FILES
/bin/aux/mnihongo
/sys/lib/tmac/tmac.nihongo
/lib/font/bit/pelm/unicode.9x24.font

SOURCE
/sys/src/cmd/aux/mnihongo

SEE ALSO
troff(1)

874

MPICTURES(6) MPICTURES(6)

NAME
mpictures � picture inclusion macros

SYNOPSIS
troff −mpictures [options] file ...

DESCRIPTION
Mpictures macros insert PostScript pictures into troff(1) documents. The macros are:

.BP source height width position offset flags label
Define a frame and place a picture in it. Null arguments, represented by "", are inter
preted as defaults. The arguments are:

source Name of a PostScript picture file, optionally suffixed with (n) to select page number
n from the file (first page by default).

height Vertical size of the frame, default 3.0i.
width Horizontal size of the frame, current line length by default.
position

l (default), c, or r to left-justify, center, or right-justify the frame.
offset Move the frame horizontally from the original position by this amount, default 0i.
flags One or more of:

ad Rotate the picture clockwise d degrees, default d=90.
o Outline the picture with a box.
s Freely scale both picture dimensions.
w White out the area to be occupied by the picture.
l,r,t,b

Attach the picture to the left right, top, or bottom of the frame.
label Place label at distance 1.5v below the frame.

If there�s room, .BP fills text around the frame. Everything destined for either side of the
frame goes into a diversion to be retrieved when the accumulated text sweeps past the trap
set by .BP or when the diversion is explicitly closed by .EP.

.PI source height,width,yoffset,xoffset flags.
This low-level macro, used by .BP, can help do more complex things. The two arguments
not already described are:

xoffset
Offset the frame from the left margin by this amount, default 0i.

yoffset
Offset the frame from the current baseline, measuring positive downward, default
0i.

.EP End a picture started by .BP; .EP is usually called implicitly by a trap at frame bottom.

If a PostScript file lacks page-delimiting comments, the entire file is included. If no
%%BoundingBox comment is present, the picture is assumed to fill an 8.5×11-inch page. Noth
ing prevents the picture from being placed off the page.

SEE ALSO
troff(1)

DIAGNOSTICS
A picture file that can�t be read by the PostScript postprocessor is replaced by white space.

BUGS
A picture and associated text silently disappear if a diversion trap set by .BP isn�t reached. Call
.EP at the end of the document to retrieve it.
Macros in other packages may break the adjustments made to the line length and indent when text
is being placed around a picture.
A missing or improper %%BoundingBox comment may cause the frame to be filled incorrectly.

875

MS(6) MS(6)

NAME
ms � macros for formatting manuscripts

SYNOPSIS
nroff −ms [options] file ...
troff −ms [options] file ...

DESCRIPTION
This package of nroff and troff(1) macro definitions provides a canned formatting facility for tech
nical papers in various formats.

The macro requests are defined below. Many nroff and troff requests are unsafe in conjunction
with this package, but the following requests may be used with impunity after the first .PP: .bp,
.br, .sp, .ls, .na.

Output of the eqn(1), tbl(1), pic(1) and grap(1) preprocessors for equations, tables, pictures, and
graphs is acceptable as input.

FILES
/sys/lib/tmac/tmac.s

SEE ALSO
M. E. Lesk, ��Typing Documents on the UNIX System: Using the �ms Macros with Troff and Nroff��,
Unix Research System Programmer’s Manual, Tenth Edition, Volume 2.
eqn(1), troff(1), tbl(1), pic(1)

REQUESTS
Request Initial Cause Explanation

Value Break
.1C yes yes One column format on a new page.
.2C no yes Two column format.
.AB no yes Begin abstract.
.AE - yes End abstract.
.AI no yes Author�s institution follows. Suppressed in .TM.
.AT no yes Print �Attached� and turn off line filling.
.AU x y no yes Author�s name follows. x is location and y is extension, ignored except in TM.
.B x y z no no Print x in boldface, append roman y and preface with z; if no argument switch to

boldface.
.B1 no yes Begin text to be enclosed in a box.
.B2 no yes End boxed text.
.BI x y z no no Print x in bold italic, append roman y and preface with z; if no argument switch

to bold italic.
.BT date no Bottom title, automatically invoked at foot of page. May be redefined.
.BX x no no Print x in a box.
.CW x y z no no Constant width font for x, append roman y and preface with z; if no argument

switch to constant width.
.CT no yes Print �Copies to� and turn off line filling.
.DA x nroff no �Date line� at bottom of page is x. Default is today.
.DE - yes End displayed text. Implies .KE.
.DS x no yes Start of displayed text, to appear verbatim line-by-line: I indented (default), L

left-justified, C centered, B (block) centered with straight left margin. Implies
.KS.

.EG no - Print document in BTL format for �Engineer�s Notes.� Must be first.

.EN - yes Space after equation produced by neqn or eqn(1).

.EQ x y - yes Display equation. Equation number is y. Optional x is I, L, C as in .DS.

.FE - yes End footnote.

.FP x - no Set font positions for a family, e.g., .FP lucidasans

.FS no no Start footnote. The note will be moved to the bottom of the page.

.HO - no �Bell Laboratories, Holmdel, New Jersey 07733�.

.I x y z no no Italicize x, append roman y and preface with z; if no argument switch to italic.

.IH no no �Bell Laboratories, Naperville, Illinois 60540�

.IM no no Print document in BTL format for an internal memorandum. Must be first.

876

MS(6) MS(6)

.IP x y no yes Start indented paragraph, with hanging tag x. Indentation is y ens (default 5).

.KE - yes End keep. Put kept text on next page if not enough room.

.KF no yes Start floating keep. If the kept text must be moved to the next page, float later
text back to this page.

.KS no yes Start keeping following text.

.LG no no Make letters larger.

.LP yes yes Start left-blocked paragraph.

.LT no yes Start a letter; a non-empty first argument produces a full Lucent letterhead, a
second argument is a room number, a third argument is a telephone number.

.MF - - Print document in BTL format for �Memorandum for File.� Must be first.

.MH - no �Bell Laboratories, Murray Hill, New Jersey 07974�.

.MR - - Print document in BTL format for �Memorandum for Record.� Must be first.

.ND date troff no Use date supplied (if any) only in special BTL format positions; omit from page
footer.

.NH n - yes Same as .SH, with automatic section numbers like �1.2.3�; n is subsection level
(default 1). If n is 0, reset the numbering.

.NL yes no Make letters normal size.

.P1 - yes Begin program display in constant width font.

.P2 - yes End program display.

.PE - yes End picture; see pic(1).

.PF - yes End picture; restore vertical position.

.PP no yes Begin paragraph. First line indented.

.PS h w - yes Start picture; height and width in inches.

.PY - no �Bell Laboratories, Piscataway, New Jersey 08854�

.QE - yes End quoted material.

.QP - yes Begin quoted paragraph (indent both margins).

.QS - yes Begin quoted material (indent both margins).

.R yes no Roman text follows.

.RE - yes End relative indent level.

.RP no - Cover sheet and first page for released paper. Must precede other requests.

.RS - yes Start level of relative indentation from which subsequent indentation is mea
sured.

.SG x no yes Insert signature(s) of author(s), ignored except in .TM and .LT. x is the
reference line (initials of author and typist). .}f

.SH - yes Section head follows, font automatically bold.

.SM no no Make letters smaller.

.TA x... 5... no Set tabs in ens. Default is 5 10 15 ...

.TE - yes End table; see tbl(1).

.TH - yes End heading section of table.

.TL no yes Title follows.

.TM x... no - Print document in BTL technical memorandum format. Arguments are TM num
ber, (quoted list of) case number(s), and file number. Must precede other
requests.

.TR x - - Print in BTL technical report format; report number is x. Must be first.

.TS x - yes Begin table; if x is H table heading is repeated on new pages.

.UL x - no Underline argument (even in troff).

.UX y z - no �zUNIXy�; first use gives registered trademark notice.

.WH - no �Bell Laboratories, Whippany, New Jersey 07981�.

877

NAMESPACE(6) NAMESPACE(6)

NAME
namespace � name space description file

DESCRIPTION
Namespace files describe how to construct a name space from scratch, an operation normally per
formed by the newns or addns subroutines (see auth(2)) which is typically called by init(8). Each
line specifies one name space operation. Spaces and tabs separate arguments to operations.
Blank lines and lines with # as the first non-space character are ignored. Environment variables of
the form $name are expanded within arguments, where name is a UTF string terminated by white
space, a /, or a $.

The known operations and their arguments are:

mount [−abcC] servename old [spec]
Mount servename on old.

bind [−abcC] new old
Bind new on old.

cd dir
Change the working directory to dir.

unmount [new] old
Unmount new from old, or everything mounted on old if new is missing.

clear
Clear the name space with rfork(RFCNAMEG).

. path
Execute the namespace file path. Note that path must be present in the name space being
built.

The options for bind and mount are interpreted as in bind(1).

SEE ALSO
bind(1), namespace(4), init(8)

878

NDB(6) NDB(6)

NAME
ndb � Network database

DESCRIPTION
The network database consists of files describing machines known to the local installation and
machines known publicly. The files comprise multi-line tuples made up of attribute/value pairs of
the form attr=value or sometimes just attr. Each line starting without white space starts a new
tuple. Lines starting with # are comments.

The file /lib/ndb/local is the root of the database. Other files are included in the database if
a tuple with an attribute-value pair of attribute database and no value exists in
/lib/ndb/local. Within the database tuple, each pair with attribute file identifies a file
to be included in the database. The files are searched in the order they appear. For example:

database=
file=/lib/ndb/common
file=/lib/ndb/local
file=/lib/ndb/global

declares the database to be composed of the three files /lib/ndb/common,
/lib/ndb/local, and /lib/ndb/global. By default, /lib/ndb/local is searched
before the others. However, /lib/ndb/local may be included in the database to redefine
its ordering.

Within tuples, pairs on the same line bind tighter than pairs on different lines.

Programs search the database directly using the routines in ndb(2) or indirectly using ndb/cs
and ndb/dns (see ndb(8)). Both ndb/cs and the routine ndbipinfo impose structure on the oth
erwise flat database by using knowledge specific to the network. The internet is made up of net
works which can be subnetted multiple times. A network must have an ipnet attribute and is
uniquely identified by the values of its ip and ipmask attributes. If the ipmask is missing, the
relevant Class A, B or C one is used.

A search for an attribute associated with a network or host starts at the lowest level, the entry for
the host or network itself, and works its way up, bit by bit, looking at entries for nets/subnets that
include the network or host. The search ends when the attribute is found. For example, consider
the following entries:

ipnet=murray−hill ip=135.104.0.0 ipmask=255.255.0.0
dns=135.104.10.1
ntp=ntp.cs.bell−labs.com

ipnet=plan9 ip=135.104.9.0 ipmask=255.255.255.0
ntp=oncore.cs.bell−labs.com
smtp=smtp1.cs.bell−labs.com

ip=135.104.9.6 sys=anna dom=anna.cs.bell−labs.com
smtp=smtp2.cs.bell−labs.com

Here anna is on the subnet plan9 which is in turn on the class B net murray−hill. Assume
that we�re searching for anna�s NTP and SMTP servers. The search starts by looking for an entry
with sys=anna. We find the anna entry. Since it has an smtp=smtp2.cs.bell−labs.com
pair, we�re done looking for that attribute. To fulfill the NTP request, we continue by looking for
networks that include anna�s IP address. We lop off the right most one bit from anna�s address
and look for an ipnet= entry with ip=135.104.9.4. Not finding one, we drop another bit
and look for an ipnet= entry with ip=135.104.9.0. There is such an entry and it has the
pair, ntp=oncore.cs.bell−labs.com, ending our search.

Ndb/cs can be made to perform such network aware searches by using metanames in the dial
string. A metaname is a $ followed by an attribute name. Ndb/cs looks up the attribute relative to
the system it is running on. Thus, with the above example, if a program called

dial("tcp!$smtp!smtp", 0, 0, 0);

the dial would connect to the SMTP port of smtp2.cs.bell−labs.com.

A number of attributes are meaningful to programs and thus reserved. They are:

879

NDB(6) NDB(6)

sys system name (a short name)
dom Internet fully-qualified domain name
ip Internet address, v4 or v6.
ipv6 IPv6 Internet address. For DNS, an AAAA record.
ipnet Internet network name
ipmask Internet network mask
ipgw Internet gateway (ip address)
ether Ethernet address (must be lower-case hex)
vendor Specific vendor attribute for dhcp and bootp
bootf file to download for initial bootstrap; /386/9bootpxe to boot a PC via PXE.
tftp an TFTP server to use for PXE bootstrap
fs Plan 9 file server to be used
auth Plan 9 authentication server to be used
authdom Plan 9 authentication domain. To specify an authentication server for a particu

lar domain, add a tuple containing both auth and authdom attributes and val
ues.

rootpath the NFS root for unix machines
rootserver the NFS server used with rootpath
dnsdomain a domain name that ndb/dns adds onto any unrooted names when doing a

search. There may be multiple dnsdomain pairs.
dns a DNS server to use (for DNS and DHCP)
ntp an NTP server to use (for DHCP)
smtp an SMTP server to use (for DHCP)
time a time server to use (for DHCP)
wins a Windows name server (for DHCP)
mx mail exchanger (for DNS and DHCP); also pref.
srv service location (for DNS); also pri, weight and port.
soa start of area (for DNS)
tcp a TCP service name
udp a UDP service name
port a TCP or UDP port number
restricted a TCP service that can be called only by ports numbered less than 1024
proto a protocol supported by a host. The pair proto=il was needed by cs (see

ndb(8)) in tuples for hosts that supported the IL protocol

Cs defers to dns to translate dotted names to IP addresses, only consulting the database files if dns
cannot translate the name.

Cs allows network entries with sys and dom attributes but no ip attribute. Searches for the sys
tem name are resolved by looking up the domain name with dns.

The file /lib/ndb/auth is used during authentication to decide who has the power to �speak
for� other users; see authsrv(6).

EXAMPLES
A tuple for the CPU server, spindle.

sys=spindle
dom=spindle.research.bell−labs.com
bootf=/mips/9powerboot
ip=135.104.117.32 ether=080069020677

Entries for the network mh−astro−net and its subnets.

ipnet=mh−astro−net ip=135.104.0.0 ipmask=255.255.255.0
ipgw=r70.research.bell−labs.com
fs=bootes.research.bell−labs.com
auth=p9auth.research.bell−labs.com

ipnet=unix−room ip=135.104.117.0
ipgw=135.104.117.1

ipnet=third−floor ip=135.104.51.0
ipgw=135.104.51.1

880

NDB(6) NDB(6)

Mappings between TCP service names and port numbers.

tcp=sysmon port=401
tcp=rexec port=512 restricted
tcp=9fs port=564

FILES
/lib/ndb/local first database file searched

SEE ALSO
con(1), dial(2), ndb(2), booting(8), dhcpd(8), ipconfig(8), ndb(8)

881

PLOT(6) PLOT(6)

NAME
plot � graphics interface

DESCRIPTION
Files of this format are interpreted by plot(1) to draw graphics on the screen. A plot file is a UTF

stream of instruction lines. Arguments are delimited by spaces, tabs, or commas. Numbers may
be floating point. Punctuation marks (except :) , spaces, and tabs at the beginning of lines are
ignored. Comments run from : to newline. Extra letters appended to a valid instruction are
ignored. Thus ...line, line, li all mean the same thing. Arguments are interpreted as fol
lows:

1. If an instruction requires no arguments, the rest of the line is ignored.

2. If it requires a string argument, then all the line after the first field separator is passed as
argument. Quote marks may be used to preserve leading blanks. Strings may include new
lines represented as \n.

3. Between numeric arguments alphabetic characters and punctuation marks are ignored.
Thus line from 5 6 to 7 8 draws a line from (5, 6) to (7, 8).

4. Instructions with numeric arguments remain in effect until a new instruction is read. Such
commands may spill over many lines. Thus the following sequence will draw a polygon with
vertices (4.5, 6.77), (5.8, 5.6), (7.8, 4.55), and (10.0, 3.6).

move 4.5 6.77
vec 5.8, 5.6 7.8
4.55 10.0, 3.6 4.5, 6.77

The instructions are executed in order. The last designated point in a line, move, rmove, vec,
rvec, arc, or point command becomes the �current point� (X,Y) for the next command.

Open & Close
o string Open plotting device. For troff, string specifies the size of the plot (default is 6i).
cl Close plotting device.

Basic Plotting Commands
e Start another frame of output.
m x y (move) Current point becomes x y.
rm dx dy Current point becomes X+dx Y+dy.
poi x y Plot the point x y and make it the current point.
v x y Draw a vector from the current point to x y.
rv dx dy Draw vector from current point to X+dx Y+dy
li x1 y1 x2 y2

Draw a line from x1 y1 to x2 y2. Make the current point x2 y2.
t string Place the string so that its first character is centered on the current point (default). If

string begins with \C (\R), it is centered (right-adjusted) on the current point. A back
slash at the beginning of the string may be escaped with another backslash.

a x1 y1 x2 y2 xc yc r
Draw a circular arc from x1 y1 to x2 y2 with center xc yc and radius r. If the radius is
positive, the arc is drawn counterclockwise; negative, clockwise. The starting point is
exact but the ending point is approximate.

ci xc yc r
Draw a circle centered at xc yc with radius r. If the range and frame parameters do not
specify a square, the �circle� will be elliptical.

di xc yc r
Draw a disc centered at xc yc with radius r using the filling color (see cfill below).

bo x1 y1 x2 y2
Draw a box with lower left corner at x1 y1 and upper right corner at x2 y2.

sb x1 y1 x2 y2
Draw a solid box with lower left corner at x1 y1 and upper right corner at x2 y2 using
the filling color (see cfill below).

par x1 y1 x2 y2 xg yg
Draw a parabola from x1 y1 to x2 y2 �guided� by xg yg. The parabola passes through the

882

PLOT(6) PLOT(6)

midpoint of the line joining xg yg with the midpoint of the line joining x1 y1 and x2 y2
and is tangent to the lines from xg yg to the endpoints.

pol { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Draw polygons with vertices x1 y1 ... xn yn and X1 Y1 ... Xm Ym. If only one polygon is
specified, the inner brackets are not needed.

fi { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Fill a polygon. The arguments are the same as those for pol except that the first vertex
is automatically repeated to close each polygon. The polygons do not have to be con
nected. Enclosed polygons appear as holes.

sp { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Draw a parabolic spline guided by x1 y1 ... xn yn with simple endpoints.

fsp { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Draw a parabolic spline guided by x1 y1 ... xn yn with double first endpoint.

lsp { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Draw a parabolic spline guided by x1 y1 ... xn yn with double last endpoint.

dsp { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
Draw a parabolic spline guided by x1 y1 ... xn yn with double endpoints.

csp { {x1 y1 ... xn yn} ... {X1 Y1 ... Xm Ym} }
in filename

(include) Take commands from filename.
de string { commands }

Define string as commands.
ca string scale

Invoke commands defined as string applying scale to all coordinates.

Commands Controlling the Environment
co string

Use color given by first character of string, one of red, yellow, green, blue,
cyan, magenta, white, and kblack.

pe string
Use string as the style for drawing lines. The available pen styles are: solid,
dott[ed], short, long, dotd[ashed], cdash, ddash

cf string
Color for filling (see co, above).

ra x1 y1 x2 y2
The data will fall between x1 y1 and x2 y2. The plot will be magnified or reduced to fit
the device as closely as possible.
Range settings that exactly fill the plotting area with unity scaling appear below for
devices supported by the filters of plot(1). The upper limit is just outside the plotting
area. In every case the plotting area is taken to be square; points outside may be dis
playable on devices with nonsquare faces.

fr px1 py1 px2 py2
Plot the data in the fraction of the display specified by px1 py1 for lower left corner and
px2 py2 for upper right corner. Thus frame .5 0 1. .5 plots in the lower right
quadrant of the display; frame 0. 1. 1. 0. uses the whole display but inverts the
y coordinates.

sa Save the current environment, and move to a new one. The new environment inherits
the old one. There are 7 levels.

re Restore previous environment.

SEE ALSO
plot(1), graph(1)

883

PLUMB(6) PLUMB(6)

NAME
plumb � format of plumb messages and rules

SYNOPSIS
#include <plumb.h>

DESCRIPTION
Message format

The messages formed by the plumb(2) library are formatted for transmission between processes
into textual form, using newlines to separate the fields. Only the data field may contain embedded
newlines. The fields occur in a specified order, and each has a name, corresponding to the ele
ments of the Plumbmsg structure, that is used in the plumbing rules. The fields, in order, are:

src application/service generating message
dst destination �port� for message
wdir working directory (used if data is a file name)
type form of the data, e.g. text
attr attributes of the message, in name=value pairs separated by white space (the

value must follow the usual quoting convention if it contains white space or
quote characters or equal signs; it cannot contain a newline)

ndata number of bytes of data
data the data itself

At the moment, only textual data (type=text) is supported.

All fields are optional, but type should usually be set since it describes the form of the data, and
ndata must be an accurate count (possibly zero) of the number of bytes of data. A missing field
is represented by an empty line.

Plumbing rules
The plumber (see plumb(2)) receives messages on its send port (applications send messages
there), interprets and reformats them, and (typically) emits them from a destination port. Its
behavior is determined by a plumbing rules file, default /usr/$user/lib/plumbing, which
defines a set of pattern/action rules with which to analyze, rewrite, and dispatch received mes
sages.

The file is a sequence of rule sets, each of which is a set of one-line rules called patterns and
actions. There must be at least one pattern and one action in each rule set. (The only exception is
that a rule set may contain nothing but plumb to rules; such a rule set declares the named ports
but has no other effect.) A blank line terminates a rule set. Lines beginning with a # character are
commentary and are regarded as blank lines.

A line of the form
include file

substitutes the contents of file for the line, much as in a C #include statement. Unlike in C, the
file name is not quoted. If file is not an absolute path name, or one beginning ./ or ../, file is
looked for first in the directory in which the plumber is executing, and then in
/sys/lib/plumb.

When a message is received by the plumber, the rule sets are examined in order. For each rule
set, if the message matches all the patterns in the rule set, the actions associated with the rule set
are triggered to dispose of the message. If a rule set is triggered, the rest are ignored for this
message. If none is triggered, the message is discarded (giving a write error to the sender) unless
it has a dst field that specifies an existing port, in which case the message is emitted, unchanged,
from there.

Patterns and actions all consist of three components: an object, a verb, and arguments. These are
separated by white space on the line. The arguments may contain quoted strings and variable sub
stitutions, described below, and in some cases contain multiple words. The object and verb are
single words from a pre-defined set.

The object in a pattern is the name of an element of the message, such as src or data, or the
special case arg, which refers to the argument component of the current rule. The object in an
action is always the word plumb.

884

PLUMB(6) PLUMB(6)

The verbs in the pattern rules describe how the objects and arguments are to be interpreted.
Within a rule set, the patterns are evaluated in sequence; if one fails, the rule set fails. Some verbs
are predicates that check properties of the message; others rewrite components of the message
and implicitly always succeed. Such rewritings are permanent, so rules that specify them should
be placed after all pattern-matching rules in the rule set.

add The object must be attr. Append the argument, which must be a sequence of
name=value pairs, to the list of attributes of the message.

delete The object must be attr. If the message has an attribute whose name is the
argument, delete it from the list of attributes of the message. (Even if the mes
sage does not, the rule matches the message.)

is If the text of the object is identical to the text of the argument, the rule
matches.

isdir If the text of the object is the name of an existing directory, the rule matches
and sets the variable $dir to that directory name.

isfile If the text of the object is the name of an existing file (not a directory), the rule
matches and sets the variable $file to that file name.

matches If the entire text of the object matches the regular expression specified in the
argument, the rule matches. This verb is described in more detail below.

set The value of the object is set to the value of the argument.
The matches verb has special properties that enable the rules to select which portion of the data
is to be sent to the destination. By default, a data matches rule requires that the entire text
matches the regular expression. If, however, the message has an attribute named click, that
reports that the message was produced by a mouse click within the text and that the regular
expressions in the rule set should be used to identify what portion of the data the user intended.
Typically, a program such as an editor will send a white-space delimited block of text containing
the mouse click, using the value of the click attribute (a number starting from 0) to indicate
where in the textual data the user pointed.
When the message has a click attribute, the data matches rules extract the longest leftmost
match to the regular expression that contains or abuts the textual location identified by the
click. For a sequence of such rules within a given rule set, each regular expression, evaluated
by this specification, must match the same subset of the data for the rule set to match the mes
sage. For example, here is a pair of patterns that identify a message whose data contains the
name of an existing file with a conventional ending for an encoded picture file:

data matches ’[a−zA−Z0−9_�./]+’
data matches ’([a−zA−Z0−9_�./]+).(jpe?g|gif|bit|ps|pdf)’

The first expression extracts the largest subset of the data around the click that contains file name
characters; the second sees if it ends with, for example, .jpeg. If only the second pattern were
present, a piece of text horse.gift could be misinterpreted as an image file named
horse.gif.
If a click attribute is specified in a message, it will be deleted by the plumber before sending
the message if the data matches rules expand the selection.
The action rules all have the object plumb. There are only three verbs for action rules:

to The argument is the name of the port to which the message will be sent. If the
message has a destination specified, it must match the to port of the rule set
or the entire rule set will be skipped. (This is the only rule that is evaluated out
of order.)

client If no application has the port open, the arguments to a plumb start rule
specify a shell program to run in response to the message. The message will
be held, with the supposition that the program will eventually open the port to
retrieve it.

start Like client, but the message is discarded. Only one start or client rule
should be specified in a rule set.

The arguments to all rules may contain quoted strings, exactly as in rc(1). They may also contain
simple string variables, identified by a leading dollar sign $. Variables may be set, between rule
sets, by assignment statements in the style of rc. Only one variable assignment may appear on a
line. The plumber also maintains some built-in variables:

$0 The text that matched the entire regular expression in a previous data
matches rule. $1, $2, etc. refer to text matching the first, second, etc. paren
thesized subexpression.

885

PLUMB(6) PLUMB(6)

$attr The textual representation of the attributes of the message.
$data The contents of the data field of the message.
$dir The directory name resulting from a successful isdir rule. If no such rule has

been applied, it is the string constructed syntactically by interpreting data as a
file name in wdir.

$dst The contents of the dst field of the message.
$file The file name resulting from a successful isfile rule. If no such rule has been

applied, it is the string constructed syntactically by interpreting data as a file
name in wdir.

$type The contents of the type field of the message.
$src The contents of the src field of the message.
$wdir The contents of the wdir field of the message.

EXAMPLE
The following is a modest, representative file of plumbing rules.
these are generally in order from most specific to least,
since first rule that fires wins.

addr=’:(#?[0−9]+)’
protocol=’(https?|ftp|file|gopher|mailto|news|nntp|telnet|wais)’
domain=’[a−zA−Z0−9_@]+([.:][a−zA−Z0−9_@]+)*/?[a−zA−Z0−9_?,%#~&/\−]+’
file=’([:.][a−zA−Z0−9_?,%#~&/\−]+)*’

image files go to page
type is text
data matches ’[a−zA−Z0−9_\−./]+’
data matches ’([a−zA−Z0−9_\−./]+).(jpe?g|gif|bit)’
arg isfile $0
plumb to image
plumb start page −w $file

URLs go to web browser
type is text
data matches $protocol://$domain$file
plumb to web
plumb start window webbrowser $0

existing files, possibly tagged by line number, go to edit/sam
type is text
data matches ’([.a−zA−Z0−9_/�]+[a−zA−Z0−9_/\−])(’$addr’)?’
arg isfile $1
data set $file
attr add addr=$3
plumb to edit
plumb start window sam $file

.h files are looked up in /sys/include and passed to edit/sam
type is text
data matches ’([a−zA−Z0−9]+\.h)(’$addr’)?’
arg isfile /sys/include/$1
data set $file
attr add addr=$3
plumb to edit
plumb start window sam $file

The following simple plumbing rules file is a good beginning set of rules.
to update: cp /usr/$user/lib/plumbing /mnt/plumb/rules

editor = acme
or editor = sam
include basic

886

PLUMB(6) PLUMB(6)

FILES
/usr/$user/lib/plumbing default rules file.
/mnt/plumb mount point for plumber(4).
/sys/lib/plumb directory for include files.
/sys/lib/plumb/fileaddr public macro definitions.
/sys/lib/plumb/basic basic rule set.

SEE ALSO
plumb(1), plumb(2), plumber(4), regexp(6)

887

REGEXP(6) REGEXP(6)

NAME
regexp � regular expression notation

DESCRIPTION
A regular expression specifies a set of strings of characters. A member of this set of strings is
said to be matched by the regular expression. In many applications a delimiter character, com
monly /, bounds a regular expression. In the following specification for regular expressions the
word �character� means any character (rune) but newline.

The syntax for a regular expression e0 is

e3: literal | charclass | ’.’ | ’^’ | ’$’ | ’(’ e0 ’)’

e2: e3
| e2 REP

REP: ’*’ | ’+’ | ’?’

e1: e2
| e1 e2

e0: e1
| e0 ’|’ e1

A literal is any non-metacharacter, or a metacharacter (one of .*+?[]()|\^$), or the
delimiter preceded by \.

A charclass is a nonempty string s bracketed [s] (or [^s]); it matches any character in (or
not in) s. A negated character class never matches newline. A substring a−b, with a and b in
ascending order, stands for the inclusive range of characters between a and b. In s, the metachar
acters −,], an initial ^, and the regular expression delimiter must be preceded by a \; other
metacharacters have no special meaning and may appear unescaped.

A . matches any character.

A ^ matches the beginning of a line; $ matches the end of the line.

The REP operators match zero or more (*), one or more (+), zero or one (?), instances respec
tively of the preceding regular expression e2.

A concatenated regular expression, e1e2, matches a match to e1 followed by a match to e2.

An alternative regular expression, e0|e1, matches either a match to e0 or a match to e1.

A match to any part of a regular expression extends as far as possible without preventing a match
to the remainder of the regular expression.

SEE ALSO
awk(1), ed(1), grep(1), sam(1), sed(1), regexp(2)

888

REWRITE(6) REWRITE(6)

NAME
rewrite � mail rewrite rules

SYNOPSIS
/mail/lib/rewrite

DESCRIPTION
Mail(1) uses rewrite rules to convert mail destinations into commands used to dispose of the mail.
Each line of the file is a rule. Blank lines and lines beginning with # are ignored.

Each rewriting rule consists of (up to) 4 strings:

pattern A regular expression in the style of regexp(6). The pattern is applied to mail destina
tion addresses. The pattern match is case-insensitive and must match the entire
address.

type The type of rule; see below.
arg1 An ed(1) style replacement string, with \n standing for the text matched by the nth

parenthesized subpattern.
arg2 Another ed(1) style replacement string.

In each of these fields the substring \s is replaced by the login id of the sender and the substring
\l is replaced by the name of the local machine.

When delivering a message, mail starts with the first rule and continues down the list until a pat
tern matches the destination address. It then performs one of the following actions depending on
the type of the rule:

>> Append the mail to the file indicated by expanding arg1, provided that file appears to
be a valid mailbox.

| Pipe the mail through the command formed from concatenating the expanded arg1 and
arg2.

alias Replace the address by the address(es) specified by expanding arg1 and recur.
translate

Replace the address by the address(es) output by the command formed by expanding
arg1 and recur.

Mail expands the addresses recursively until each address has matched a >> or | rule or until the
recursion depth indicates a rewriting loop (currently 32).

If mail(1) is called with more than one address and several addresses match | rules and result in
the same expanded arg1, the message is delivered to all those addresses by a single command,
composed by concatenating the common expanded arg1 and each expanded arg2. This mail bun
dling is performed to reduce the number of times the same message is transmitted across a net
work. For example, with the following rewrite rule

([^!]*.bell−labs.com)!(.*) | "/mail/lib/qmail ’\s’ ’net!\1’" "’\2’"

if user presotto runs the command

% mail plan9.bell−labs.com!ken plan9.bell−labs.com!rob

there will follow only one execution of the command

/mail/lib/qmail presotto net!plan9.bell−labs.com ken rob

Here /mail/lib/qmail is an rc(1) script used for locally queuing remote mail.

In the event of an error, the disposition of the mail depends on the name of the command execut
ing the rewrite. If the command is called mail and is run by $user, the command will print an
error and deposit the message in /mail/box/$user/dead.letter. If the command is
called rmail, usually because it was invoked to deliver mail arriving over the network, the mes
sage will be returned to the sender. The returned message will appear to have been sent by user
postmaster.

SEE ALSO
mail(1)

889

SMTPD(6) SMTPD(6)

NAME
smtpd � SMTP listener configuration

DESCRIPTION
The SMTP daemon of mail(1) implements the slave side of the SMTP protocol to accept incoming
mail on TCP port 25. In general, smtpd�s default parameters are sufficient for internal systems on
protected networks, but external or gateway systems require additional security mechanisms. The
files /mail/lib/smtpd.conf, containing configuration parameters, and
/mail/lib/blocked, containing banished addresses, provide the means to exercise these
facilities.

Input Format
In both files input lines consist of a verb followed by one or more parameters. These tokens are
separated by white space or commas and all characters following a # are comments. A # cannot
be escaped. Continuation lines are not supported, but verbs that take multiple parameters can be
restated on many lines and the associated parameters accumulate into a single set. All token pro
cessing is case-insensitive.

Many parameters are addresses , either numeric IP addresses in CIDR notation or a sender address
in UUCP-style format.

An IP address in CIDR notation has the form

aaa.bbb.ccc.ddd/mask

consisting of a four octet IP address, a slash, and a mask length specifying the number of signifi
cant high-order bits. The lower the mask length, the larger the range of addresses covered by the
CIDR address; see RFC 1878 for a discussion of mask lengths. Missing low-order octets are
assumed to be zero. If a mask length is not given, a mask length of 16, 24, or 32 is assumed for
addresses containing two, three, or four octets, respectively. These mask lengths select a class B,
class C or Class D address block. Notice that this convention differs from the standard treatment,
where the default mask length depends on the allocation class of the network block containing the
address.

Sender addresses are specified in UUCP notation as follows:

[domain!]...domain!user

It is seldom necessary to specify more than one domain. When domain is missing or *, the
address selects the specified user in all domains. A domain of the form *.domain selects the
domain and all of its sub-domains. For example, example.com!user only matches the
account user in domain example.com, while *.example.com!user selects that account in
example.com and all of its sub-domains. When user is omitted or *, the address selects all
users in the specified domain. Finally, when * is the last character of the user name it is a wild-
card matching all user names beginning with user. This limited pattern matching capability should
be used with care. For safety, the sender addresses *, !, *!, !* and *!* are ignored.

/mail/lib/smtpd.conf
This file contains configuration options and parameters describing the local domain. Many of the
options can also be specified on the command line; command line options always override the val
ues in this file. Configuration options are:
defaultdomain domain

The name of the local domain; it is appended to addresses lacking a domain qualifica
tion. This is identical to the −h command line option.

norelay [on|off]
If on is specified, relaying is prohibited from unauthorized networks to external
domains. Authorized networks and domains must be specified by the ournets and
ourdomains verbs described below. Setting this option on is equivalent to specifying
the −f command line flag, but the list of networks and domains can only be specified in
this file.

verifysenderdom [on|off]
When on, smtpd verifies that the first domain of the sender�s address exists. The test is
cursory; it checks only that there is a DNS delegation for the domain. Setting the option
on is equivalent to specifying the −r command line option and is useful for detecting

890

SMTPD(6) SMTPD(6)

some unreturnable messages as well as messages with randomly generated domain
names.

saveblockedmsg [on|off]
When on, causes copies of blocked messages to be saved in subdirectories of
/mail/queue.dump. Directories are named with the date and file names are random
numbers. If this option is off blocked messages are discarded. Setting this option on is
equivalent to specifying the −s command line option.

ournets IP address [, IP address, ..., IP address]
This option specifies trusted source networks that are allowed to relay mail to external
domains. These are usually the internal networks of the local domain, but they can also
include friendly external networks. Addresses are in CIDR notation.

ourdomains domain [, domain, ..., domain]
This option specifies destination domains that are allowed to receive relayed mail.
These are usually the domains served by a gateway system. Domain specifications con
form to the format for sender addresses given above.

When the norelay option is enabled or the −f command line option given, relaying is allowed
only if the source IP address is in ournets or the destination domain is specified in
ourdomains.

Blocked Addresses
Smtpd consults /mail/ratify (see ratfs(4)) for a list of banned addresses. Messages received
from these addresses are rejected with a 5xx-series SMTP error code. There is no option to turn
blocking on or off; if /mail/ratify is mounted, smtpd will use it, even for connections from
trusted networks.

The command line format and address specifications conform to the notation described above. If
the parameters of the verb is sender addresses in UUCP format, the line must begin with an * char
acter; if the parameters are one or more IP addresses, the * must precede the verb. Most verbs
cause messages to be rejected; verbs of this class generally select different error messages. The
remaining verbs specify addresses that are always accepted, in effect overriding blocked
addresses. The file is processed in order, so an override must precede its associated blocked
address. Supported verbs are:
dial IP address [,..., IP address]

The parameters are IP addresses associated with dial-up ports. The rejection message
states that connections from dial-up ports are not accepted. Copies of messages are
never saved.

block address [, ... address]
Messages from addresses matching the parameters are rejected with an error message
saying that spam is not accepted. The message is saved if the option is enabled.

relay address [, ... address]
This verb is identical to block, but the error message states that the message is
rejected because the sending system is being used as a spam relay.

deny address [, ... address]
The deny command rejects a message when the sender address matches one of its
parameters. The rejection message asks the sender to contact postmaster@
hostdomain for further information. This verb is usually used to block inadvertently abu
sive traffic, for example, mail loops and stuck senders. Messages are never saved.

allow address [, ... address]
The allow verb negates the effect of subsequent blocking commands. It is useful
when a large range of addresses contains a few legitimate addresses, for example, when
a mail server is in a Class C network block of modem ports. Rather than enumerate the
dial ports, it is easier to block the entire Class C with a dial command, and precede it
with an override for the address of the mail server. Similarly, it is possible to block mail
from an entire domain while accepting mail from a few friendly senders in the domain.
The verb accept is a synonym for allow.

Scanmail(8) describes spam detection software that works well with the capabilities described here
and mail(1) defines additional smtpd command line arguments applicable to exposed systems.

SEE ALSO
mail(1), ratfs(4), scanmail(8)

891

SNAP(6) SNAP(6)

NAME
snap � process snapshots

DESCRIPTION
Process snapshots are used to save a process image for debugging on another machine or at
another time. They are like old Unix core dumps but can hold multiple process images and are
smaller.

The first line of a snapshot begins with the prefix ��process snapshot�� and often contains other
information as well, such as creation time, user name, system name, cpu type, and kernel type.
This information is intended for humans, not programs. Programs reading snapshots should only
check that this line begins with the specified prefix.

Throughout the rest of the snapshot, decimal strings are always right-justified, blank-padded to at
least 11 characters, and followed by a single space character.

The rest of the snapshot is one or more records, each of which begins with a one-line header.
This header is a decimal process id followed by an identification string, which denotes the type of
data in the record.

Records of type fd, fpregs, kregs, noteid, ns, proc, regs, segment, and status are
all formatted as a decimal number n followed by n bytes of data. This data is the contents of the
file of the same name found in /proc.

The format of the mem and text sections is not as simple. These sections contain one or more
page descriptions. Each describes a one kilobyte page of data. If the section is not a multiple of a
kilobyte in size, the last page will be shorter. Each description begins with a one-byte flag. If the
flag is r, then it is followed by a page of binary data. If the flag is z, then the data is understood
to be zeros, and is omitted. If the flag is m or t, then it is followed by two decimal strings p and o,
indicating that this page is the same as the page at offset o of the memory or text segment for
process p. This data must have been previously described in the snapshot, and the offset must be
a multiple of a kilobyte.

It is not guaranteed that any of the sections described above be in a process snapshot, although
the snapshot quickly becomes useless when too much is missing.

Memory and text images may be incomplete. The memory or text file for a given process may be
split across multiple disjoint sections in the snapshot.

SEE ALSO
proc(3), snap(4).

892

STYLE(6) STYLE(6)

NAME
style � Plan 9 coding conventions for C

DESCRIPTION
Plan 9 C code has its own conventions. You would do well to follow them. Here are a few:

" don�t use // comments; some old Plan 9 code does, but we�re converting it as we touch it. We
do sometimes use // to comment-out a few lines of code.

" avoid gotos.

" no tabs expanded to spaces.

" surround a binary operator (particular a low precedence one) with spaces; don�t try to write the
most compact code possible but rather the most readable.

" parenthesize expressions involving arithmetic and bit-wise operators; otherwise don�t paren
thesize heavily (e.g., as in Pascal).

" no white space before opening braces.

" no white space after the keywords if, for, while, etc.

" no braces around single-line blocks (e.g., if, for, and while bodies).

" integer-valued functions return -1 on error, 0 or positive on success.

" functions that return errors should set errstr(2).

" variable and function names are all lowercase, with no underscores.

" enum or #defined constants should be Uppercase (or UPPERCASE).

" struct tags are Uppercase, with matching typedefs.

" automatic variables (local variables inside a function) are never initialized at declaration.

" follow the standard idioms: use x < 0 not 0 > x, etc.

" don�t write !strcmp (nor !memcmp, etc.) nor if(memcmp(a, b, c)); always explicitly
compare the result of string or memory comparison with zero using a relational operator.

Ultimately, the goal is to write code that fits in with the other code around it and the system as a
whole. If the file you are editing already deviates from these guidelines, do what it does. After you
edit a file, a reader should not be able to tell just from coding style which parts you worked on.

COMMENTS
If your code is readable, you shouldn�t need many comments. A line or two comment above a
function explaining what it does is always welcome.

Comment any code you find yourself wondering about for more than 2 seconds, even if it�s to say
that you don�t understand what�s going on. Explain why.

Don�t use commenting as an excuse for writing confusing code. Rewrite the code to make it clear.

EFFICIENCY
Do the simple thing. Don�t optimize unless you�ve measured the code and it is too slow. Fix the
data structures and the algorithms instead of going for little 5% tunings.

SEE ALSO
��Notes on Programming in C��, Rob Pike,
http://www.literateprogramming.com/pikestyle.pdf

BUGS
Some programs use very different styles, for example, rc.

Some programs and programmers diverge from the above rules due to habits formed long before
these rules. Notably, some programs have a single space after a keyword and before an opening
brace, and some initialize automatic variables at declaration.

893

THUMBPRINT(6) THUMBPRINT(6)

NAME
thumbprint � public key thumbprints

DESCRIPTION
Applications in Plan 9 that use public keys for authentication, for example by calling tlsClient
and okThumbprint or okCertificate (see pushtls(2)), check the remote side�s public key
by comparing against thumbprints from a trusted list. The list is maintained by people who set
local policies about which servers can be trusted for which applications, thereby playing the role
taken by certificate authorities in PKI-based systems. By convention, these lists are stored as files
in /sys/lib/tls/ and protected by normal file system permissions.

Such a thumbprint file comprises lines made up of attribute/value pairs of the form attr=value or
attr. The first attribute must be the application tag: x509 for tls applications or ssh for ssh
server fingerprints. The second attribute must be a hash type of sha1= or sha256= followed by
the hex or base64 encoded hash of binary certificate or public key. All other attributes are treated
as comments. The file may also contain lines of the form #include file

For example, a web server might have thumbprint
x509 sha1=8fe472d31b360a8303cd29f92bd734813cbd923c cn=*.cs.bell−labs.com

SEE ALSO
pushtls(2)

894

USERS(6) USERS(6)

NAME
users � file server user list format

DESCRIPTION
The permanent file servers each maintain a private list of users and groups, in /adm/users by
convention. Each line in the file has the format

id:name:leader:members

where name and leader are printable strings excluding the characters ?, =, +, −, /, and :, and
members is a comma-separated list of such strings. Such a line defines a user and a group with
the given name; the group has a group leader given by leader and group members given by the
user names in members. The leader field may be empty, in which case any group member is a
group leader. The members field may be empty.

Lines beginning with # are ignored.

The id in a line is an identifier used in the on-disk structures maintained by a file server; there
should be no duplicate ids in the file. In older Plan 9 file servers, ids are small decimal numbers.
In those, a negative id is special: a user with a negative id cannot attach to the file server. The file
/adm/users itself is owned by user adm and write protected to others, so it can only be
changed via console commands.

SEE ALSO
intro(5), stat(5),

895

UTF(6) UTF(6)

NAME
UTF, Unicode, ASCII, rune � character set and format

DESCRIPTION
The Plan 9 character set and representation are based on the Unicode Standard and on the ISO
multibyte UTF-8 encoding (Universal Character Set Transformation Format, 8 bits wide). The Uni
code Standard represents its characters in 21 bits; UTF-8 represents such values in an 8-bit byte
stream. Throughout this manual, UTF-8 is shortened to UTF.

In Plan 9, a rune is a 32-bit quantity representing a Unicode character. Internally, programs may
store characters as runes. However, any external manifestation of textual information, in files or
at the interface between programs, uses a machine-independent, byte-stream encoding called UTF.

UTF is designed so the 7-bit ASCII set (values hexadecimal 00 to 7F), appear only as themselves in
the encoding. Runes with values above 7F appear as sequences of two or more bytes with values
only from 80 to FF.

The UTF encoding of the Unicode Standard is backward compatible with ASCII: programs presented
only with ASCII work on Plan 9 even if not written to deal with UTF, as do programs that deal with
uninterpreted byte streams. However, programs that perform semantic processing on ASCII

graphic characters must convert from UTF to runes in order to work properly with non-ASCII input.
See rune(2).

Letting numbers be binary, a rune x is converted to a multibyte UTF sequence as follows:

001. x in [00000000.00000000.0bbbbbbb] � 0bbbbbbb
010. x in [00000000.00000bbb.bbbbbbbb] � 110bbbbb, 10bbbbbb
011. x in [00000000.bbbbbbbb.bbbbbbbb] � 1110bbbb, 10bbbbbb, 10bbbbbb
100. x in [000bbbbb.bbbbbbbb.bbbbbbbb] � 11110bbb, 10bbbbbb, 10bbbbbb, 10bbbbbb

Conversion 001 provides a one-byte sequence that spans the ASCII character set in a compatible
way. Conversions 010, 011 and 100 represent higher-valued characters as sequences of two,
three or four bytes with the high bit set. Plan 9 does not support the 5 and 6 byte sequences pro
posed by X-Open. When there are multiple ways to encode a value, for example rune 0, the short
est encoding is used.

In the inverse mapping, any sequence except those described above is incorrect and is converted
to rune hexadecimal FFFD.

FILES
/lib/unicode table of characters and descriptions, suitable for look(1).

SEE ALSO
ascii(1), tcs(1), rune(2), keyboard (6), The Unicode Standard.

896

VENTI(6) VENTI(6)

NAME
venti � archival storage server

DESCRIPTION
Venti is a block storage server intended for archival data. In a Venti server, the SHA1 hash of a
block�s contents acts as the block identifier for read and write operations. This approach enforces
a write-once policy, preventing accidental or malicious destruction of data. In addition, duplicate
copies of a block are coalesced, reducing the consumption of storage and simplifying the imple
mentation of clients.

This manual page documents the basic concepts of block storage using Venti as well as the Venti
network protocol.

Venti(1) documents some simple clients. Vac(1) and vacfs(4) are more complex clients.

Venti(2) describes a C library interface for accessing Venti servers and manipulating Venti data
structures.

Venti(8) describes the programs used to run a Venti server.

Scores
The SHA1 hash that identifies a block is called its score. The score of the zero-length block is
called the zero score.

Scores may have an optional label: prefix, typically used to describe the format of the data. For
example, vac(1) uses a vac: prefix, while vbackup uses prefixes corresponding to the file system
types: ext2:, ffs:, and so on.

Files and Directories
Venti accepts blocks up to 56 kilobytes in size. By convention, Venti clients use hash trees of
blocks to represent arbitrary-size data files. The data to be stored is split into fixed-size blocks
and written to the server, producing a list of scores. The resulting list of scores is split into fixed-
size pointer blocks (using only an integral number of scores per block) and written to the server,
producing a smaller list of scores. The process continues, eventually ending with the score for the
hash tree�s top-most block. Each file stored this way is summarized by a VtEntry structure
recording the top-most score, the depth of the tree, the data block size, and the pointer block
size. One or more VtEntry structures can be concatenated and stored as a special file called a
directory. In this manner, arbitrary trees of files can be constructed and stored.

Scores passed between programs conventionally refer to VtRoot blocks, which contain descrip
tive information as well as the score of a directory block containing a small number of directory
entries.

Conventionally, programs do not mix data and directory entries in the same file. Instead, they
keep two separate files, one with directory entries and one with metadata referencing those entries
by position. Keeping this parallel representation is a minor annoyance but makes it possible for
general programs like venti/copy (see venti(1)) to traverse the block tree without knowing the spe
cific details of any particular program�s data.

Block Types
To allow programs to traverse these structures without needing to understand their higher-level
meanings, Venti tags each block with a type. The types are:

VtDataType 000 data
VtDataType+1 001 scores of VtDataType blocks
VtDataType+2 002 scores of VtDataType+1 blocks
...
VtDirType 010 VtEntry structures
VtDirType+1 011 scores of VtDirType blocks
VtDirType+2 012 scores of VtDirType+1 blocks
...
VtRootType 020 VtRoot structure

The octal numbers listed are the type numbers used by the commands below. (For historical rea
sons, the type numbers used on disk and on the wire are different from the above. They do not
distinguish VtDataType+n blocks from VtDirType+n blocks.)

897

VENTI(6) VENTI(6)

Zero Truncation
To avoid storing the same short data blocks padded with differing numbers of zeros, Venti clients
working with fixed-size blocks conventionally �zero truncate� the blocks before writing them to the
server. For example, if a 1024-byte data block contains the 11-byte string �hello world� fol
lowed by 1013 zero bytes, a client would store only the 11-byte block. When the client later read
the block from the server, it would append zero bytes to the end as necessary to reach the
expected size.

When truncating pointer blocks (VtDataType+n and VtDirType+n blocks), trailing zero
scores are removed instead of trailing zero bytes.

Because of the truncation convention, any file consisting entirely of zero bytes, no matter what its
length, will be represented by the zero score: the data blocks contain all zeros and are thus trun
cated to the empty block, and the pointer blocks contain all zero scores and are thus also trun
cated to the empty block, and so on up the hash tree.

Network Protocol
A Venti session begins when a client connects to the network address served by a Venti server; the
conventional address is tcp!server!venti (the venti port is 17034). Both client and server
begin by sending a version string of the form venti−versions−comment\n. The versions field
is a list of acceptable versions separated by colons. The protocol described here is version 02.
The client is responsible for choosing a common version and sending it in the VtThello mes
sage, described below.

After the initial version exchange, the client transmits requests (T−messages) to the server, which
subsequently returns replies (R−messages) to the client. The combined act of transmitting (receiv
ing) a request of a particular type, and receiving (transmitting) its reply is called a transaction of
that type.

Each message consists of a sequence of bytes. Two-byte fields hold unsigned integers repre
sented in big-endian order (most significant byte first). Data items of variable lengths are repre
sented by a one-byte field specifying a count, n, followed by n bytes of data. Text strings are rep
resented similarly, using a two-byte count with the text itself stored as a UTF-encoded sequence
of Unicode characters (see utf(6)). Text strings are not NUL-terminated: n counts the bytes of UTF
data, which include no final zero byte. The NUL character is illegal in text strings in the Venti pro
tocol. The maximum string length in Venti is 1024 bytes.

Each Venti message begins with a two-byte size field specifying the length in bytes of the mes
sage, not including the length field itself. The next byte is the message type, one of the constants
in the enumeration in the include file <venti.h>. The next byte is an identifying tag, used to
match responses to requests. The remaining bytes are parameters of different sizes. In the mes
sage descriptions, the number of bytes in a field is given in brackets after the field name. The
notation parameter[n] where n is not a constant represents a variable-length parameter: n[1] fol
lowed by n bytes of data forming the parameter. The notation string[s] (using a literal s character)
is shorthand for s[2] followed by s bytes of UTF-8 text. The notation parameter[] where
parameter is the last field in the message represents a variable-length field that comprises all
remaining bytes in the message.

All Venti RPC messages are prefixed with a field size[2] giving the length of the message that fol
lows (not including the size field itself). The message bodies are:

VtThello tag[1] version[s] uid[s] strength[1] crypto[n] codec[n]
VtRhello tag[1] sid[s] rcrypto[1] rcodec[1]

VtTping tag[1]
VtRping tag[1]

VtTread tag[1] score[20] type[1] pad[1] count[2]
VtRead tag[1] data[]

VtTwrite tag[1] type[1] pad[3] data[]
VtRwrite tag[1] score[20]

VtTsync tag[1]
VtRsync tag[1]

898

VENTI(6) VENTI(6)

VtRerror tag[1] error[s]

VtTgoodbye tag[1]

Each T-message has a one-byte tag field, chosen and used by the client to identify the message.
The server will echo the request�s tag field in the reply. Clients should arrange that no two out
standing messages have the same tag field so that responses can be distinguished.

The type of an R-message will either be one greater than the type of the corresponding T-message
or Rerror, indicating that the request failed. In the latter case, the error field contains a string
describing the reason for failure.

Venti connections must begin with a hello transaction. The VtThello message contains the
protocol version that the client has chosen to use. The fields strength, crypto, and codec could be
used to add authentication, encryption, and compression to the Venti session but are currently
ignored. The rcrypto, and rcodec fields in the VtRhello response are similarly ignored. The uid
and sid fields are intended to be the identity of the client and server but, given the lack of authen
tication, should be treated only as advisory. The initial hello should be the only hello transac
tion during the session.

The ping message has no effect and is used mainly for debugging. Servers should respond
immediately to pings.

The read message requests a block with the given score and type. Use vttodisktype and
vtfromdisktype (see venti(2)) to convert a block type enumeration value (VtDataType, etc.) to
the type used on disk and in the protocol. The count field specifies the maximum expected size of
the block. The data in the reply is the block�s contents.

The write message writes a new block of the given type with contents data to the server. The
response includes the score to use to read the block, which should be the SHA1 hash of data.

The Venti server may buffer written blocks in memory, waiting until after responding to the write
message before writing them to permanent storage. The server will delay the response to a sync
message until after all blocks in earlier write messages have been written to permanent storage.

The goodbye message ends a session. There is no VtRgoodbye: upon receiving the
VtTgoodbye message, the server terminates up the connection.

SEE ALSO
venti(1), venti(2), venti(8)
Sean Quinlan and Sean Dorward, ��Venti: a new approach to archival storage��, Usenix Conference
on File and Storage Technologies , 2002.

899

VENTI.CONF(6) VENTI.CONF(6)

NAME
venti.conf � a venti configuration file

DESCRIPTION
A venti configuration file enumerates the various index sections and arenas that constitute a venti
system. The components are indicated by the name of the file, typically a disk partition, in which
they reside. The configuration file is the only location that file names are used. Internally, venti
uses the names assigned when the components were formatted with fmtarenas or fmtisect (see
venti−fmt(8)). In particular, by changing the configuration a component can be copied to a differ
ent file.

The configuration file consists of lines in the form described below. Lines starting with # are com
ments.

index name
Names the index for the system.

arenas file
File contains a collection of arenas, formatted using fmtarenas.

isect file
File contains an index section, formatted using fmtisect.

After formatting a venti system using fmtindex, the order of arenas and index sections should not
be changed. Additional arenas can be appended to the configuration.

The configuration file optionally holds configuration parameters for the venti server itself. These
are:

mem cachesize

bcmem blockcachesize

icmem indexcachesize

addr ventiaddress

httpaddr httpaddress

queuewrites
See venti(8) for descriptions of these variables.

EXAMPLE
a sample venti configuration file
#
formatted with
venti/fmtarenas arena. /tmp/disks/arenas
venti/fmtisect isect0 /tmp/disks/isect0
venti/fmtisect isect1 /tmp/disks/isect1
venti/fmtindex venti.conf
#
server is started with
venti/venti

the name of the index
index main

the index sections
isect /tmp/disks/isect0
isect /tmp/disks/isect1

the arenas
arenas /tmp/disks/arenas

SEE ALSO
fs(3), venti(8), venti−fmt(8)

900

VGADB(6) VGADB(6)

NAME
vgadb � VGA controller and monitor database

DESCRIPTION
The VGA database, /lib/vgadb, consists of two parts, the first describing how to identify and
program a VGA controller and the second describing the timing parameters for known monitors to
be loaded into a VGA controller to give a particular resolution and refresh rate. Conventionally, at
system boot, the program aux/vga (see vga(8)) uses the monitor type in /env/monitor, the
display resolution in /env/vgasize, and the VGA controller information in the database to find
a matching monitor entry and initialize the VGA controller accordingly.

The file comprises multi-line entries made up of attribute/value pairs of the form attr=value or
sometimes just attr. Each line starting without white space starts a new entry. Lines starting with
are comments.

The first part of the database, the VGA controller identification and programming information, con
sists of a number of entries with attribute ctlr and no value. Within one of these entries the fol
lowing attributes are meaningful:

nnnnn an offset into the VGA BIOS area. The value is a string expected to be found there
that will identify the controller. For example, 0xC0068="#9GXE64 Pro" would
identify a #9GXEpro VGA controller if the string #9GXE64 Pro was found in the
BIOS at address 0xC0068. There may be more than one identifier attribute per con
troller. If a match cannot be found, the first few bytes of the BIOS are printed to help
identify the card and create a controller entry.

nnnnn−mmmmm
A range of the VGA BIOS area. The value is a string as above, but the entire range is
searched for that string. The string must begin at or after nnnnn and not contain any
characters at or after mmmmm. For example, 0xC0000−0xC0200="MACH64LP"
identifies a Mach 64 controller with the string MACH64LP occurring anywhere in the
first 512 bytes of BIOS memory.

ctlr VGA controller chip type. This must match one of the VGA controller types known to
/dev/vgactl (see vga(3)) and internally to aux/vga. Currently, ark2000pv,
clgd542x, ct65540, ct65545, cyber938x, et4000, hiqvideo, ibm8514,
mach32, mach64, mach64xx, mga2164w, neomagic, s3801, s3805, s3928,
t2r4, trio64, virge, vision864, vision964, vision968, and w30c516
are recognized.

ramdac RAMDAC controller type. This must match one of the types known internally to
aux/vga. Currently att20c490, att20c491, att20c492, att21c498,
bt485, rgb524mn, sc15025, stg1702, tvp3020, tvp3025, and tvp3026
are recognized.

clock clock generator type. This must match one of the types known internally to
aux/vga. Currently ch9294, icd2061a, ics2494, ics2494a, s3clock,
tvp3025clock, and tvp3026clock are recognized.

hwgc hardware graphics cursor type. This must match one of the types known to
/dev/vgactl and internally to aux/vga. Currently ark200pvhwgc,
bt485hwgc, clgd542xhwgc, clgd546xhwgc, ct65545hwgc,
cyber938xhwgc, hiqvideohwgc, mach64xxhwgc, mga2164whwgc,
neomagichwgc, rgb524hwgc, s3hwgc, t2r4hwgc, tvp3020hwgc, and
tvp3026hwgc are recognized.

membw Memory bandwidth in megabytes per second. Vga chooses the highest refresh rate
possible within the constraints of the monitor (explained below) and the card�s mem
ory bandwidth.

linear Whether the card supports a large (>64kb) linear memory window. The value is
either 1 or 0 (equivalent to unspecified). The current kernel graphics subsystem
requires a linear window; entries without linear=1 are of historic value only.

link This must match one of the types known internally to aux/vga. Currently vga and
ibm8514 are recognized. The type vga handles generic VGA functions and should
almost always be included. The type Ibm8514 handles basic graphics accelerator
initialization on controllers such as the early S3 family of GUI chips.

901

VGADB(6) VGADB(6)

The clock, ctlr, link, and ramdac values can all take an extension following a ’−’ that can
be used as a speed-grade or subtype; matching is done without the extension. For example,
ramdac=stg1702−135 indicates the STG1702 RAMDAC has a maximum clock frequency of
135MHz, and clock=ics2494a−324 indicates that the frequency table numbered 324 should
be used for the ICS2494A clock generator.

The functions internal to aux/vga corresponding to the clock, ctlr, link, and ramdac val
ues will be called in the order given for initialization. Sometimes the clock should be set before
the RAMDAC is initialized, for example, depending on the components used. In general,
link=vga will always be first and, if appropriate, link=ibm8514 will be last.

The entries in the second part of /lib/vgadb have as attribute the name of a monitor type and
the value is conventionally a resolution in the form XxY, where X and Y are numbers representing
width and height in pixels. The monitor type (i.e. entry) include has special properties,
described below and shown in the examples. The remainder of the entry contains timing informa
tion for the desired resolution. Within one of these entries the following attributes are meaningful:

clock the video dot-clock frequency in MHz required for this resolution. The value
25.175 is known internally to vga(8) as the baseline VGA clock rate.
defaultclock the default video dot-clock frequency in MHz used for this reso
lution when no memory bandwidth is specified for the card or when vga cannot
determine the maximum clock frequency of the card.

shb start horizontal blanking, in character clocks.
ehb end horizontal blanking, in character clocks.
ht horizontal total, in character clocks.
vrs vertical refresh start, in character clocks.
vre vertical refresh end, in character clocks.
vt vertical total, in character clocks.
hsync horizontal sync polarity. Value must be + or −.
vsync vertical sync polarity. Value must be + or −.
interlace interlaced mode. Only value v is recognized.
alias continue, replacing the alias line by the contents of the entry whose attribute is

given as value.
include continue, replacing this include line by the contents of the previously defined

include monitor type with matching value. (See the examples.) Any non-zero
attributes already set will not be overwritten. This is used to save duplication of
timing information. Note that value is not parsed, it is only used as a string to
identify the previous include=value monitor type entry.

The values given for shb, ehb, ht, vrs, vre, vt, hsync, and vsync are beyond the scope of
this manual page. See the book by Ferraro for details.

EXAMPLES
Basic ctlr entry for a laptop with a Chips and Technology 65550 controller:
ctlr # NEC Versa 6030X/6200MX

0xC0090="CHIPS 65550 PCI & VL Accelerated VGA BIOS"
link=vga
ctlr=hiqvideo linear=1
hwgc=hiqvideohwgc

A more complex entry. Note the extensions on the clock, ctlr, and ramdac attributes. The
order here is important: the RAMDAC clock input must be initialized before the RAMDAC itself. The
clock frequency is selected by the ET4000 chip.
ctlr # Hercules Dynamite Power

0xC0076="Tseng Laboratories, Inc. 03/04/94 V8.00N"
link=vga
clock=ics2494a−324
ctlr=et4000−w32p
ramdac=stg1702−135

Monitor entry for type vga (the default monitor type used by vga(8)) and resolution
640x480x[18].
include = 640x480@60Hz # 60Hz, 31.5KHz

clock=25.175

902

VGADB(6) VGADB(6)

shb=664 ehb=760 ht=800
vrs=491 vre=493 vt=525

vga = 640x480 # 60Hz, 31.5KHz
include=640x480@60Hz

Entries for multisync monitors with video bandwidth up to 65MHz.
#
Multisync monitors with video bandwidth up to 65MHz.
#
multisync65 = 1024x768 # 60Hz, 48.4KHz

include=1024x768@60Hz
multisync65 = 1024x768i # 87Hz, 35.5KHz (interlaced)

include=1024x768i@87Hz
multisync65

alias=vga
Note how this builds on the existing vga entries.

FILES
/lib/vgadb

SEE ALSO
ndb(2), vga(3), ndb(6), vga(8)
Richard E. Ferraro, Programming Guide to the EGA, VGA and Super VGA Cards, Third Edition

BUGS
The database should provide a way to use the PCI bus as well as BIOS memory to identify cards.

ADDING A NEW MONITOR
Adding a new monitor is usually fairly straightforward, as most modern monitors are multisync
and the only interesting parameter is the maximum video bandwidth. Once the timing parameters
are worked out for a particular maximum video bandwidth as in the example above, an entry for a
new monitor with that limit is simply
#
Sony CPD−1304
Horizontal timing:
Allowable frequency range: 28−50KHz
Vertical timing:
Allowable frequency range: 50−87Hz
#
cpd−1304

alias=multisync65
Even this is not necessary, as the monitor type could simply be given as multisync65.

ADDING A NEW VGA CONTROLLER
While the use of this database formalizes the steps needed to program a VGA controller, unless
you are lucky and all the important components on a new VGA controller card are interconnected
in the same way as an existing entry, adding a new entry requires adding new internal types to
vga(8). Fortunately, the unit of variety has, for the most part, shifted from individual components
to entire video chipsets. Thus in lucky cases all that is necessary is the addition of another
0xNNNNN= line to the entry for the controller. This is particularly true in the case of the ATI Mach
64 and the S3 Virge.

If you need to actually add support for a controller with a different chipset, you will need the data
sheets for the VGA controller as well as any RAMDAC or clock generator (these are commonly inte
grated into the controller). You will also need to know how these components interact. For exam
ple, a common combination is an S3 86C928 VGA chip with an ICD2061A clock generator. The
ICD2061A is usually loaded by clocking a serial bit-stream out of one of the 86C928 registers.
Similarly, the RAMDAC may have an internal clock-doubler and/or pixel-multiplexing modes, in
which case both the clock generator and VGA chip must be programmed accordingly. Hardware
acceleration for rectangle fills and block copies is provided in the kernel; writing code to handle
this is necessary to achieve reasonable performance at high pixel depths.

903

INTRO(7) INTRO(7)

NAME
intro � introduction to databases

DESCRIPTION
This manual section describes databases available on Plan 9 and the commands that access them.
Some of them involve proprietary data that is not distributed outside Bell Laboratories.

904

ASTRO(7) ASTRO(7)

NAME
astro � print astronomical information

SYNOPSIS
astro [−dlpsatokm] [−c n] [−C d] [−e obj1 obj2]

DESCRIPTION
Astro reports upcoming celestial events, by default for 24 hours starting now. The options are:

d Read the starting date. A prompt gives the input format.

l Read the north latitude, west longitude, and elevation of the observation point. A prompt
gives the input format. If l is missing, the initial position is read from the file
/lib/sky/here.

c Report for n (default 1) successive days.

C Used with −c, set the interval to d days (or fractions of days).

e Report distance between the centers of objects, in arc seconds, during eclipses or occulta
tions involving obj1 and obj2.

p Print the positions of objects at the given time rather than searching for interesting con
junctions. For each, the name is followed by the right ascension (hours, minutes, seconds),
declination (degrees, minutes, seconds), azimuth (degrees), elevation (degrees), and
semidiameter (arc seconds). For the sun and moon, the magnitude is also printed. The
first line of output presents the date and time, sidereal time, and the latitude, longitude,
and elevation.

s Print output in English words suitable for speech synthesizers.

a Include a list of artificial earth satellites for interesting events. (There are no orbital ele
ments for the satellites, so this option is not usable.)

t Read �T from standard input. �T is the difference between ephemeris and universal time
(seconds) due to the slowing of the earth�s rotation. �T is normally calculated from an
empirical formula. This option is needed only for very accurate timing of occultations,
eclipses, etc.

o Search for stellar occultations.

k Print times in local time (�kitchen clock�) as described in the timezone environment vari
able.

m Includes a single comet in the list of objects. This is modified (in the source) to refer to an
approaching comet but in steady state usually refers to the last interesting comet (currently
Hale-Bopp, C/1995 O1).

FILES
/lib/sky/estartab ecliptic star data
/lib/sky/here default latitude (N), longitude (W), and elevation (meters)

SOURCE
/sys/src/cmd/astro

SEE ALSO
scat(7)

BUGS
The k option reverts to GMT outside of 1970-2036.

905

DICT(7) DICT(7)

NAME
dict � dictionary browser

SYNOPSIS
dict [−k] [−d dictname] [−c command] [pattern]

DESCRIPTION
Dict is a dictionary browser. If a pattern is given on the command line, dict prints all matching
entries; otherwise it repeatedly accepts and executes commands. The options are

−d dictname Use the given dictionary. The default is oed, the second edition of the Oxford
English Dictionary. A list of available dictionaries is printed by option −d?.

−c command Execute one command and quit. The command syntax is described below.
−k Print a pronunciation key.

Patterns are regular expressions (see regexp(6)), with an implicit leading ^ and trailing $. Patterns
are matched against an index of headwords and variants, to form a �match set�. By default, both
patterns and the index are folded: upper case characters are mapped into their lower case equiva
lents, and Latin accented characters are mapped into their non-accented equivalents. In interac
tive mode, there is always a �current match set� and a �current entry� within the match set. Com
mands can change either or both, as well as print the entries or information about them.

Commands have an address followed by a command letter. Addresses have the form:

/re/ Set the match set to all entries matching the regular expression re, sorted in dictionary
order. Set the current entry to the first of the match set.

!re! Like /re/ but use exact matching, i.e., without case and accent folding.
n An integer n means change the current entry to the nth of the current match set.
#n The integer n is an absolute byte offset into the raw dictionary. (See the A command,

below.)
addr+ After setting the match set and current entry according to addr, change the match set

and current entry to be the next entry in the dictionary (not necessarily in the match set)
after the current entry.

addr− Like addr+ but go to previous dictionary entry.

The command letters come in pairs: a lower case and the corresponding upper case letter. The
lower case version prints something about the current entry only, and advances the current entry
to the next in the match set (wrapping around to the beginning after the last). The upper case ver
sion prints something about all of the match set and resets the current entry to the beginning of
the set.

p,P Print the whole entry.
h,H Print only the headword(s) of the entry.
a,A Print the dictionary byte offset of the entry.
r,R Print the whole entry in raw format (without translating special characters, etc.).

If no command letter is given for the first command, H is assumed. After an H, the default com
mand is p. Otherwise, the default command is the previous command.

FILES
/lib/dict/oed2
/lib/dict/oed2index
Other files in /lib.

SEE ALSO
regexp(6)

SOURCE
/sys/src/cmd/dict

BUGS
A font with wide coverage of the Unicode Standard should be used for best results. (Try
/lib/font/bit/pelm/unicode.9.font.)
If the pattern doesn�t begin with a few literal characters, matching takes a long time.
The dictionaries are not distributed outside Bell Labs.

906

JUKE(7) JUKE(7)

NAME
juke � music jukebox

SYNOPSIS
juke [�t] [�w] [�h srvhost] [�s srvname]

games/jukebox [�t] [�w]

games/jukefs [�m mountpoint] [�s srvname] [mapfile]

DESCRIPTION
Jukebox controls a playlist server (see playlistfs(7)) through a graphical user interface. It connects
to a music database server which reads a set of map files that describe recordings and their loca
tion. Currently, there is one set of maps, mostly for classical music, with some jazz and other stuff
thrown in. These are served by jukefs, which presents a file system conventionally mounted at
/mnt/juke. The playlist, explained below, is managed by a file system implemented by
playlistfs(7) and normally mounted on /mnt.

Jukebox is most easily started through the juke shell script.

Jukebox has four windows, which can be selected by clicking the appropriate tab at the top of the
window.

Above the tab are nine buttons and a volume slider. The buttons, shown below, are named, from
left to right, Exit, Pause, Play, Halt, Back, Forward, Root, Delete, and Help. The buttons are active
when they are displayed in dark green (or red). When they are pale blue they are inactive. The Exit
button is always active; it exits the program (but leaves the playlist and music database servers
running).

The browse window is for browsing through the music and selecting music to play. Browsing down
in the music hierarchy is done by clicking button one on an item. Clicking button three goes back
up. Clicking button two recursively adds all files below the selected item to the play list.

The selected music is displayed in the playlist window. The track currently playing is shown in the
playing window.

The Root button browses back to the root.

The Delete button empties the playlist.

The Help displays a minimal on-line manual.

Play starts playing at the beginning of the play list, or at the selected track in the play list.

During play, Pause, Stop, Back, and Forward are active. Back and Forward go back or forward a
track at a time. The other buttons do the obvious thing.

The �t flag chooses a tiny font, useful for handhelds.

The �w flag creates the jukebox in a new window. Normally, the jukebox takes over the window in
which it is invoked.

The �s flag specifies the name under which the file descriptors of the playlist and databse servers
are posted in /srv. This allows two or more play list servers to exist on one platform, e.g., when
there are several audio devices. The default value of the flag is $user for a playlist server at
/srv/playlistfs.$user and a database server at /srv/jukefs.$user.

Jukefs reads a set of maps describing the music data, builds an in-memory database, and pro
vides lookup service to jukebox . The default map is /sys/lib/music/map. It consists of a
hierarchical set of objects. Each object has a type, a value, zero or more attribute-value pairs and
zero or more subobjects. An object consists of the type, followed by its contents between curly
brackets. Attribute value pairs consist of a single line containing an attribute name, an equals
sign, and a value. The value of an object is any text not containing curly brackets or equals signs.
Here is an example:

category {

composer = mahler

907

JUKE(7) JUKE(7)

Gustav Mahler

(1860 � 1911)

work {

path {classic/mahler}

class = symphonic

orchestra = rfo

conductor = Waart,~Edo~de

Symphony Nº 5 in c (RFO, Vienna)

performance{

Radio Filharmonisch Orkest Holland

Edo de Waart, conductor

recorded: Musikverein, Vienna, May 6, 1996

}

command {number}

track {

Trauermarsch (In gemessenem Schritt. Streng. Wie ein Kondukt)

time {13:55}

file {034.pac}

}

track {

Stürmisch bewegt, mit größter Vehemenz

time {15:34}

file {035.pac}

}

track {

Scherzo (Kräftig, nicht zu schnell)

time {18:54}

file {036.pac}

}

track {

Adagietto (Sehr Langsam)

time {10:01}

file {037.pac}

}

track {

Rondo�Finale (Allegro)

time {15:44}

file {038.pac}

}

}

}

This example shows a category object for the composer Gustav Mahler (the value consists of the
two lines �Gustav Mahler� and �(1860 � 1911)�) with one subobject, a work object whose value is
�Symphony Nº 5 in c (RFO, Vienna)�. The work object contains six subobjects: one performance
object and five track objects.

Category objects must contain exactly one attribute-value pair. The attribute names a subobject
of the root under which this category object will be placed. Gustav Mahler, thus, will be placed in
Root�composer. Work, Recording, Part, and Track, objects all describe named containers for
subunits. A Lyrics, Performance, or Soloists object adds information to a Work, Recording, Part,
or Track, object. It should only contain text. The same is true for a Time object; however, it
should only be used adjacent to File objects and it should contain the running time of that file (this
is for future use).

A File object specifies a file to be played. When the Select button is pressed, all file objects con
tained hierarchically in the selected object are added to the playlist.

There are a number of pseudo objects: Command may contain either sort or number. The sort
command sorts the subobjects of the object it appears in by key or textual content. The number
commands prepends numbers to the texts of its subobjects (e.g., for the parts in a symphony)

An Include object is replaced by the contents of the named file.

A Key object specifies a key for sorting subobjects.

Finally, a Path object specifies a path to be prepended to the files named in hierarchically con
tained File objects.

908

JUKE(7) JUKE(7)

The attribute-value value pairs arrange for entries to be made of the current object in a Category
object named by the attribute directly under the root.

The interface to the browsing database is through a file system implemented by jukefs. The file
system synthesises a directory per object. Each directory contains a set of files describing the
object�s attributes:

children
contains a new-line separated list of subobject names. For each name, x the directory
/mnt/juke/x describes the subobject.

digest
contains a one-line summary of the object

files
is a new-line separated list of file objects contained in this object. Each line consists of
object name and file name.

fulltext
is the fulltextual value of the object.

key contains the key by which objects are sorted

miniparentage
is a one-line summary of the objects and the path leading to it from the root. This is the
line displayed in the playlist and bottom browse windows of games/jukebox.

parent
is the object reference to the parent of this object.

parentage
is a full description of the path leading to this object and the object itself. This is the string
displayed in the top of the Browse and Playing windows of games/jukebox.

text is the text field of the object.

type is the type of the object

FILES
/sys/lib/music/map: Default map file /mnt/juke: Default mount point for the music data
base.

SOURCE
/sys/src/games/music

SEE ALSO
playlistfs(7).

909

MAP(7) MAP(7)

NAME
map, mapdemo � draw maps on various projections

SYNOPSIS
map projection [option ...]

mapdemo

DESCRIPTION
Map prepares on the standard output a map suitable for display by any plotting filter described in
plot(1). A menu of projections is produced in response to an unknown projection. Mapdemo is a
short course in mapping.

The default data for map are world shorelines. Option −f accesses more detailed data classified
by feature.

−f [feature ...]
Features are ranked 1 (default) to 4 from major to minor. Higher-numbered ranks include
all lower-numbered ones. Features are

shore[1-4] seacoasts, lakes, and islands; option −f always shows shore1
ilake[1-2] intermittent lakes
river[1-4] rivers
iriver[1-3] intermittent rivers
canal[1-3] 3=irrigation canals
glacier
iceshelf[12]
reef
saltpan[12]
country[1-3] 2=disputed boundaries, 3=indefinite boundaries
state states and provinces (US and Canada only)

In other options coordinates are in degrees, with north latitude and west longitude counted as pos
itive.

−l S N E W
Set the southern and northern latitude and the eastern and western longitude limits. Miss
ing arguments are filled out from the list �90, 90, �180, 180, or lesser limits suitable to the
projection at hand.

−k S N E W
Set the scale as if for a map with limits −l S N E W . Do not consider any −l or −w option
in setting scale.

−o lat lon rot
Orient the map in a nonstandard position. Imagine a transparent gridded sphere around
the globe. Turn the overlay about the North Pole so that the Prime Meridian (longitude 0)
of the overlay coincides with meridian lon on the globe. Then tilt the North Pole of the
overlay along its Prime Meridian to latitude lat on the globe. Finally again turn the overlay
about its �North Pole� so that its Prime Meridian coincides with the previous position of
meridian rot. Project the map in the standard form appropriate to the overlay, but present
ing information from the underlying globe. Missing arguments are filled out from the list
90, 0, 0. In the absence of −o, the orientation is 90, 0, m, where m is the middle of the
longitude range.

−w S N E W
Window the map by the specified latitudes and longitudes in the tilted, rotated coordinate
system. Missing arguments are filled out from the list �90, 90, �180, 180. (It is wise to
give an encompassing −l option with −w. Otherwise for small windows computing time
varies inversely with area!)

−d n For speed, plot only every nth point.

−r Reverse left and right (good for star charts and inside-out views).

910

MAP(7) MAP(7)

−v Verso. Switch to a normally suppressed sheet of the map, such as the back side of the
earth in orthographic projection.

−s1
−s2 Superpose; outputs for a −s1 map (no closing) and a −s2 map (no opening) may be con

catenated.

−g dlat dlon res
Grid spacings are dlat, dlon. Zero spacing means no grid. Missing dlat is taken to be zero.
Missing dlon is taken the same as dlat. Grid lines are drawn to a resolution of res (2° or less
by default). In the absence of −g, grid spacing is 10°.

−p lat lon extent
Position the point lat, lon at the center of the plotting area. Scale the map so that the
height (and width) of the nominal plotting area is extent times the size of one degree of lat
itude at the center. By default maps are scaled and positioned to fit within the plotting
area. An extent overrides option −k.

−c x y rot
After all other positioning and scaling operations have been performed, rotate the image
rot degrees counterclockwise about the center and move the center to position x, y, where
the nominal plotting area is �1dxd1, �1dyd1. Missing arguments are taken to be 0. −x
Allow the map to extend outside the nominal plotting area.

−m [file ...]
Use map data from named files. If no files are named, omit map data. Names that do not
exist as pathnames are looked up in a standard directory, which contains, in addition to the
data for −f,

world World Data Bank I (default)
states US map from Census Bureau
counties US map from Census Bureau

The environment variables MAP and MAPDIR change the default map and default directory.

−b [lat0 lon0 lat1 lon1...]
Suppress the drawing of the normal boundary (defined by options −l and −w). Coordi
nates, if present, define the vertices of a polygon to which the map is clipped. If only two
vertices are given, they are taken to be the diagonal of a rectangle. To draw the polygon,
give its vertices as a −u track.

−t file ...
The files contain lists of points, given as latitude-longitude pairs in degrees. If the first file
is named −, the standard input is taken instead. The points of each list are plotted as con
nected �tracks�.

Points in a track file may be followed by label strings. A label breaks the track. A label
may be prefixed by ", :, or ! and is terminated by a newline. An unprefixed string or a
string prefixed with " is displayed at the designated point. The first word of a : or !
string names a special symbol (see option −y). An optional numerical second word is a
scale factor for the size of the symbol, 1 by default. A : symbol is aligned with its top to
the north; a ! symbol is aligned vertically on the page.

−u file ...
Same as −t, except the tracks are unbroken lines. (−t tracks appear as dot-dashed lines if
the plotting filter supports them.)

−y file
The file contains plot(6)-style data for : or ! labels in −t or −u files. Each symbol is
defined by a comment :name then a sequence of m and v commands. Coordinates (0,0)
fall on the plotting point. Default scaling is as if the nominal plotting range were ra −1
−1 1 1; ra commands in file change the scaling.

Projections
Equatorial projections centered on the Prime Meridian (longitude 0). Parallels are straight horizon
tal lines.

911

MAP(7) MAP(7)

mercator equally spaced straight meridians, conformal, straight compass courses
sinusoidal equally spaced parallels, equal-area, same as bonne 0.
cylequalarea lat0 equally spaced straight meridians, equal-area, true scale on lat0
cylindrical central projection on tangent cylinder
rectangular lat0 equally spaced parallels, equally spaced straight meridians, true scale on

lat0
gall lat0 parallels spaced stereographically on prime meridian, equally spaced

straight meridians, true scale on lat0
mollweide (homalographic) equal-area, hemisphere is a circle

gilbert() sphere conformally mapped on hemisphere and viewed
orthographically

gilbert globe mapped conformally on hemisphere, viewed orthographically

Azimuthal projections centered on the North Pole. Parallels are concentric circles. Meridians are
equally spaced radial lines.

azequidistant equally spaced parallels, true distances from pole
azequalarea equal-area
gnomonic central projection on tangent plane, straight great circles
perspective dist viewed along earth�s axis dist earth radii from center of earth
orthographic viewed from infinity
stereographic conformal, projected from opposite pole
laue radius = tan(2×colatitude), used in X-ray crystallography
fisheye n stereographic seen from just inside medium with refractive index n
newyorker r radius = log(colatitude/r): New Yorker map from viewing pedestal of

radius r degrees

Polar conic projections symmetric about the Prime Meridian. Parallels are segments of concentric
circles. Except in the Bonne projection, meridians are equally spaced radial lines orthogonal to the
parallels.

conic lat0 central projection on cone tangent at lat0
simpleconic lat0 lat1

equally spaced parallels, true scale on lat0 and lat1
lambert lat0 lat1 conformal, true scale on lat0 and lat1
albers lat0 lat1 equal-area, true scale on lat0 and lat1
bonne lat0 equally spaced parallels, equal-area, parallel lat0 developed from tangent

cone

Projections with bilateral symmetry about the Prime Meridian and the equator.

polyconic parallels developed from tangent cones, equally spaced along Prime
Meridian

aitoff equal-area projection of globe onto 2-to-1 ellipse, based on azequalarea
lagrange conformal, maps whole sphere into a circle
bicentric lon0 points plotted at true azimuth from two centers on the equator at longi

tudes ±lon0, great circles are straight lines (a stretched gnomonic)
elliptic lon0 points plotted at true distance from two centers on the equator at longi

tudes ±lon0
globular hemisphere is circle, circular arc meridians equally spaced on equator, cir

cular arc parallels equally spaced on 0- and 90-degree meridians
vandergrinten sphere is circle, meridians as in globular, circular arc parallels resemble

mercator

Doubly periodic conformal projections.

guyou W and E hemispheres are square
square world is square with Poles at diagonally opposite corners
tetra map on tetrahedron with edge tangent to Prime Meridian at S Pole,

unfolded into equilateral triangle
hex world is hexagon centered on N Pole, N and S hemispheres are equilateral

triangles

Miscellaneous projections.

912

MAP(7) MAP(7)

harrison dist angle oblique perspective from above the North Pole, dist earth radii from center
of earth, looking along the Date Line angle degrees off vertical

trapezoidal lat0 lat1
equally spaced parallels, straight meridians equally spaced along parallels,
true scale at lat0 and lat1 on Prime Meridian
lune(lat,angle) conformal, polar cap above latitude lat maps to
convex lune with given angle at 90°E and 90°W

Retroazimuthal projections. At every point the angle between vertical and a straight line to
�Mecca�, latitude lat0 on the prime meridian, is the true bearing of Mecca.

mecca lat0 equally spaced vertical meridians
homing lat0 distances to Mecca are true

Maps based on the spheroid. Of geodetic quality, these projections do not make sense for tilted
orientations. For descriptions, see corresponding maps above.

sp_mercator
sp_albers lat0 lat1

EXAMPLES
map perspective 1.025 −o 40.75 74

A view looking down on New York from 100 miles (0.025 of the 4000-mile earth radius)
up. The job can be done faster by limiting the map so as not to �plot� the invisible part of
the world: map perspective 1.025 −o 40.75 74 −l 20 60 30 100. A cir
cular border can be forced by adding option −w 77.33. (Latitude 77.33° falls just inside
a polar cap of opening angle arccos(1/1.025) = 12.6804°.)

map mercator −o 49.25 −106 180
An �equatorial� map of the earth centered on New York. The pole of the map is placed 90°
away (40.75+49.25=90) on the other side of the earth. A 180° twist around the pole of the
map arranges that the �Prime Meridian� of the map runs from the pole of the map over the
North Pole to New York instead of down the back side of the earth. The same effect can be
had from map mercator −o 130.75 74

map albers 28 45 −l 20 50 60 130 −m states
A customary curved-latitude map of the United States.

map harrison 2 30 −l −90 90 120 240 −o 90 0 0
A fan view covering 60° on either side of the Date Line, as seen from one earth radius above
the North Pole gazing at the earth�s limb, which is 30° off vertical. The −o option overrides
the default −o 90 0 180, which would rotate the scene to behind the observer.

FILES
/lib/map/[1−4]?? World Data Bank II, for −f
/lib/map/* maps for −m
/lib/map/*.x map indexes
/bin/aux/mapd Map driver program

SOURCE
/sys/src/cmd/map

SEE ALSO
map(6), plot(1)

DIAGNOSTICS
�Map seems to be empty��a coarse survey found zero extent within the −l and −w bounds; for
maps of limited extent the grid resolution, res, or the limits may have to be refined.

BUGS
Windows (option −w) cannot cross the Date Line. No borders appear along edges arising from visi
bility limits. Segments that cross a border are dropped, not clipped. Excessively large scale or −d
setting may cause long line segments to be dropped. Map tries to draw grid lines dotted and −t
tracks dot-dashed. As very few plotting filters properly support curved textured lines, these lines
are likely to appear solid. The west-longitude-positive convention betrays Yankee chauvinism.
Gilbert should be a map from sphere to sphere, independent of the mapping from sphere to plane.

913

PLAYLISTFS(7) PLAYLISTFS(7)

NAME
playlistfs � playlist file system

SYNOPSIS
games/playlistfs [�s postname] [�m mountpoint] [�a]

DESCRIPTION
Playlistfs implements an audio player which plays files from a built-in play list. The player is
controlled through three files, usually mounted at /mnt. The files are /playctl for controlling
play: start, stop, pause, skip, etc.; /playvol for controlling the playout volume; and
/playlist for controlling the play list itself.

All three files can be written to control the player and read to obtain player status information.

When read, the files report the current status of the player, volume and playlist, respectively. End
of file is indicated by a read that returns zero bytes, as usual. However, in all three files, subse
quent read operations will block until the status of the file changes and then report the changed
state. When the changed state has been read, another end-of-file indication is given, after which
another read can be issued to wait for state changes.

The /playctl file returns strings of the form �cmd n� where cmd is one of stop, pause, or play
and n is an index (or offset) into the playlist; indices start at zero.

The commands that can be written to /playctl take the same form; however, the index is an
optional argument. If the index is omitted, the current value is used. The commands are play,
stop, pause, resume, and skip. Play starts playing at the index. Stop stops playing. If an index is
given, the current index is set to it and can be used in future commands. Pause and Resume inter
rupt and continue play, respectively. The index argument is always ignored and the whole com
mand is ignored if the state in which they occur does not make sense. Skip adds the argument to
the current index (adds one if no argument is given) and starts play at that index, stopping current
play, if necessary.

Reads of /playvol return strings of the form ‘volume n’, where n is a number or, if there is
more than one channel, a quoted set of numbers, between 0 (minimum) and 100 (maximum).
Writes to /playvol take the same form.

The /playlist file is an append-only file which accepts lines with one or two fields per line
(parsed using tokenize). The first, compulsory, field is a file name, the optional second argu
ment may contain a reference to, or a description of, the item, for instance in a graphical user
interface. /playlist is append-only, individual lines cannot be removed. However, the playlist
can be cleared by opening the file with the OTRUNC flag. A process that has /playlist open
while the file is truncated will receive an error on the next read with errstr set to reading past
eof. When this error occurs, clients can seek to the beginning of the file and reread its contents.

After starting up, Playlistfs puts itself in the background. When called with the �s flag, it
posts a mountable file descriptor in /srv/playlist.postname. The �m flag can be used to
specify a mount point other than /mnt.

Playlistfs uses the audio(1) decoders by running play(1) for format detection and conversion
to pcm.

FILES
/srv/playlistfs.user: default playlistfs mountable file descriptor used by juke(7).
/mnt/playctl: Control file
/mnt/playlist: Playlist file
/mnt/playvol: Volume control file

SOURCE
/sys/src/games/music/playlistfs

SEE ALSO
play(1), audio(1), juke(7).

914

SCAT(7) SCAT(7)

NAME
scat � sky catalogue and Digitized Sky Survey

SYNOPSIS
scat

DESCRIPTION
Scat looks up items in catalogues of objects outside the solar system and implements database-
like manipulations on sets of such objects. It also provides an interface to astro(7) to plot the
locations of solar system objects. Finally, it displays images from the Space Telescope Science
Institute�s Digitized Sky Survey, keyed to the catalogues.

Items are read, one per line, from the standard input and looked up in the catalogs. Input is
case-insensitive. The result of the lookup becomes the set of objects available to the database
commands. After each lookup or command, if more than two objects are in the set, scat prints
how many objects are in the set; otherwise it prints the objects� descriptions or cross-index list
ings (suitable for input to scat). An item is in one of the following formats:

ngc1234
Number 1234 in the New General Catalogue of Nonstellar Objects, NGC2000.0. The output
identifies the type (Gx=galaxy, Pl=planetary nebula, OC=open cluster, Gb=globular clus
ter, Nb=bright nebula, C+N=cluster associated with nebulosity, Ast=asterism, Kt=knot
or nebulous region in a galaxy, ***=triple star, D*=double star, ?=uncertain,
−=nonexistent, PD=plate defect, and (blank)=unverified or unknown), its position in
2000.0 coordinates, its size in minutes of arc, a brief description, and popular names.

ic1234
Like NGC references, but from the Index Catalog.

sao12345
Number 12345 in the Smithsonian Astrophysical Star Catalogue. Output identifies the
visual and photographic magnitudes, 2000.0 coordinates, proper motion, spectral type,
multiplicity and variability class, and HD number.

m4 Catalog number 4 in Messier�s catalog. The output is the NGC number.

abell1701
Catalog number 1701 in the Abell and Zwicky catalog of clusters of galaxies. Output iden
tifies the magnitude of the tenth brightest member of the cluster, radius of the cluster in
degrees, its distance in megaparsecs, 2000.0 coordinates, galactic latitude and longitude,
magnitude range of the cluster (the �distance group�), number of members (the �richness
group�), population per square degree, and popular names.

planetarynebula
The set of NGC objects of the specified type. The type may be a compact NGC code or a
full name, as above, with no blank.

"α umi"
Names are provided in double quotes. Known names are the Greek letter designations,
proper names such as Betelgeuse, bright variable stars, and some proper names of stars,
NGC objects, and Abell clusters. Greek letters may be spelled out, e.g. alpha. Constella
tion names must be the three-letter abbreviations. The output is the SAO number. For
non-Greek names, catalog numbers and names are listed for all objects with names for
which the given name is a prefix.

12h34m −16
Coordinates in the sky are translated to the nearest �patch�, approximately one square
degree of sky. The output is the coordinates identifying the patch, the constellations
touching the patch, and the Abell, NGC, and SAO objects in the patch. The program prints
sky positions in several formats corresponding to different precisions; any output format is
understood as input.

umi All the patches in the named constellation.

mars The planets are identified by their names. The names shadow and comet refer to the
earth�s penumbra at lunar distance and the comet installed in the current astro(7). The

915

SCAT(7) SCAT(7)

output is the planet�s name, right ascension and declination, azimuth and altitude, and
phase for the moon and sun, as shown by astro. The positions are current at the start of
scat ’s execution; see the astro command in the next section for more information.

The commands are:

add item Add the named item to the set.
keep class ...

Flatten the set and cull it, keeping only the specified classes. The classes may be spe
cific NGC types, all stars (sao), all NGC objects (ngc), all M objects (m), all Abell clusters
(abell), or a specified brightness range. Brightness ranges are specified by a leading
> or < followed by a magnitude. Remember that brighter objects have lesser magni
tudes.

drop class ...
Complement to keep.

flat Some items such as patches represents sets of items. Flat flattens the set so scat holds
all the information available for the objects in the set.

print Print the contents of the set. If the information seems meager, try flattening the set.
expand n

Flatten the set, expand the area of the sky covered by the set to be n degrees wider, and
collect all the objects in that area. If n is zero, expand collects all objects in the patches
that cover the current set.

astro option
Run astro(7) with the specified options (to which will be appended −p), to discover the
positions of the planets. Astro�s −d and −l options can be used to set the time and
place; by default, it�s right now at the coordinates in /lib/sky/here. Running
astro does not change the positions of planets already in the display set, so astro
may be run multiple times, executing e.g. add mars each time, to plot a series of
planetary positions.

plot option
Expand and plot the set in a new window on the screen. Symbols for NGC objects are as
in Sky Atlas 2000.0, except that open clusters are shown as stippled disks rather than
circles. Abell clusters are plotted as a triangle of ellipses. The planets are drawn as
disks of representative color with the first letter of the name in the disk (lower case for
inferior planets; upper case for superior); the sun, moon, and earth�s shadow are unla
beled disks. Objects larger than a few pixels are plotted to scale; however, scat does
not have the information necessary to show the correct orientation for galaxies.
The option nogrid suppresses the lines of declination and right ascension. By default,
scat labels NGC objects, Abell clusters, and bright stars; option nolabel suppresses
these while alllabel labels stars with their SAO number as well. The default size is
512×512; options dx n and dy n set the x and y extent. The option zenithup ori
ents the map so it appears as it would in the sky at the time and location used by the
astro command (q.v.).
The output is designed to look best on an LCD display. CRTs have trouble with the thin,
grey lines and dim stars. The option nogrey uses white instead of grey for these
details, improving visibility at the cost of legibility when plotting on CRTs.

plate [[ra dec] rasize [decsize]]
Display the section of the Digitized Sky Survey (plate scale approximately 1.7 arcseconds
per pixel) centered on the given right ascension and declination or, if no position is
specified, the current set of objects. The maximum area that will be displayed is one
degree on a side. The horizontal and vertical sizes may be specified in the usual nota
tion for angles. If the second size is omitted, a square region is displayed. If no size is
specified, the size is sufficient to display the centers of all the objects in the current set.
If a single object is in the set, the 500×500 pixel block from the survey containing the
center of the object is displayed. The survey is stored in the CD-ROM juke box; run
9fs juke before running scat.

gamma value
Set the gamma for converting plates to images. Default is �1.0. Negative values display
white stars, positive black. The images look best on displays with depth 8 or greater.
Scat does not change the hardware color map, which should be set externally to a grey
scale; try the command getmap gamma (see colors(1)) on an 8-bit color-mapped

916

SCAT(7) SCAT(7)

display.

EXAMPLES
Plot the Messier objects and naked-eye stars in Orion.

ori
keep m <6
plot nogrid

Draw a finder chart for Uranus:
uranus
expand 5
plot

Show a partial lunar eclipse:
astro −d
2000 07 16 12 45
moon
add shadow
expand 2
plot

Draw a map of the Pleiades.
"alcyone"
expand 1
plot

Show a pretty galaxy.
ngc1300
plate 10’

FILES
/lib/sky/*.scat

SOURCE
/sys/src/cmd/scat

SEE ALSO
astro(7)
/lib/sky/constelnames the three-letter abbreviations of the constellation names.

The data was provided by the Astronomical Data Center at the NASA Goddard Space Flight Center,
except for NGC2000.0, which is Copyright © 1988, Sky Publishing Corporation, used (but not dis
tributed) by permission. The Digitized Sky Survey, 102 CD-ROMs, is not distributed with the sys
tem.

917

INTRO(8) INTRO(8)

NAME
intro � introduction to system administration

DESCRIPTION
This manual section describes commands for system administration as well as various utility pro
grams necessary for the system but not routinely invoked by a user.

918

6IN4(8) 6IN4(8)

NAME
6in4, ayiya - configure and run automatic or manual tunnel of IPv6 through IPv4

SYNOPSIS
ip/6in4 [−ag] [−m mtu] [−x netmtpt] [−o outnetmtpt] [−i local4] [local6[/mask] [
remote4 [remote6]]]
ip/ayiya [−g] [−m mtu] [−x netmtpt] [−k secret] local6[/mask] remote4 remote6

DESCRIPTION
6in4 sets up and maintains a 6to4 tunnel of IPv6 traffic through an IPv4 connection. Ayiya is simi
lar, but uses the UDP based Anything In Anything protocol to tunnel IPv6 traffic.

Local6 and mask define the IPv6 address and subnet of the near end of the tunnel (mask defaults
to /128 for a single-host tunnel). If local6 is missing or −, it defaults to

2002:aabb:ccdd::1/48

where aa, bb, cc and dd are the hexadecimal equivalents of the bytes a.b.c.d in this host�s pri
mary IPv4 address.

Remote4 is the IPv4 address of the far end of the tunnel (must be given explicitly for a configured
tunnel, or defaults to the anycast address 192.88.99.1 for 6to4).

Remote6 is the IPv6 address of the far end of the tunnel (used as the point-to-point destination for
routing, and defaults to a link-local address constructed from remote4).

The program forks a pair of background processes to copy packets to and from the tunnel.

Options are:

−a for 6in4, permit any remote IPv4 address as the far end of a tunnel. This is likely to be use
ful for the server side of a tunnel.

−i for 6in4, define what is the local IPv4 address, otherwise it takes the first non-loopback
address of the outside IP stack.

−g use the tunnel as the default route for global IPv6 addresses
−m mtu specifies the outside MTU in bytes from which the inside tunnel MTU is derived. Deaults

to 1500 - 8 (Ethernet - PPPoE).
−x use the network mounted at netmtpt instead of /net for binding the tunnel interface and

sending/receiving IPv4 packets.
−o for 6in4, use outnetmtpt for the IPv4 packets but bind the IPv6 interface on /net or netmtpt

when specified by a previous −x option.
−k for ayiya , use the shared secret key secret to authenticate messages on the tunnel.

EXAMPLES
If your primary IPv4 address is public, you can start a 6to4 tunnel simply with

ip/6in4 −g

Similarly, you can start a server for 6to4 tunnels with

ip/6in4 −ag

If you use a tunnel broker at address 5.6.7.8, configured to give you a /64 subnet with address
2001:1122:3344:5566::, you can start the tunnel with

ip/6in4 −g 2001:1122:3344:5566::/64 5.6.7.8

FILES
/net/ipmux access to IPv6-in-IPv4 packets
/net/ipifc packet interface to IPv6 network

SEE ALSO
bridge(3), ipmux in ip(3), linklocal in ipconfig(8)
/lib/rfc/rfc3056
/lib/rfc/rfc3068
http://tools.ietf.org/id/draft−massar−v6ops−ayiya−02.txt

BUGS
Needs a kernel with an ipmux driver.

919

6IN4(8) 6IN4(8)

The tunnel client filters addresses fairly conservatively in both directions. However it�s not water
tight, and may be flakey in other ways so don�t put too much trust in it.

920

9BOOT(8) 9BOOT(8)

NAME
9bootfat, 9bootiso, 9boothyb, 9bootpxe, bootia32.efi, bootx64.efi, efiboot.fat � PC bootloader for
FAT, ISO and PXE network booting

SYNOPSIS
Started by PC BIOS/EFI or chainloaded by partition bootsector

DESCRIPTION
9boot is the bootloader used on PCs to start the Plan 9 kernel. Its task is to read and parse the
plan9.ini(8) configuration file, gather some basic system information like the amount of usable
system memory, do some basic system initialization and load the kernel from the boot media into
memory.

After reading the configuration, the loader will automatically attempt to boot the kernel that was
specified by the bootfile= parameter. If there is no such parameter, a key gets pressed on the
keyboard or the kernel file was not found then the loader enters the interactive boot console.

The syntax of the boot console is the same as in the plan9.ini(8) file with key=value pairs setting
boot parameters. In addition a few command words are recognized that are intended for interac
tive use:

clear[prefix]
can be used to remove parameters from the configuration. If a prefix is specified, the first
parameter that matches the prefix is removed. If the prefix argument is omitted, the whole
configuration will be reset.

show displays the current configuration in memory.

wait will return to the console prompt after processing the configuration file preventing auto
matic boot.

boot will end the console and attempt booting the kernel.

There are many ways to boot a PC so 9boot was split into a number of distinct programs, one for
each boot method.

FAT BOOTING
When booting Plan 9 from a harddisk or USB pen drive, a FAT16/32 partition (9fat) is used to store
the kernel and plan9.ini(8) configuration. Due to size limitations, instead of loading the kernel
directly, the bootsector (pbs) of the FAT partition loads a 2nd stage bootloader (9bootfat) from the
root directory of the filesystem.

CD−ROM BOOTING
Booting from CD-ROM requires only the 9bootiso bootloader to be included in the ISO-9660 image
under /386/9bootiso, set as a non-emulation bootblock (see −B in mk9660(8)). Boot parame
ters are read from /cfg/plan9.ini.

ISO HYBRID BOOTING
With the 9boothyb loader, an ISO image can be made into a bootable disk by creating a MBR and
appending a bootable DOS partition containing 9boothyb renamed to 9bootfat. The loader will
read the ISO filesystem as if it were stored on a CD-ROM drive.

NETWORK BOOTING
With a PXE capable BIOS and network card one can download 9bootpxe and boot the kernel from a
TFTP server (see dhcpd(8) and ndb(6) for details). Once started, 9bootpxe will read the file
/cfg/pxe/$ether or, if this file is not present, /cfg/pxe/default from the tftp server,
where $ether is the MAC address of the client�s network card in lower case hex, and uses this as
its plan9.ini(8) file.

EFI BOOTING
EFI firmware looks for the files bootia32.efi (for 386) or bootx64.efi (for amd64) in the boot media
and executes them. For local disk media, these files are located in the directory /efi/boot of
the FAT formatted boot partition. For CD−ROM media, the boot partition is provided as a embed
ded FAT filesystem image efiboot.fat (see −E in mk9660(8)). In the network boot case, the

921

9BOOT(8) 9BOOT(8)

bootia32.efi or bootx64.efi files are used as the BSP program instead of 9bootpxe. Once started,
the boot media (PXE, ISO, FAT) is discovered and plan9.ini(8) configuration is read from it in the
same way as with the BIOS-based 9boot* loaders. If the EFI loader was executed from a FAT parti
tion, it will first search for plan9.ini(8) in the same FAT filesystem that it was loaded from, and if
not found, will search for plan9.ini(8) in any other partition in an implementation-defined order.
The kernel is always loaded from the same partition that plan9.ini(8) is read from.

FILES
/386/pbs
/386/9bootfat
/386/9bootiso
/386/9boothyb
/386/9bootpxe
/386/bootia32.efi
/386/bootx64.efi
/386/efiboot.fat

SOURCE
/sys/src/boot/pc
/sys/src/boot/efi

SEE ALSO
plan9.ini(8), mk9660(8), dhcpd(8), ndb(6)
https://uefi.org

HISTORY
9boot first appeared in 9front (April, 2011). EFI support first appeared in 9front (Oct, 2014).

922

9PCON(8) 9PCON(8)

NAME
9pcon � 9P to text translator

SYNOPSIS
aux/9pcon [−cn] [−m msize] service

DESCRIPTION
9pcon provides a textual interface to service, a conventional 9P server. By default, 9pcon inter
prets service as a file to be opened. The −c flag causes 9pcon to interpret service as a command
to run which will carry out a (binary) 9P conversation over file descriptors 0 and 1. The −n flag
causes 9pcon to interpret service as a network address to dial.

Once the connection is established, 9pcon prints R-messages as they arrive from the server, and
sends T-messages as they are typed on standard input. There is no prompt. Lines beginning with
are ignored. The syntax for T-messages is one of:

Tversion msize version
Tauth afid uname aname
Tattach fid afid uname aname
Twalk fid newfid wname...
Topen fid mode
Tcreate fid name perm mode
Tread fid offset count
Twrite fid offset data
Tclunk fid
Tremove fid
Tstat fid
Twstat fid name uid gid mode mtime length
Tflush oldtag

See intro(5) for a description of the fields in each message. For the most part, the syntax mirrors
the description of the messages in section 5. The exceptions are that the tags on the T-messages
are added automatically; Twalk�s nwname count is inferred from the number of wnames given;
and Twstat�s dir is in expanded form rather than being an opaque byte sequence. Note that
since commands are parsed with tokenize (see getfields(2)), it is easy to pass empty strings for
absent name, uid, and gid fields. To ease specifying default integer fields, the Twstat message
recognizes ~0 in the mode, mtime, and length arguments. For example,

Twstat 101 ’’ ’’ sys ~0 ~0 ~0
sends a wstat message that attempts to change the group id associated with fid 101.

SOURCE
/sys/src/cmd/aux/9pcon.c

SEE ALSO
intro(5)

BUGS
There should be a flag to wait for responses, to facilitate scripting.

923

AAN(8) AAN(8)

NAME
aan, aanuke � always available network

SYNOPSIS
aan −c [−d] [−m maxto] dialstring
aan [−d] [−m maxto] netdir
aanuke

DESCRIPTION
Aan tunnels traffic between a client and a server through a persistent network connection. If the
connection breaks (voluntarily or due to networking problems), the aan client re-establishes the
connection by redialing the server.

Aan uses a unique protocol to make sure no data is ever lost even when the connection breaks.
After a reconnection, aan retransmits all unacknowledged data between client and server.

A connection can be broken voluntarily (e.g. by roaming over IP networks), or a connection can
break when the IP service is unreliable. In either case, aan re-establishes the client�s connection
automatically.

When the server part has not heard from the client in maxto seconds, the server part of aan exits.
The default maxto is one day. The client side (option −c) calls the server by its dialstring, while
the server side listens for connections in the already-announced network directory netdir.

Aan is usually run automatically through the −p option of import(4) and cpu(1).

Aanuke prints commands that will cause all processes called aan that are owned by the current
user and do not have an active tcp connection to be terminated. Use the send command of rio(1),
or pipe the output of kill into rc(1) to execute the commands.

EXAMPLES
Assume the server part of aan is encapsulated in exportfs on the machine sob and started
through aux/listen as follows:

netdir=‘{echo $3 | sed ’s;/[0−9]+$;!*!0;’}
exec exportfs −a −A $netdir

Then machine astro6�s name space can be imported through aan using this command:

import −p astro6 / /mnt/term

Kill idle instances of aan left behind by a terminal that has been powered off:

aanuke | rc

FILES
/sys/log/aan Log file

SOURCE
/sys/src/cmd/aan.c
/rc/bin/aanuke

SEE ALSO
import(4), exportfs(4), cpu(1)

HISTORY
Aanuke first appeared in 9front (April, 2014).

924

ACPI(8) ACPI(8)

NAME
acpi � Advanced Configuration and Power Interface

SYNOPSIS
(in plan9.ini) *acpi=

aux/acpi [−m mountpoint] [−s service]

DESCRIPTION
Aux/acpi presents at mountpoint (default /mnt/acpi) an interface to the ACPI. If a service is
specified, the interface will be posted at /srv/service as well.

The directory contains the following files.

battery
Contains one line for each battery in the system. Each line lists 12 fields: the percent
charge remaining, power unit used (mW or mA), remaining capacity, last full charge capac
ity, design capacity, warning and low capacity values, mV separator, present voltage, design
voltage, approximate time of charge left as hh:mm:ss, and the status (a string, one of
unknown, critical, discharging or charging).

cputemp
Each line provides a current temperature reading of a specific CPU.

ctl The ctl file currently does not provide any functionality.

SOURCE
/sys/src/cmd/aux/acpi.c

BUGS
ACPI itself.

HISTORY
Acpi first appeared in 9front (October, 2016).

925

ALIASMAIL(8) ALIASMAIL(8)

NAME
aliasmail � expand system wide mail aliases

SYNOPSIS
upas/aliasmail arg ...

DESCRIPTION
Aliasmail expands mail aliases, its arguments, according to alias files. Aliasmail is normally
invoked by a rule in the upas rewrite file, rewrite(6).

If a line of an alias file begins with #include, the line is replaced by the contents of the file
whose name follows. Other lines, beginning with # are ignored as comment.

Otherwise, lines begin with a name. The rest of a name line gives the expansion. The expansion
may contain multiple addresses and may be continued to another line by appending a backslash.
Items are separated by white space.

The alias files are searched in the order they are listed, one per line, in
/mail/lib/namefiles. If the name is not found, the expansion is taken to be
local!name. Under the −f option, alias files listed in /mail/lib/fromfiles are consulted
instead, and the domain part only of the expansion is printed.

FILES
/mail/lib/namefiles names of system alias files

SOURCE
/sys/src/cmd/upas/alias

SEE ALSO
faces(1), filter(1), mail(1), marshal(1), mlmgr(1), nedmail(1), qer(8), rewrite(6), send(8), smtp(8),
upasfs(4)

926

APM(8) APM(8)

NAME
apm � Advanced Power Management 1.2 BIOS interface

SYNOPSIS
(in plan9.ini) apm0=

bind -a �#P� /dev

aux/apm [−d device] [−m mountpoint] [−s service]

DESCRIPTION
Aux/apm presents at mountpoint (default /mnt/apm) an interface to the APM 1.2 BIOS (see
apm(3)) device (the default is to try /dev/apm, followed by #P/apm). If a service is specified,
the interface will be posted at /srv/service as well.

The directory contains the following files.

battery
Contains one line for each battery in the system. Each line lists three fields: the status (a
string, one of unknown, high, low, critical, or charging), the percent charge
remaining, and an estimate of the amount of time left in seconds. If either or both of the
last two are unknown, the corresponding field will be zero.

ctl The ctl file is used to set power management modes for various parts of the system.
Control messages are of the form ��device verb,�� where device is one of system,
display, storage, lpt, eia, network, and pcmcia, and verb is one of enable,
disable, standby, off and on. Enable and disable control whether power man
agement is active for the device, while standby puts the device into standby mode and
on brings it back to full power.

event
Reads from this file will block until an APM event has occurred. A large enough read is
guaranteed to return an integral number of textual event descriptions, one per line.

SOURCE
/sys/src/cmd/aux/apm.c
/acme/bin/Battery

BUGS
The verbs suspend and off should be supported but doing so requires nontrivial help from the
kernel.

SEE ALSO
acpi(8)

927

ATAZZ(8) ATAZZ(8)

NAME
atazz � ATA target control

SYNOPSIS
atazz [−r] [sddev]
atazz −c cmd

DESCRIPTION
Atazz is an interactive program for exercising raw ATA devices. Its intended purpose is to support
odd and administrative commands without requiring this functionality be implemented by each
device driver. It reads commands from standard input and applies them to an ATA target. Com
munication is in SATA FIS format. Non-ATA devices accessed through the sd(3) interface will not
work; ATAPI devices will respond to the commands in the ACS-2 packet feature set. If the −c
option is given, the name of the given numeric ATA command is printed. sddev is given on the
command line, an open (see below) is immediately applied to the target. On completion of a com
mand, any errors are printed followed by the prompt az> . The response FIS may be printed with
the command rfis. Some commands like identify device print processed output by
default. Redirecting the output to a file will give the raw output as will the −r flag. In addition the
following commands are implemented internally

< > <> file Redirect output, input or both to or from a file. If file is missing, then the redi
rection is closed.

close Close the currently open device.

dev Print device path and basic information.

issuetr [command ...]
Toggle command issue tracing. With no arguments, issuetr toggles tracing for
all commands. Commands may be specified by number.

open dev Open the named device.

probe Print a list of available device paths, size, sector size and WWNs. The first col
umn is a suitable argument for open.

rfis Print the returned FIS, if any.

For all commands, it is possible to manipulate the sata registers directly by specifying the register
name and an 8-bit value. The registers are

type FIS type

flags FIS flags

cmd command register

feat or features

lba0 or sector

lba8 or cyl0

lba16 or cyl8

lba24 or dh or byte8

lba32

lba40

feat8

sc sector count

sc8

r reserved FIS register

In addition, commands that take an LBA and a number of sectors may be given those arguments
directly, for example to read 1 sector starting at lba 100,

928

ATAZZ(8) ATAZZ(8)

az> read dma ext 100 1

Subcommands are spelled out as in ACS-2. For example, to set the transfer mode to UDMA 6,
enable the write cache and to enable and report smart status, one would

az> set features set transfer mode udma 6
az> set features enable write cache
az> smart enable operations
az> smart return status
normal

SCT pseudo-protocol commands are also supported.

az> sct error recovery time set read timer = 5
az> sct error recovery time return read timer
500ms

FILES
/dev/sdXX/raw

SOURCE
/sys/src/cmd/atazz

SEE ALSO
scuzz(8), sd(3), smart(8),
T13/2015 ACS-2 published online at http://www.t13.org.

BUGS
Subcommand help doesn�t work. ACS-2 commands are tortuously verbose.

929

AUTH(8) AUTH(8)

NAME
changeuser, convkeys, printnetkey, status, enable, disable, authsrv, guard.srv, debug, wrkey,
login, newns, none, as � maintain or query authentication databases

SYNOPSIS
auth/changeuser [−np] user

auth/convkeys [−pa] keyfile

auth/printnetkey user

auth/status user

auth/enable user

auth/disable user

auth/authsrv [−N]

auth/guard.srv

auth/debug

auth/wrkey

auth/login [−a authdom] user

auth/newns [−ad] [−n namespace] command arg ...

auth/none [−d] [−n namespace] command arg ...

auth/as [−d] [−n namespace] user command arg ...

DESCRIPTION
These administrative commands run only on the authentication server. Changeuser manipulates
an authentication database file system served by keyfs(4) and used by file servers. There are two
authentication databases, one holding information about Plan 9 accounts and one holding
SecureNet keys. A user need not be installed in both databases but must be installed in the Plan 9
database to connect to a Plan 9 service.

Changeuser installs or changes user in an authentication database. It does not install a user on a
Plan 9 file server; see fs(8) for that.

Option −p installs user in the Plan 9 database. Changeuser asks twice for a password for the new
user. If the responses do not match or the password is too easy to guess the user is not installed.
Changeuser also asks for an APOP secret. This secret is used in the APOP (RFC1939), CRAM
(RFC2195), and Microsoft challenge/response protocols used for POP3, IMAP, and VPN access.

Option −n installs user in the SecureNet database and prints out a key for the SecureNet box. The
key is chosen by changeuser.

If neither option −p or option −n is given, changeuser installs the user in the Plan 9 database.

Changeuser prompts for biographical information such as email address, user name, sponsor and
department number and appends it to the file /adm/netkeys.who or /adm/keys.who.

Convkeys re-encrypts the key file keyfile. Re-encryption is performed in place. Without the −p
option convkeys uses the key stored in NVRAM to decrypt the file, and encrypts it using the new
key. By default, convkeys prompts twice for the new password. The −p forces convkeys to also
prompt for the old password. The −a option converts the file into AES format. The format of
keyfile is described in keyfs(4).

Printnetkey displays the network key as it should be entered into the hand-held Securenet box.

Status is a shell script that prints out everything known about a user and the user�s key status.

Enable/disable are shell scripts that enable/disable both the Plan 9 and Netkey keys for individual
users.

Authsrv is the program, run only on the authentication server, that handles ticket requests on TCP
port 567. It is started by an incoming call to the server requesting a conversation ticket; its stan
dard input and output are the network connection. Authsrv executes the authentication server�s
end of the appropriate protocol as described in authsrv(6). The −N flag disables legacy

930

AUTH(8) AUTH(8)

bruteforceable DES-encrypted tickes as used by the p9sk1 protocol, forcing the use of new
dp9ik password authenticated key exchange.

Guard.srv is similar. It is called whenever a foreign (e.g. Unix) system wants to do a SecureNet
challenge/response authentication.

Anywhere commands
The remaining commands need not be run on an authentication server.

Debug attempts to authenticate using each dp9ik and p9sk1 key found in factotum and prints
progress reports.

Wrkey prompts for a machine key, host owner, and host domain and stores them in local non-
volatile RAM.

Login allows a user to change his authenticated id to user. Login sets up a new namespace from
/lib/namespace, starts a factotum(4) under the new id and execs rc(1) under the new id.

Newns sets up a new namespace from namespace (default /lib/namespace) and execs its
arguments. If there are no arguments, it execs /bin/rc. Under −a, newns adds to the current
namespace instead of constructing a new one. The −d option enables debugging output.

None sets up a new namespace from namespace (default /lib/namespace) as the user none
and execs its arguments under the new id. If there are no arguments, it execs /bin/rc. It�s an
easy way to run a command as none.

As executes command as user. Command is a single argument to rc, containing an arbitrary rc
command. This only works for the hostowner and only if #¤/caphash still exists.

FILES
/lib/ndb/auth Speaksfor relationships and mappings for RADIUS server id�s.
/adm/keys.who List of users in the Plan 9 database.
/adm/netkeys.who List of users in the SecureNet database.

SOURCE
/sys/src/cmd/auth

SEE ALSO
passwd(1), readnvram in authsrv(2), keyfs(4), securenet(8)

BUGS
Only CPU kernels permit changing userid.

931

BACKUP(8) BACKUP(8)

NAME
backup, tobackup, dumparenas, restore � backup venti arenas to blu-ray discs or restore from
them

SYNOPSIS
backup [−n] [−d dev] [−s set]
tobackup [set]
dumparenas dev arena ...
restore arena−# [dev]

DESCRIPTION
These programs reside in /sys/lib/backup and provide a means to backup venti(8) storage
to Blu-ray (or other large optical) discs, while keeping track of which arenas have been written to
which discs. Multiple backup sets are supported, as is (re)loading a venti store from a backup thus
made.

The first time that backup is run, it will dump all sealed venti arenas. Thereafter, it will append
only those sealed arenas not already written to a disc within the given backup set. The −s option
uses a backup set other than the default. The −d option uses a disc burner other than the default
/dev/sdD0. The −n option goes through the motions but does not burn any tracks on the Blu-
ray disc.

Tobackup prints the names of all the sealed arenas not yet backed up to a disc in the current set.

Dumparenas copies the named arenas, one per track, to the device dev, which is first mounted via
cdfs(4). Venti/rdarena is used to extract each arena.

Tobackup and dumparenas are invoked internally by backup.

Restore copies each data track (assumed to be a saved arena) on dev (by default, /dev/sdC0)
into its appropriate place in the venti arenas partition (locally, /dev/sde0/arenas), thus
adding the arena to the current venti store. The arena size of the arena partition must match the
size of the arenas on optical disc (except for ~60K of trailing debris on the optical disc arenas).

Arena−# must be the number (starting from zero) of the first arena slot in the arenas partition that
you wish to restore into from the current optical disc (not necessarily that of the first arena on the
disc). Restore will prompt for confirmation that the first arena is the correct one, after printing a
summary of its arena header. Typing y will proceed normally, n will abort all processing, and
skip will cause restore to proceed to the next track and ask for confirmation of it.

The arenas partition must be formatted (see fmtarenas in venti−fmt(8)) before restoring into it.
When all the arenas have been restored, it will be necessary to build a new venti index, the usual
steps being to run checkarenas, fmtisect, fmtbloom, fmtindex, and buildindex −b, all from venti−
fmt(8).

FILES
/sys/lib/backup backup scripts and records
set1 subdirectory containing records for default backup set
/sys/log source of dump scores

SOURCE
/sys/lib/backup

SEE ALSO
venti(1), cdfs(4), venti(8), venti−fmt(8), venti−backup(8)
Venti Backup on Blu−Ray Discs

BUGS
Assumes a single arenas partition named arena0. Assumes that the file server�s arenas are
accessible on it as /dev/fs/arena0.

932

BOOT(8) BOOT(8)

NAME
boot, bootrc � connect to the root file server

SYNOPSIS
/boot/boot

DESCRIPTION
Boot is the first program run after a kernel has been loaded. It mounts bootfs.paq, a com
pressed filesystem contained in root(3), sets up the rc(1) environment and executes bootrc pass
ing on its arguments. Bootrc connects to the file server that will serve the root, performs any
authentication needed to connect to that server, and executes the init(8) program. Both boot and
bootrc are started by the kernel, never run directly by the user. See booting(8) for information
about the process of loading the kernel (and boot) into memory.

Once loaded, the kernel initializes its data structures and devices. It sets the two environment vari
ables /env/cputype and /env/terminal to describe the processor. It then binds a place-
holder file server, root(3), onto / and crafts an initial process whose sole function is to exec(2)
/boot/boot, a binary which is compiled into root(3).

The command line passed depends on the information passed from boot ROM to kernel. Machines
that boot directly from ROM (that is, most machines other than PCs) pass the boot line given to the
ROM directly to boot.

On the PC, each line in the file plan9.ini(8) of the form name=value is passed to the boot program
as an environment variable with the same name and value.

After boot passed its execution to bootrc, it must determine the fileserver to use and a method
with which to connect to it. Typically device will name a local disk partition or ethernet interface.
The complete list of methods is given below.

Bootrc must also set a user name to be used as the owner of devices and all console processes and
an encryption key to be used when challenged. Bootrc will prompt for these.

Method and device are prompted for first. The prompt lists all valid methods, with the default in
brackets, for example:

bootargs is (tcp, il, local!device) [local!/dev/sdC0/fscache]

A newline picks the default. Entering !rc breaks into the rc(1) shell. Other possible responses are
method, method!device or method!device args.

The other interactions depend on whether the system is a terminal or a CPU server.

Terminal
A terminal must have a username set. If not specified with the user= plan9.ini(8) parameter,
boot will prompt for one on the console:

user:

The user will also be prompted for a password to be used as an encryption key on each attach(5):

password:

Once connected, boot mounts the root file system at /root (with the optional mount spec argu
ment from $rootspec) and makes the connection available as #s/boot for subsequent pro
cesses to mount (see bind(2)). It then binds /root (or the value specified by $rootdir) after
the / directory. Boot completes by exec(2)�ing /$cputype/init −t. If the −m option is given
it is also passed as an option to init. If the environment variable init is set (via plan9.ini(8)), it is
used as an argument to exec(2) instead.

If the bootfs.paq has been built with the cache file system, cfs(4), the local disk partition
/dev/sdXX/cache (where XX is a unit specifier) exists, and the root file system is from a
remote server, then bootrc will insert a user level cache process between the remote server and the
local namespace that caches all remote accesses on the local partition.

CPU Servers
The user owning devices and console processes on CPU servers and that user�s domain and
encryption key are read from NVRAM on all machines except PCs. PCs keep the information in the
disk partition /dev/sdXX/nvram.

933

BOOT(8) BOOT(8)

password:
authid: bootes
authdom: research.bell−labs.com

The key is used for mutual authentication of the server and its clients. The domain and id identify
the owner of the key.

Once connected, boot behaves as on the terminal except for exec(2)�ing /$cputype/init −c.

Booting Methods
The methods available to any system depend on what was compiled into the kernel. The complete
list of booting methods are listed below.

tcp connect via Ethernet using the TCP protocol. The device and args are passed to
ipconfig(8) when configuring the IP stack. The plan9.ini(8) variables fs and auth over
ride the file server and authentication servers obtained (if any) from DHCP and IPv6 router
advertisements during ipconfig(8).

il the same as tcp but uses the IL protocol to connect to the fileserver.

tls makes an authenticated and encrypted connection to the fileserver via srvtls using t9fs ser
vice (see srv(4)). the arguments are the same as tcp.

local connect to the local file system. The device is a disk partition file holding a file system.
Bootrc inspects the disk partition with fstype(1) to determine the file system type and
starts the appropriate server with args.

reboot
starts another kernel. The device is of the form bootfile [! method] where bootfile is the
path to the kernel and method is any of the above boot methods that connects to the file
server on where the bootfile is located.

EXAMPLES
On PCs, the default arguments to boot are constructed using the bootargs variable in
plan9.ini(8).

Start cwfs(4) in config mode:

bootargs=local!/dev/sdC0/fscache −c

Use an IP stack on an alternate ethernet interface with a static address and fixed file server and
authentication server addresses.

fs=192.168.0.2
auth=192.168.0.3
bootargs=tcp!−g 192.168.0.1 ether /net/ether1 \

192.168.0.50 255.255.255.0

(The bootargs line is split only for presentation; it is one line in the file.)

FILES
#s/boot
#//boot/boot
#//boot/bootfs.paq

SOURCE
/sys/src/9/boot

SEE ALSO
root(3), dhcpd(8), init(8)

BUGS
The use of bootargs in general is odd.

Filenames passed to 9bootfat must be specified in DOS 8.3 format. 9bootfat does not support
long file names.

HISTORY
Boot first appeared in Plan 9 from Bell Labs. It was rewritten in rc for 9front (April, 2011).

934

BOOTING(8) BOOTING(8)

NAME
booting � bootstrapping procedures

SYNOPSIS
none

DESCRIPTION
This manual page collects the incantations required to bootstrap Plan 9 machines. Some of the
information here is specific to the installation at Bell Labs; some is generic.

If a CPU server is up, BOOTP/DHCP and TFTP will run from there; if not, the necessary files and ser
vices must be available on a separate machine, such as a Unix system, to use these protocols for
bootstrapping.

Be sure to read boot(8) to understand what happens after the kernel is loaded.

Terminals
To bootstrap a diskless terminal or a CPU server, a file server must be running.

PCs
On a PC, the 9boot(8) program is used to load the kernel /386/9pc into memory.

Once the kernel is booted, it behaves like the others. See boot(8) for details.

CPU Servers
The Plan 9 CPU servers are multi-user, so they do not request a user name when booting.

PC CPU Server
Proceed as for the PC terminal, but have service=cpu set in plan9.ini(8).

SGI Challenge multiprocessor CPU Server
The Challenge ROM monitor can boot from the Ethernet. To boot from the Ethernet, type

bootp()/mips/9ch

or use the ROM command setenv to set the variable bootfile to that same string and type
boot. To load a different file, tell bootp which file to load, and to force the download to come
from a particular system, bootp()system:file. Any arguments after bootp()file are
passed to /boot. If you are running a Plan 9 BOOTP server (see dhcpd(8)), the file name can be
omitted and the file specified by the bootf parameter for the machine in /lib/ndb will be
downloaded by default.

Once the kernel is loaded, it prompts for the Ethernet protocol to use to reach the root file server;
request the default.

ARM CPU Servers
All ARM systems are started by U−boot using similar commands. The kernels (and thus ndb
bootf parameters) are /arm/9gd for the Marvell PXA168-based Guruplug Display,
/arm/9plug for all Marvell Kirkwood plugs (Sheevaplug, Guruplug, Openrd, etc.), and
/arm/9beagle for TI OMAP3 boards (IGEPv2 from ISEE, Gumstix Overo). In the following,
replace MAC with your board�s MAC address without colons, in lower case (the format of the
ether ndb attribute).

First, establish a /cfg/pxe (plan9.ini) file for the new CPU server. For Kirkwood plugs,

cd /cfg/pxe; cp example−kw MAC

and edit /cfg/pxe/MAC to taste. For PXA plugs, replace kw with pxa; for OMAP boards,
replace kw with omap and be sure to edit the line for ether0 to set

ea=MAC

Second, configure U−boot to load the appropriate kernel and /cfg/pxe file at suitable addresses
and start the kernel. For Sheevaplugs and Openrd boards, type this at U-boot once:

setenv bootdelay 2
type the next two lines as one
setenv bootcmd ’bootp; bootp; tftp 0x1000 /cfg/pxe/MAC; bootp;

tftp 0x800000; go 0x800000’
saveenv

935

BOOTING(8) BOOTING(8)

For Guruplugs Displays, do the same but type this after setenv bootcmd instead:

’dhcp; tftpboot; tftpboot 0x1000 /cfg/pxe/MAC; bootz 0x500000’

For Kirkwood Guruplugs, type this after setenv bootcmd:

’dhcp 0x800000; tftp 0x1000 /cfg/pxe/MAC; go 0x800000’

For IGEPv2 boards, type this after setenv bootcmd:

’tftp 0x80300000 /cfg/pxe/MAC; dhcp 0x80310000; go 0x80310000’

For Gumstix Overo boards, type this after setenv bootcmd:

’bootp 0x80310000; bootp 0x80300000 /cfg/pxe/MAC; go 0x80310000’

Thereafter, the boards will automatically boot via BOOTP and TFTP when reset.

SEE ALSO
ndb(6), 9boot(8), boot(8), init(8), plan9.ini(8)

SOURCE
Sources for the various boot programs are under /sys/src/boot.

936

CEC(8) CEC(8)

NAME
cec � Coraid Ethernet Console

SYNOPSIS
cec [−dp] [−S srv] [−c esc] [−e ea] [−h host [−s shelf] [interface]

DESCRIPTION
Cec uses raw Ethernet packets to connect to a CEC server for console access. All clients share the
same session. Coraid appliances and Coraid Plan 9 kernels can currently be CEC servers.

Cec starts by probing the specified network interface for available CEC servers. The default is
/net/ether0. Only one cec process may be run per Ethernet interface. If the server is specified
with the −b, −h, or −s options, communication will proceed immediately upon discovery of the
first CEC server with the specified address. Otherwise, a selection prompt will be displayed show
ing the discovered CEC servers available for communication. Unless the −p option is specified, cec
exits if no matching servers are found. The selection prompt accepts

number Connect to server number (from the first column),
p Probe the interface again, and
q Quit.

Note the selection number is not the shelf address but the cec-generated sequence number
printed in the leftmost column.

Once connected to a CEC server, typing the escape character will drop the user into an escape
prompt where the user may type q to quit the connection, i to send the escape character across
the connection, or . to continue the connection.

Options
−c Set the escape character to control-esc. The default setting is control-\.

−d Print debugging information.

−e Connect to the server with Ethernet address ea; implies −p.

−h Connect to the server host. Note that this name might not be the same as the contents of
/dev/sysname on the target system.

−p Persist: continue trying to connect even if there are no matching servers. This is useful
when connecting to a CPU server before it boots.

−s Connect to the server at address shelf.

−S Post the CEC connection as /srv/srv to allow sharing.

If the −e, −s, or −h options are given, cec will exit upon closing the connection. Otherwise, cec
will return to the selection prompt upon connection close.

EXAMPLES
; cec ’#l1/ether1’
0 1 003048679b89
[#qp]: 0

SR shelf 1>
SR shelf 1> >>> q
0 1 003048679b89
[#qp]: q
;

SOURCE
/sys/src/cmd/cec

BUGS
The CEC protocol should be integrated with the console server. The arbitration between the key
board and network is suboptimal.

Early boot information and very late crash information from servers may be lost due to timing
quirks.

937

CIFSD(8) CIFSD(8)

NAME
cifsd � CIFS/SMB network daemon

SYNOPSIS
ip/cifsd [−t] [−d] [−f debuglog] [−w name] [−o option] ... [conndir]

DESCRIPTION
Cifsd exports filesystems to CIFS or SMB clients like Microsoft " Windows.

It is normally started by the network listen process via the /rc/bin/service/tcp445 service
script (see listen(8)), which passes conndir and filedescriptors 0 and 1 to the incoming connection.

Users are authenticated by their Inferno/pop secret held by the auth server. When successful, cifsd
changes its user id and namespace to the authenticated user. Informative log messages are
appended to /sys/log/cifsd if it exists.

By default the share local is offered, which represents the root of the namespace described by
/lib/namespace. If a different name is explicitly requested by the client then /bin/9fs (see
srv(4)) is invoked to attach that filesystem, which is then exported instead.

The flags are:

t Run the server in trusted mode, so it will not require authentication from the client and
keep running in the callers namespace.

d Enable or increases debug verbosity for the debuglog file. Debug messages are never writ
ten to the system logfile.

f Specify the filename for the debuglog file. If not specified no debug messages are gener
ated.

w Set the workgroup (or primary domain) to name. The default is WORKGROUP

o Enables the following option string. This flag can appear multiple times when more than
one option has to be enabled. Valid options are:

trspaces
transforms whitespace in filenames to non breaking whitespace. This is useful when
exporting filesystems other than fossil.

casesensitive
By default, filename lookups are done case insensitive to match windows filesystem
semantics. This option disables case insensitive lookups which can result in a per
formance improvement, but might break some applications.

FILES
/rc/bin/service/tcp445
/sys/log/cifsd
/lib/namespace

SOURCE
/sys/src/cmd/ip/cifsd

SEE ALSO
listen(8), srv(4)

HISTORY
Cifsd first appeared in 9front (May, 2011).

938

CPUID(8) CPUID(8)

NAME
cpuid, icanhasvmx � print processor information

SYNOPSIS
aux/cpuid [−ar]

aux/icanhasvmx [−r]

DESCRIPTION
Intel and compatible processors since the Pentium" (or late 486) provide the CPUID instruction that
returns information about the chip. The cpuid program enumerates and prints this information in a
simple textual format. The output consists of multiple lines prefixed with a keyword describing the
information that follows.

With the −r option, the format changes to raw hexadecimal output with the keyword being the AX
input register to the CPUID instruction followed by 4 colums with the output registers AX, BX, CX
and DX.

The −a option prints enumerated items in raw format if no keyword is known instead of omitting it
(default).

The keywords supported so far are:

vendor
Processor vendor string

procmodel, extmodel
Processor model, hexadecimal model / family id

features, extfeatures
Feature bits, a variable list of feature acronyms

procname
Processor name string

physbits, virtbits, guestbits
Address lines, decimal in bits

Icanhasvmx queries the virtual machine extension (VMX) capabilities. If −r is specified, it prints
the results in raw hexadecimal; otherwise it produces a human-readable format. In any case it
prints a summary on fd 2.

EXAMPLE
term% aux/cpuid
vendor GenuineIntel
procmodel 000006b4 / 00000006
features fpu vme de pse tsc msr pae mce cx8 sep mtrr pge mca cmov pat pse36
features mmx fxsr sse
extmodel 00000000 / 00000000
procname Mobile Intel(R) Pentium(R) III CPU − M 1133MHz

SOURCE
/sys/src/cmd/aux/cpuid.c

939

CPURC(8) CPURC(8)

NAME
cpurc, cpurc.local, termrc, termrc.local � boot scripts

SYNOPSIS
cpurc
cpurc.local

termrc
termrc.local

DESCRIPTION
After the kernel boots, it execs /boot (see boot(8)), which in turn execs /$cputype/init.
Init(8) sets the $service environment variable to cpu or terminal, and then invokes the
appropriate rc script to bring the system up.

Based on the values of $sysname and $terminal these scripts start appropriate network pro
cesses and administrative daemons and enable swapping. Termrc sets /env/NPROC to a value
suitable for parallel compilation in mk(1).

If an executable file /bin/termrc.local exists, termrc will execute it. If an executable file
/cfg/$sysname/termrc exists for the machine named $sysname, termrc will execute it
next. These files should be edited by local installations to reflect the configuration of their sys
tems.

On CPU servers, read cpurc for termrc in the previous paragraph.

FILES
/cfg/$sysname/cpurc machine-specific boot script for cpurc
/cfg/$sysname/termrc machine-specific boot script for termrc

SOURCE
/rc/bin/*rc
/rc/bin/*rc.local
/cfg/$sysname/*rc

SEE ALSO
namespace(6), boot(8) init(8), listen(8)

940

CRON(8) CRON(8)

NAME
cron � clock daemon

SYNOPSIS
auth/cron [−c]

DESCRIPTION
Cron executes commands at specified dates and times according to instructions in the files
/cron/user/cron. It runs only on an authentication server. Option −c causes cron to create
/cron/user and /cron/user/cron for the current user; it can be run from any Plan 9
machine.

Blank lines and lines beginning with # in these files are ignored. Entries are lines with fields

minute hour day month weekday host command

Command is a string, which may contain spaces, that is passed to an rc(1) running on host for
execution. The first five fields are integer patterns for

minute 0�59
hour 0�23
day of month 1�31
month of year 1�12
day of week 0�6; 0=Sunday

The syntax for these patterns is

time : ’*’
| range

range : number
| number ’−’ number
| range ’,’ range

Each number must be in the appropriate range. Hyphens specify inclusive ranges of valid times;
commas specify lists of valid time ranges.

To run the job, cron calls host and authenticates remote execution, equivalent to running rx host
command (see con(1)). The user�s profile is run with $service set to rx. If host is set to
local, cron will run the command as user on the local machine without using rx.

Cron is not a reliable service. It skips commands if it cannot reach host within two minutes, or if
the cron daemon is not running at the appropriate time.

EXAMPLES
Here is the job that mails system news.

% cat /cron/upas/cron
send system news
15 8−17,21 * * * helix /mail/lib/mailnews
%

FILES
/cron/lock lock file to prevent multiple crons running

SOURCE
/sys/src/cmd/auth/cron.c

SEE ALSO
con(1), rc(1)

941

CRYPTSETUP(8) CRYPTSETUP(8)

NAME
cryptsetup � setup encrypted partition

SYNOPSIS
disk/cryptsetup −f files ...
disk/cryptsetup −o files ...
disk/cryptsetup −i files ...

DESCRIPTION
Cryptsetup prepares an AES-encrypted partition to be used with the fs(3) device.

The −f flag formats the partition files, generating a new encryption key. The user will be prompted
for a password that will be used to protect the encryption key.

The flags −i and −o activate a previously formatted encrypted partition. The −o flag outputs the
fs(3) ctl activation commands to standard output, whereas −i directly writes them to the
’/dev/fs/ctl’ file. The user will be prompted for the password that was used to protect the
encryption key.

Once activated, the new partition appears under /dev/fs/name where name is the last path ele
ment of the files argument.

SOURCE
/sys/src/cmd/disk/cryptsetup.c

SEE ALSO
aes(2) , fs(3)

HISTORY
Cryptsetup first appeared in 9front (May, 2011).

942

DHCPD(8) DHCPD(8)

NAME
dhcpd, dhcp6d, dhcpleases, rarpd, tftpd � Internet booting

SYNOPSIS
ip/dhcpd [−dmnprsSZ] [−h homedir] [−f ndbfile] [−M secs] [−x netmtpt] [−Z secs] [address n
] ...

ip/dhcpleases

ip/dhcp6d [−d] [−f ndbfile] [−x netmtpt]

ip/rarpd [−d] [−e etherdev] [−x netmtpt]

ip/tftpd [−dr] [−h homedir] [−x netmtpt]

DESCRIPTION
These programs support booting over the Internet. They should all be run on the same server to
allow other systems to be booted. Dhcpd, dhcp6d and tftpd are used to boot everything; rarpd is
an extra piece just for Suns.

Dhcpd runs the BOOTP and DHCP protocols. Clients use these protocols to obtain configuration
information. This information comes from attribute/value pairs in the network database (see
ndb(6) and ndb(8)). DHCP requests are honored both for static addresses found in the NDB and for
dynamic addresses listed in the command line. DHCP requests are honored if either:
� there exists an NDB entry containing both the ethernet address of the requester and an IP
address on the originating network or subnetwork.
� a free dynamic address exists on the originating network or subnetwork.

A BOOTP request is honored if all of the following are true:
� there exists an NDB entry containing both the ethernet address of the requester and an IP
address on the originating network or subnetwork.
� the entry contains a bootf= attribute
� the file in the bootf= attribute is readable.

Dynamic addresses are specified on the command line as a list of addresses and number pairs.
For example,

ip/dhcpd 10.1.1.12 10 10.2.1.70 12
directs dhcpd to return dynamic addresses 10.1.1.12 through 10.1.1.21 inclusive and 10.2.1.70
through 10.2.1.81 inclusive.

Dhcpd maintains a record of all dynamic addresses in the directory /lib/ndb/dhcp, one file
per address. If multiple servers have access to this common directory, they will correctly coordi
nate their actions.

Attributes come from either the NDB entry for the system, the entry for its subnet, or the entry for
its network. The system entry has precedence, then the subnet, then the network. The NDB
attributes used are:

ip the IP address
ipmask the IP mask
ipgw the default IP gateway
dom the domain name of the system
fs the default Plan 9 file server
auth the default Plan 9 authentication server
dns a domain name server
ntp a network time protocol server
time a time server
wins a NETBIOS name server
www a World Wide Web proxy
pop3 a POP3 mail server
smtp an SMTP mail server
bootf the default boot file; see ndb(6)
tftp the TFTP server to fetch bootf from
rootpath the NFS root for unix machines

943

DHCPD(8) DHCPD(8)

rootserver the NFS server used with rootpath
vendor Specific vendor attribute for dhcp and bootp

Dhcpd will answer BOOTP requests only if it has been specifically targeted or if it has read access to
the boot file for the requester. That means that the requester must specify a boot file in the
request or one has to exist in NDB for dhcpd to answer. Dhcpd will answer all DHCP requests for
which it can associate an IP address with the requester. The options are:

d Print debugging to standard output.

h Change directory to homedir. The default is /. This should match the homedir setting of
tftpd so that the existence check of non-rooted file names is consistent.

f Specify a file other than /lib/ndb/local as the network database.

m Mute: don�t reply to requests, just log them and what dhcpd would have done.

M Use secs as the minimum lease time for dynamic addresses.

n Don�t answer BOOTP requests.

p Answer DHCP requests from PPTP clients only.

r Mute static addresses: don�t reply to requests for static addresses, just log them and what
dhcpd would have done.

s Sleep 2 seconds before answering requests for static addresses. This is used to make a
server be a backup only.

S Sleep 2 seconds before answering requests for dynamic addresses.

x The IP stack to use is mounted at netmtpt. The default is /net.

Z Use secs as the minimum lease time for static addresses.

Dhcp6d provides DHCPv6 service for IPv6 clients. Only network boot and DNS parameters are sup
ported.

Dhcpleases prints out the currently valid DHCP leases found in the /lib/ndb/dhcp directory.

Rarpd performs the Reverse Address Resolution Protocol, translating Ethernet addresses into IP
addresses. The options are:

d Print debugging to standard output.

e Use the Ethernet mounted at /net/etherdev.

x The IP stack to use is mounted at netmtpt. The default is /net.

Tftpd transfers files to systems that are booting. It runs as user none and can only access files
with global read permission. The options are:

d Print debugging to standard output.

x The IP stack to use is mounted at netmtpt. The default is /net.

h Change directory to homedir. The default is /. All requests for files with non-rooted file
names are served starting at this directory. This needs to be consistent with the homedir
setting of dhcpd. Tftpd supports only octet mode.

r Restricts access to only those files rooted in the homedir.

FILES
/lib/ndb/dhcp directory of dynamic address files

SOURCE
/sys/src/cmd/ip

SEE ALSO
ndb(6), booting(8)

944

DISKPARTS(8) DISKPARTS(8)

NAME
diskparts � prepare disks for use

SYNOPSIS
diskparts

DESCRIPTION
Diskparts configures EFI, FDISK and Plan 9 partitions on any disks named /dev/sd*, then config
ures fs(3) by copying /cfg/$sysname/fsconfig, if present, to /dev/fs/ctl, if present,
one line at a time. If #S or #k are not bound to /dev yet, they are first bound after the current
contents.

FILES
/dev/sd[C−H]?/ctl storage interface control files for IDE devices

SOURCE
/rc/bin/diskparts

SEE ALSO
sd(3), partfs(8)

945

DISKSIM(8) DISKSIM(8)

NAME
disksim � disk simulator

SYNOPSIS
aux/disksim [−r] [−f file] [−s srvname] [−m mtpt] [diskname]

DESCRIPTION
Disksim presents an in-memory disk in the manner of the sd(3) device on mtpt/diskname (default
/dev/sdXX). The disk is initialized to zeros; non-zeroed blocks written to the disk are kept in
memory.

When setting disk geometry with the geometry control message, the arguments are sectors, sec
tor size, cylinders, heads, and sectors per track. The last three may be zero for LBA disk simula
tions, but must be present.

The −f option causes disksim to use file as the initial contents of the disk rather than a zeroed
image. Changes made to the disk are written back to file unless the −r option is given.

The −s option causes disksim to post its 9P service at /srv/service.

EXAMPLES
Disksim can be used to test programs such as fdisk and prep(8) that expect sd(3) disks:

aux/disksim
echo geometry 40000 512 0 0 0 >/dev/sdXX/ctl # 20MB
disk/mbr /dev/sdXX/data
disk/fdisk −baw /dev/sdXX/data
disk/prep /dev/sdXX/plan9

Disksim is useful for creating very large but mostly zeroed files for testing other programs. Test
tar(1)�s handling of large files:

for(i in sdXX sdYY sdZZ) aux/disksim $i
echo geometry 40000000 512 0 0 0 >/dev/sdXX/ctl # 20GB
echo geometry 10000000 512 0 0 0 >/dev/sdYY/ctl # 5GB
echo geometry 20000000 512 0 0 0 >/dev/sdZZ/ctl # 10GB
tar cf /dev/sdXX/data /dev/sdYY/data /dev/sdZZ/data
tar tvf /dev/sdXX/data

SOURCE
/sys/src/cmd/aux/disksim.c

SEE ALSO
sd(3), prep(8)

946

FS(8) FS(8)

NAME
fs, exsort � file server maintenance

SYNOPSIS
help [command ...]
allow [uid]
arp subcommand
cfs filesystem
check [options]
clean file [bno [addr]]
clri [file...]
cpu [proc]
create path uid gid perm [lad]
cwcmd subcommand
date [[+−] seconds]
disallow
duallow [uid]
dump [filesystem]
files
flag flag [channel]
fstat [files]
halt
hangup channel
newuser name [options]
noattach
passwd
printconf
profile [01]
remove [files...]
route subcommand
sntp kick
stat[admiesw]
stats [[−] flags...]
sync
time command
trace [number]
users [file]
version
who [user...]
wormeject [tunit]
wormingest [tunit]
wormoffline drive
wormonline drive
wormreset

disk/exsort [−w] [file]

DESCRIPTION
Except for exsort, these commands are available only on the console of an fs(4) file server.

Help prints a �usage string� for the named commands, by default all commands. Also, many com
mands print menus of their options if given incorrect or incomplete parameters.

Allow disables permission checking and allows wstat for the specified uid or for any user if omit
ted. This may help in initializing a file system. Use this with caution.

Arp has two subcommands: print prints the contents of the ARP cache and flush flushes it.

Cfs changes the current file system, that is, the file tree to which commands (check, clean,
clri, create, cwcmd, dump, newuser, profile, remove, and users) apply. The initial
filesystem is main.

947

FS(8) FS(8)

Check verifies the consistency of the current file system. With no options it checks and reports the
status. It suspends service while running. Options are:

rdall Read every block in the file system (can take a long time). Normally, check will stop
short of the actual contents of a file and just verify the block addresses.

tag Fix bad tags; each block has a tag that acts as a backwards pointer for consistency
checking.

ream Fix bad tags and also clear the contents of blocks that have bad tags.

pfile Print every file name.

pdir Print every directory name.

free Rebuild the list of free blocks with all blocks that are not referenced. This option is only
useful on non-cache/WORM file systems. If the filesystem was modified, the summary
printed at the conclusion of the check may not reflect the true state of the freelist and
may also print a list of missing blocks. These missing blocks are actually on the free list
and the true state of the filesystem can be determined by running check with no argu
ments.

bad Each block address that is out of range or duplicate is cleared. Note that only the sec
ond and subsequent use of a block is cleared. Often the problems in a file system are
caused by one bad file that has a lot of garbage block addresses. In such a case, it is
wiser to use check to find the bad file (by number of diagnostic messages) and then use
clri to clear the addresses in that file. After that, check can be used to reclaim the free
list.

touch Cause every directory and indirect block not on the current WORM disk to be advanced
to the current WORM on the next dump. This is a discredited idea to try to keep operat
ing on the knee of the cache working set. Buy more cache disk.

trim reduces the file system�s fsize to fit the device containing the file system. This is useful
after copying a partially-full file system into a slightly smaller device. Running check
free afterward will construct a new free list that contains no blocks outside the new,
smaller file system.

rtmp Removes temporary files after a recovery from worm. After a cache ream and recover,
temporary files and directories refer to invalid data blocks producing checktag errors on
access. To get rid of these errors, the rtmp flag can be used with the check command
which will truncate temporary directories and remove temporary files.

Clean prints the block numbers in file�s directory entry (direct, indirect and doubly indirect) and
checks the tags of the blocks cited. If bno is supplied, the bno�th block number (using zero origin)
is set to addr (defaults to zero). Note that only the block numbers in the directory entry itself are
examined; clean does not recurse through indirect blocks.

Clri clears the internal directory entry and abandons storage associated with files. It ignores the
usual rules for sanity, such as checking against removing a non-empty directory. A subsequent
check free will place the abandoned storage in the free list.

Cpu prints the CPU utilization and state of the processes in the file server. If the name of a pro
cess type argument is given, then CPU utilization for only those processes is printed.

Create creates a file on the current file system. Uid and gid are names or numbers from
/adm/users. Perm is the low 9 bits of the permission mode of the file, in octal. An optional
final l, a, or d creates a locked file, append-only file, or directory.

Cwcmd controls the cached WORM file systems, specifically the current file system. The subcom
mands are:

mvstate state1 state2 [platter]
States are none, dirty, dump, dump1, error, read, and write. A mvstate
dump1 dump will cause I/O errors in the last dump to be retried. A mvstate dump1
write will cause I/O errors in the last dump to be retried in reallocated slots in the next
dump. A mvstate read none will flush the cache associated with the WORM. A
mvstate dump write aborts the background process dumping to WORM; as a conse
quence it leaves holes in the dump file system. Other uses are possible but arcane. The

948

FS(8) FS(8)

optional platter limits affected blocks to those on that platter.

prchain [start] [back−flag]
Print the chain of superblocks for the directory containing the roots of the dumped file sys
tems, starting at block number start (default 0) going forward (backwards if back−flag is
supplied and is non-zero).

searchtag [start] [tag] [blocks]
Reads the WORM device starting at block start and proceeding for blocks blocks (default
1000) until it finds a block with numeric tag tag.

savecache [percent]
Copy the block numbers, in native endian longwords, of blocks in the read state to the file
/adm/cache for use by disk/exsort. If an argument is given, then that percent
(most recently used) of each cache bucket is copied.

loadcache [dskno]
Read /adm/cache and for every block there on WORM disk side dskno (zero-origin), read
the block from WORM to the cache. If dskno is not supplied, all blocks in /adm/cache
are read.

morecache dskno [count]
Read count blocks from the beginning of WORM disk side dskno to the cache. If no count is
given, read all of side dskno into the cache.

startdump [01]
Suspend (0) or restart (1) the background dump process.

touchsb
Verify that the superblock on the WORM is readable, ignoring the cached copy.

blockcmp [wbno] [cbno]
Compares the WORM block wbno with the cache block cbno and prints the first 10 differ
ences, if any.

acct Prints how many times each user has caused the system to allocate new space on the
WORM; the units are megabytes.

clearacct
Clears the accounting records for acct.

Date prints the current date. It may be adjusted using +−seconds. With no sign, it sets the date to
the absolute number of seconds since 00:00 Jan 1, 1970 GMT; with a sign it trims the current time.

Disallow restores permission checking back to normal after a file system has been initialized.

Duallow sets permissions such that the named user can read and search any directories. This is
the permission necessary to do a du(1) command anywhere in the file system to discover disk
usage.

Dump starts a dump to WORM immediately for the named filesystem, or the current filesystem if
none is named. File service is suspended while the cache is scanned; service resumes when the
copy to WORM starts.

Files prints for every connection the number of allocated fids.

Fstat prints the current status of each named file, including uid, gid, wuid (uid of the last user to
modify the file), size, qid, and disk addresses.

Flag toggles flags, initially all off:

allchans Print channels in who output.
arp Report ARP activity.
attach Report as connections are made to the file server.
authdebug Report authentications.
authdisable Disable authentication.
chat (Very noisy.) Print all 9P messages to and from the server.
error Report 9P errors.
il Report IL errors.

949

FS(8) FS(8)

route Report received RIP packets.
ro Report I/O on the WORM device.
sntp Report SNTP activity.

If given a second numeric channel argument, as reported by who, the flag is altered only on that
connection.

Halt does a sync and halts the machine, returning to the boot ROM.

Hangup clunks all the fids on the named channel, which has the same format as in the output of
the who command.

Newuser requires a name argument. With no options it adds user name, with group leader name,
to /adm/users and makes the directory /usr/name owned by user and group name. The
options are

? Print the entry for name.
: Add a group: add the name to /adm/users but don�t create the directory. By

convention, groups are numbered starting from 10000, users from 0.
newname Rename existing user name to newname.
=leader Change the leader of name to leader. If leader is missing, remove the existing

leader.
+member Add member to the member list of name.
−member Remove existing member from the member list of name.

After a successful newuser command the file server overwrites /adm/users to reflect the inter
nal state of the user table.

Noattach disables attach(5) messages, in particular for system maintenance. Previously attached
connections are unaffected. Another noattach will enable normal behavior.

Passwd sets the machine�s password and writes it in non-volatile RAM.

Printconf prints the system configuration information.

Profile 1 clears the profiling buffer and enables profiling; profile 0 stops profiling and writes the
data to /adm/kprofdata for use by kprof (see prof(1)). If a number is not specified, the pro
filing state toggles.

Remove removes files.

Route maintains an IP routing table. The subcommands are:

add dest gate [mask] Add a static route from IP address dest using gateway gate with an
optional subnet mask.

delete dest Delete an entry from the routing table.
print Display the contents of the routing table.
ripon Enables the table to be filled from RIP packets.
ripoff Disables the table from being updated by RIP packets.

Sntp kick queries the SNTP server (see fsconfig(8)) and sets the time with its response.

The stat commands are connected with a service or device identified by the last character of the
name: d, SCSI targets; e, Ethernet controllers; i, IDE/ATA targets; m, Marvell SATA targets; w,
cached WORM. The stata command prints overall statistics about the file system. The stats com
mand takes an optional argument identifying the characters of stat commands to run. The option
is remembered and becomes the default for subsequent stats commands if it begins with a minus
sign.

Sync writes dirty blocks in memory to the magnetic disk cache.

Time reports the time required to execute the command.

Trace with no options prints the set of queue-locks held by each process in the file server. If
things are quiescent, there should be no output. With an argument number it prints a stack trace
back of that process.

Users uses the contents of file (default /adm/users) to initialize the file server�s internal repre
sentation of the users structure. Incorrectly formatted entries in file will be ignored. If file is
explicitly default, the system builds a minimal functional users table internally; this can help
recover from disasters. If the file cannot be read, you must run

950

FS(8) FS(8)

users default

for the system to function. The default table looks like this:

−1:adm:adm:
0:none:adm:
1:tor:tor:
10000:sys::
10001:map:map:
10002:doc::
10003:upas:upas:
10004:font::
10005:bootes:bootes:

Version reports when the file server was last compiled and last rebooted.

Who reports, one per line, the names of users connected to the file server and the status of their
connections. The first number printed on each line is the channel number of the connection. If
users are given the output selects connections owned by those users.

Wormeject moves the WORM disk in slot tunit of the first jukebox to the output shelf.

Wormingest moves the WORM disk from the input shelf of the first jukebox to slot tunit.

Wormoffline takes drive of the first jukebox out of service; wormonline puts it back in service.

Wormreset put discs back where the jukebox thinks they belong, and does this for all jukeboxes.

When the file server boots, it prints the message

for config mode hit a key within 5 seconds

If a character is typed within 5 seconds of the message appearing, the server will enter config
mode. See fsconfig(8) for the commands available in config mode. The system also enters config
mode if, at boot time, the non-volatile RAM does not appear to contain a valid configuration.

Exsort is a regular command to be run on a CPU server, not on the file server console. It reads the
named file (default /adm/cache) and sorts the cache disk block numbers contained therein. It
assumes the numbers are 4-byte integers and guesses the endianness by looking at the data. It
then prints statistics about the cache. With option −w it writes the sorted data back to file.

SEE ALSO
fs(4)
Ken Thompson, ��The Plan 9 File Server��.

SOURCE
/sys/src/fs
/sys/src/cmd/disk/exsort.c

BUGS
The worm* commands should accept an argument identifying a jukebox.

951

FSCONFIG(8) FSCONFIG(8)

NAME
fsconfig � configuring a file server

SYNOPSIS
service name

config device

nvram device

filsys name device

ip ipaddr

ipgw ipaddr

ipmask ipaddr

ipauth ipaddr

ipsntp ipaddr

ream name

recover name

allow

readonly

noauth

noattach

copyworm

copydev from−dev to−dev

halt

end

DESCRIPTION
When an fs(4) file server�s configuration has not been set, or by explicit request early in the
server�s initialization (see fs(8)), the server enters �config mode�. The commands described here
apply only in that mode. They establish configuration constants that are typically valid for the life
of the server, and therefore need be run only once. If the non-volatile RAM on the server gets
erased, it will be necessary to recreate the configuration.

Syntax
In these commands, ipaddr is an IP address in the form 111.103.94.19 and name is a text
string without white space. The syntax of a device is more complicated:

wn1.n2.n3
Defines a SCSI disk on target (unit) id n2, controller (host adapter) n1, and LUN (logical unit
number) n3. A single number specifies a target, while two numbers specify target.lun,
with the missing numbers defaulting to zero. Any one of the numbers may be replaced by
<m−n> to represent the values m through n inclusive. M may be greater than n. For
example, (w<1−4>) is the concatenation of SCSI targets 1 through 4.

hn1.n2.n3
H is similar to w, but for IDE or ATA disks, and the controllers must be specified in
plan9.ini. Lun is ignored. Target 0 is an IDE master and 1 is a slave. Instead of speci
fying controller and target separately, one may omit the controller and specify a target of
controller−number*2 + target−number, thus h2 is equivalent to h1.0.0 (second IDE
controller, master drive).

mn1.n2.n3
M is similar to h, but for SATA drives connected to Marvell 88SX[56]0[48][01] controllers.
There is no need to specify the controllers in plan9.ini as they are autodiscovered.
Hot-swapping drives is not currently supported. Similar target naming rules apply as for
IDE controllers. However the controller-number is multiplied by the number of drives the

952

FSCONFIG(8) FSCONFIG(8)

controller supports rather than 2. Thus m9 is equivalent to m1.1.0 (second controller,
second drive), if the first controller supports 8 drives.

ln1.n2.n3

rn1.n2.n3
The same as w, but leaving a single block at the beginning for a label (l), or not. Only n2
is really of interest, and refers to a side of a WORM disc. These are only really relevant
when used as device3 in the j device (see below).

(device...)
A pseudo-device formed from the concatenation of the devices in the list. The devices are
not blank- or comma-separated.

[device...]
A pseudo-device formed from the block-wise interleaving of the devices in the list. The
size of the result is the number of devices times the size of the smallest device.

{device...}
A pseudo-device formed from the mirroring of the first device in the list onto all the others.
The size of the result is the size of the smallest device. One might think of this as RAID 1,
and [] as RAID 0, though neither includes any fancy recovery mechanisms. Each block is
written to all the devices, starting with the rightmost in the list and working leftward. A
block is read from the first device that provides it without error, starting with the leftmost
in the list and working rightward.

pdevice.n1.n2
A partition starting at n1% from the beginning of device with a length n2% of the size of the
device. Parenthesize device if it contains periods.

xdevice
A pseudo-device that contains the byte-swapped contents of device. Since the file server
writes integers to disk in its native byte order, it can be necessary to use this device to read
file systems written by processors of the other byte order.

j(device1 device2...)device3
Device1 is the SCSI juke box interface. The device2s are the SCSI drives in the jukebox and
device3 represents the demountable platters in the juke box.

fdevice
A pseudo-WORM disk: blocks on device can be written only once and may not be read
unless written.

cdevice1device2
A cached WORM. The first device is the cache, the second the WORM.

o (Letter o) The read-only (dump) file system of the most-recently defined cached WORM file
system.

Configuration
The service command sets the textual name of the server as known in the network databases.

The configuration information is stored in block zero on a device whose device string is written in
non-volatile RAM. The config and nvram commands identify the device on which the informa
tion is recorded. The config command also erases any previous configuration.

The filsys command configures a file system on device and calls it name. Name is used as the
specifier in attach messages to connect to that file system. (The file system main is the one
attached to if the specifier is null; see attach(5)).

The rest of the configuration commands record IP addresses: the file server�s address (ip), the
local gateway�s (ipgw), the local authentication server�s (ipauth), the local subnet mask (ipmask),
and the address of a system running an SNTP server (ipsntp). Ipauth is no longer used. If the
server has more than one network interface, a digit may be appended to the keywords ip, ipgw
and ipmask to indicate the interface number; zero is the default.

One−time actions
The ream command initializes the named file system. It overwrites any previous file system on the
same device and creates an empty root directory on the device. If name is main, the file server,

953

FSCONFIG(8) FSCONFIG(8)

until the next reboot, will accept wstat messages (see stat(5)) that change the owner and group
of files, to enable initializing a fresh file system from a mkfs(8) archive.

For the recover command, the named file system must be a cached WORM. Recover clears the
associated magnetic cache and initializes the file system, effectively resetting its contents to the
last dump.

Allow turns off all permission checking; use with caution.

Readonly disables all writing to all devices. This is useful for trying dangerous experiments.

Noauth disables authentication.

Noattach prevents attachs.

Copyworm will copy a file system named main to one named output, block by block, and loop. It
knows how to read a fake worm file system.

Copydev will copy the device from−dev to the device to−dev. block by block, and panic.

Halt will cause the server to immediately exit and reboot.

The various configuration commands only record what to do; they write no data to disk. The com
mand end exits config mode and begins running the file server proper. The server will then per
form whatever I/O is required to establish the configuration.

EXAMPLE
Initialize a file server kgbsun with a single file system interleaved between SCSI targets 3 and 4.

service kgbsun
config w3
filsys main [w<3−4>]
ream main

Initialize a file server kremvax with a single disk on target 0 partitioned as a cached pseudo-
WORM file system with the cache on the third quarter of the drive and the pseudo-WORM on the
interleave of the first, second, and fourth quarters.

service kremvax
config p(w0)50.1
filsys main cp(w0)50.25f[p(w0)0.25p(w0)25.25p(w0)75.25]
filsys dump o
ream main

A complete and complex example: initialize a file server fsb with a single SCSI disk on target 0 for
a scratch file system, a cached WORM file system with cache disk on target 2 and an optical-disc
jukebox on targets 4 (robotics) and 5 (one optical drive), and another cached WORM file system
with cache disk on target 3 and another optical-disc jukebox on a second SCSI bus at targets 3
and 4. Both jukeboxes contain 16 slots of optical discs. It has two Ethernet interfaces and can
reach an SNTP server on the first one.

service fsb
config w0
filsys main cw2j(w4w5)(l<0−31>)
filsys dump o
filsys hp40fx cw3j(w1.<3−4>.0)(l<0−31>)
filsys hp40fxdump o
filsys other w0
ipauth 0.0.0.0
ipsntp 10.9.0.3
ip0 10.9.0.2
ipgw0 10.9.0.3
ipmask0 255.255.0.0
ip1 10.0.0.2
ipgw1 10.0.0.1
ipmask1 255.255.0.0
ream main
ream hp40fx

954

FSCONFIG(8) FSCONFIG(8)

ream other
end

SOURCE
/sys/src/fs/port/config.c

SEE ALSO
Ken Thompson, ��The Plan 9 File Server��.

955

FSHALT(8) FSHALT(8)

NAME
fshalt, scram, reboot � halt any local file systems and optionally shut down or reboot the system

SYNOPSIS
fshalt [−r]
reboot [kernelpath]
scram

DESCRIPTION
Fshalt syncs and halts all local cwfs(4) and hjfs(4) servers. If given −r, fshalt will then reboot the
machine. Else it will invoke scram to shut down the machine. The halting and rebooting is done
by copying all necessary commands into a ramfs(4) file system and changing directory there
before attempting to halt file systems, so this will work even on standalone machines with their
roots on local file systems.

Reboot restarts the machine it is invoked on. If an optional kernelpath is specified then the
machine will load and start that kernel directly instead of returning to the system rom. (see
cons(3)).

Scram shuts down the machine it is invoked on.

SOURCE
/rc/bin/fshalt
/rc/bin/reboot
/sys/src/cmd/scram.c

SEE ALSO
cons(3), reboot(8)

BUGS
On standalone machines, it will be impossible to do anything if scram fails after invoking bare
fshalt.

Scram is limited to the PC and requires APM or ACPI.

HISTORY
Scram first appeared in 9front (May, 2011).

956

GETFLAGS(8) GETFLAGS(8)

NAME
getflags, usage � command-line parsing for shell scripts

SYNOPSIS
aux/getflags $*

aux/usage

DESCRIPTION
Getflags parses the flags in its command-line arguments according to the environment variable
$flagfmt. This variable should be a comma-separated list of flag specifiers. Each flag is a sin
gle letter, optionally followed by a colon and a name. It may be followed by a space-separated list
of argument names.

Getflags prints an rc(1) script to be evaluated by the calling program. For every flag specified in
$flagfmt, the generated script sets a corresponding environment variable. If the flag specifier
contains :name, the corresponding variable is named $name. Otherwise, it is named $flagx.

After evaluating the script, the environment variables will be set as follows: If a flag is not present
in the argument list, the environment variable will default to the empty list. If the flag is present
and takes no arguments, the environment variable will be initialized with the string ’1’. If the
flag takes arguments, the flag�s variable will be initialized with a list of those argument values.
The script then sets the variable $* to the list of remaining non-flag arguments.

The $status is variable to the empty string on success, or ’usage’ when there is an error
parsing the command line.

Usage prints a usage message to standard error. The message is constructed using $0,
$flagfmt, and $args. The program name is taken from $0, as set by rc(1) The list of flags is
extracted from $flagfmt. The description of positional argument list is taken from $args.

EXAMPLE
An example of the script generated:

% flagfmt=’e:example, x, a:arg with args’
% aux/getflags −exa arg list positional stuff
example=()
flagx=()
arg=()
example=1
flagx=1
arg=(arg list)
*=(positional stuff)
status=’’

Parse the arguments for leak(1):

flagfmt=’b:showbmp, s:acidfmt, f binary, r res, x width’
args=’name | pid list’
if(! ifs=() eval ‘{aux/getflags $*} || ~ $#* 0){

aux/usage
exit usage

}
if(~ $#showbmp 0)

echo ’−b flag not set’
echo $showbmp # named
echo $acidfmt # also named
echo $flagf # default name
echo $flagr # default name

SOURCE
/sys/src/cmd/aux/getflags.c

957

GETFLAGS(8) GETFLAGS(8)

/sys/src/cmd/aux/usage.c

SEE ALSO
arg(2)

958

GPSFS(8) GPSFS(8)

NAME
gpsfs, gpsevermore � GPS time and position service

SYNOPSIS
aux/gpsfs [−d device] [−b baud] [−s srvname] [−m mntpt]

aux/gpsevermore [−d device] [−b baud] [−n baud] [−l location]

DESCRIPTION
Aux/gpsfs reads an NMEA-compatible serial GPS (Global Positioning System) device and pro
vides time and position through a file system, by default mounted on /mnt and implementing
/mnt/gps.

It implements four files in the gps directory: position, time, satellites, and raw.

The read-only position file contains one line of information in 9 tab-separated fields:

fix quality 0 means position data invalid, 1 means a 2D position is available, 2 means a
3D position is available. The value is 8, 9, or 10, respectively, when the fix
data comes from a file rather than an actual GPS.

zulu time universal coordinated time encoded as hhmmss followed by the character �Z�.

system time time and date converted to the format of time(2).

longitude in degrees, east of Greenwich is positive, west negative.

latitude in degrees, positive is north, negative south of the equator.

altitude above sea level, in meters.

course degrees, clockwise from true north.

ground speed in km/h

magnetic deviation (not provided by all GPSs), in degrees, positive is westerly, negative easterly.

The read-only time file contains one line of information in 4 tab-separated fields:

gps time in time(2) format.

gps time in nsec (see time(2)) format (ms accuracy).

system time in nsec format. This is the system time at the time of the gps time sample. The dif
ference between this and the previous field is used in clock synchronization. See
timesync(8).

validity the character A meaning sample valid and usable for clock synchronization. The
other values are not usable for clock sync: B means valid sample from file playback,
V means invalid sample, and W means invalid playback sample.

The read-only satellites file contains information about the current satellite constellation. It
consists of one line of general information, followed by zero or more lines, one for each satellite in
use. The first line contains two fields:

fix quality same as in the position file.

satellites in view number of satellites above the horizon

Subsequent lines have four fields:

prn satellite ID

elevation above the horizon, degrees.

azimuth direction, degrees from true north

snr Signal to noise ratio, 0 - 99 dB

The contents of these files are refreshed once per second when reading from an actual GPS, and
once per 100 ms (giving a speed up of a factor 10) when playing back from file.

The read-only raw file can be read to obtain a copy of the raw NMEA GPS output. Gpsfs keeps an
internal buffer of 8KB, so the reader must keep up with the output (typically 500 or so bytes per

959

GPSFS(8) GPSFS(8)

second).

The �d flag establishes the device the GPS samples are read from. If the device file is not a serial
interface, gpsfs assumes playback from file and modifies quality parameters as such.

The �b flag specifies the baud rate of the serial line. The standard baud rate for NMEA GPS is
4800 baud, but many device allow changing to higher speeds.

The �s flag specifies the name under which the gpsfs service is posted in /srv.

The �m flag specifies a mount other than /mnt.

Evermore
Aux/gpsevermore is used to configure GPSs using an Evermore chipset.

The �d flag specifies the serial device to the GPS.

The �b flag specifies the baud rate of the serial line. The standard baud rate for NMEA GPS is
4800 baud, but many device allow changing to higher speeds.

The �n flag specifies the speed to set the GPS to. When the command finishes, the GPS should be
read (and configured) at the new speed.

The �l flag is sued to specify the location to initialize the GPS to. The format is dd:mm:ssX or
dd:mm.mmmX or dd.dddX, where dd stands for degrees (one or more digits), mm for minutes
and ss for seconds of arc. X is one of W, E, N or S. Longitudes come with W or E, latitudes with N
or S. The �l flag is followed by two such fields, one for longitude, one for latitude. They may be
given in a single argument (separated by white space), or in two arguments, in either order. Initial
ization time is taken from time(2).

SEE ALSO
timesync(8), time(2)

FILES
/mnt/gps/position position, time, speed and heading
/mnt/gps/satellites satellites in view
/mnt/gps/time GPS time (millisecond accuracy)
/dev/eia0 default GPS device

SOURCE
/sys/src/cmd/aux/gps

960

HGIGNORE(8) HGIGNORE(8)

NAME
hgignore � syntax for Mercurial ignore files

SYNOPSIS
The Mercurial system uses a file called .hgignore in the root directory of a repository to control its
behavior when it finds files that it is not currently managing.

DESCRIPTION
Mercurial ignores every unmanaged file that matches any pattern in an ignore file. The patterns in
an ignore file do not apply to files managed by Mercurial. To control Mercurial�s handling of files
that it manages, see the hg(1) man page. Look for the "�I" and "�X" options.

In addition, a Mercurial configuration file can point to a set of per�user or global ignore files. See
the hgrc(8) man page for details of how to configure these files. Look for the "ignore" entry in the
"ui" section.

SYNTAX
An ignore file is a plain text file consisting of a list of patterns, with one pattern per line. Empty
lines are skipped. The "#" character is treated as a comment character, and the "\" character is
treated as an escape character.

Mercurial supports several pattern syntaxes. The default syntax used is Python/Perl�style regular
expressions.

To change the syntax used, use a line of the following form:

syntax: NAME

where NAME is one of the following:

regexp
Regular expression, Python/Perl syntax.

glob
Shell�style glob.

The chosen syntax stays in effect when parsing all patterns that follow, until another syntax is
selected.

Neither glob nor regexp patterns are rooted. A glob�syntax pattern of the form "*.c" will match a
file ending in ".c" in any directory, and a regexp pattern of the form "\.c$" will do the same. To root
a regexp pattern, start it with "^".

EXAMPLE
Here is an example ignore file.

use glob syntax.
syntax: glob

*.elc
*.pyc
*~

switch to regexp syntax.
syntax: regexp
^\.pc/

AUTHOR
Vadim Gelfer <vadim.gelfer@gmail.com>

961

HGIGNORE(8) HGIGNORE(8)

Mercurial was written by Matt Mackall <mpm@selenic.com>.

SEE ALSO
hg(1), hgrc(8).

COPYING
This manual page is copyright 2006 Vadim Gelfer. Mercurial is copyright 2005�2007 Matt Mackall.
Free use of this software is granted under the terms of the GNU General Public License (GPL).

962

HGRC(8) HGRC(8)

NAME
hgrc � configuration files for Mercurial

SYNOPSIS
The Mercurial system uses a set of configuration files to control aspects of its behaviour.

FILES
Mercurial reads configuration data from several files, if they exist. The names of these files depend
on the system on which Mercurial is installed. *.rc files from a single directory are read in
alphabetical order, later ones overriding earlier ones. Where multiple paths are given below,
settings from later paths override earlier ones.

(Unix) <install�root>/etc/mercurial/hgrc.d/*.rc, (Unix) <install�root>/etc/mercurial/hgrc
Per�installation configuration files, searched for in the directory where Mercurial is installed.
<install�root> is the parent directory of the hg executable (or symlink) being run. For
example, if installed in /shared/tools/bin/hg, Mercurial will look in
/shared/tools/etc/mercurial/hgrc. Options in these files apply to all Mercurial commands
executed by any user in any directory.

(Unix) /etc/mercurial/hgrc.d/*.rc, (Unix) /etc/mercurial/hgrc
Per�system configuration files, for the system on which Mercurial is running. Options in these
files apply to all Mercurial commands executed by any user in any directory. Options in these
files override per�installation options.

(Windows) <install�dir>\Mercurial.ini, or else, (Windows)
HKEY_LOCAL_MACHINE\SOFTWARE\Mercurial, or else, (Windows) C:\Mercurial\Mercurial.ini

Per�installation/system configuration files, for the system on which Mercurial is running.
Options in these files apply to all Mercurial commands executed by any user in any directory.
Registry keys contain PATH�like strings, every part of which must reference a Mercurial.ini file
or be a directory where *.rc files will be read.

(Unix) $HOME/.hgrc, (Windows) %HOME%\Mercurial.ini, (Windows) %HOME%\.hgrc, (Windows)
%USERPROFILE%\Mercurial.ini, (Windows) %USERPROFILE%\.hgrc

Per�user configuration file(s), for the user running Mercurial. On Windows 9x, %HOME% is
replaced by %APPDATA%. Options in these files apply to all Mercurial commands executed by
this user in any directory. Options in thes files override per�installation and per�system
options.

(Unix, Windows) <repo>/.hg/hgrc
Per�repository configuration options that only apply in a particular repository. This file is not
version�controlled, and will not get transferred during a "clone" operation. Options in this file
override options in all other configuration files. On Unix, most of this file will be ignored if it
doesn�t belong to a trusted user or to a trusted group. See the documentation for the trusted
section below for more details.

SYNTAX
A configuration file consists of sections, led by a "[section]" header and followed by "name: value"
entries; "name=value" is also accepted.

[spam]
eggs=ham
green=

eggs
Each line contains one entry. If the lines that follow are indented, they are treated as continuations
of that entry.

Leading whitespace is removed from values. Empty lines are skipped.

The optional values can contain format strings which refer to other values in the same section, or
values in a special DEFAULT section.

963

HGRC(8) HGRC(8)

Lines beginning with "#" or ";" are ignored and may be used to provide comments.

SECTIONS
This section describes the different sections that may appear in a Mercurial "hgrc" file, the purpose
of each section, its possible keys, and their possible values.

decode/encode
Filters for transforming files on checkout/checkin. This would typically be used for newline
processing or other localization/canonicalization of files.

Filters consist of a filter pattern followed by a filter command.
Filter patterns are globs by default, rooted at the repository
root. For example, to match any file ending in ".txt" in the root
directory only, use the pattern "*.txt". To match any file ending
in ".c" anywhere in the repository, use the pattern "**.c".

The filter command can start with a specifier, either "pipe:" or
"tempfile:". If no specifier is given, "pipe:" is used by default.

A "pipe:" command must accept data on stdin and return the
transformed data on stdout.

Pipe example:

[encode]
uncompress gzip files on checkin to improve delta compression
note: not necessarily a good idea, just an example
*.gz = pipe: gunzip

[decode]
recompress gzip files when writing them to the working dir (we
can safely omit "pipe:", because it�s the default)
*.gz = gzip

A "tempfile:" command is a template. The string INFILE is replaced
with the name of a temporary file that contains the data to be
filtered by the command. The string OUTFILE is replaced with the
name of an empty temporary file, where the filtered data must be
written by the command.

NOTE: the tempfile mechanism is recommended for Windows systems,
where the standard shell I/O redirection operators often have
strange effects and may corrupt the contents of your files.

The most common usage is for LF <�> CRLF translation on Windows.
For this, use the "smart" convertors which check for binary files:

[extensions]
hgext.win32text =
[encode]
** = cleverencode:
[decode]
** = cleverdecode:

or if you only want to translate certain files:

[extensions]
hgext.win32text =
[encode]
**.txt = dumbencode:

964

HGRC(8) HGRC(8)

[decode]
**.txt = dumbdecode:

defaults
Use the [defaults] section to define command defaults, i.e. the default options/arguments to
pass to the specified commands.

The following example makes �hg log� run in verbose mode, and
�hg status� show only the modified files, by default.

[defaults]
log = �v
status = �m

The actual commands, instead of their aliases, must be used when
defining command defaults. The command defaults will also be
applied to the aliases of the commands defined.

diff
Settings used when displaying diffs. They are all boolean and defaults to False.

git
Use git extended diff format.

nodates
Don�t include dates in diff headers.

showfunc
Show which function each change is in.

ignorews
Ignore white space when comparing lines.

ignorewsamount
Ignore changes in the amount of white space.

ignoreblanklines
Ignore changes whose lines are all blank.

email
Settings for extensions that send email messages.

from
Optional. Email address to use in "From" header and SMTP envelope of outgoing messages.

to
Optional. Comma�separated list of recipients� email addresses.

cc
Optional. Comma�separated list of carbon copy recipients� email addresses.

bcc
Optional. Comma�separated list of blind carbon copy recipients� email addresses. Cannot
be set interactively.

method
Optional. Method to use to send email messages. If value is "smtp" (default), use SMTP (see
section "[smtp]" for configuration). Otherwise, use as name of program to run that acts like
sendmail (takes "�f" option for sender, list of recipients on command line, message on
stdin). Normally, setting this to "sendmail" or "/usr/sbin/sendmail" is enough to use
sendmail to send messages.

Email example:

[email]
from = Joseph User <joe.user@example.com>
method = /usr/sbin/sendmail

965

HGRC(8) HGRC(8)

extensions
Mercurial has an extension mechanism for adding new features. To enable an extension,
create an entry for it in this section.

If you know that the extension is already in Python�s search path,
you can give the name of the module, followed by "=", with nothing
after the "=".

Otherwise, give a name that you choose, followed by "=", followed by
the path to the ".py" file (including the file name extension) that
defines the extension.

To explicitly disable an extension that is enabled in an hgrc of
broader scope, prepend its path with �!�, as in
�hgext.foo = !/ext/path� or �hgext.foo = !� when no path is supplied.

Example for ~/.hgrc:

[extensions]
(the mq extension will get loaded from mercurial�s path)
hgext.mq =
(this extension will get loaded from the file specified)
myfeature = ~/.hgext/myfeature.py

format

usestore
Enable or disable the "store" repository format which improves compatibility with systems
that fold case or otherwise mangle filenames. Enabled by default. Disabling this option will
allow you to store longer filenames in some situations at the expense of compatibility.

merge�patterns
This section specifies merge tools to associate with particular file patterns. Tools matched here
will take precedence over the default merge tool. Patterns are globs by default, rooted at the
repository root.

Example:

[merge�patterns]
**.c = kdiff3
**.jpg = myimgmerge

merge�tools
This section configures external merge tools to use for file�level merges.

Example ~/.hgrc:

[merge�tools]
Override stock tool location
kdiff3.executable = ~/bin/kdiff3
Specify command line
kdiff3.args = $base $local $other �o $output
Give higher priority
kdiff3.priority = 1

Define new tool
myHtmlTool.args = �m $local $other $base $output
myHtmlTool.regkey = Software\FooSoftware\HtmlMerge
myHtmlTool.priority = 1

Supported arguments:
priority;;

966

HGRC(8) HGRC(8)

The priority in which to evaluate this tool.
Default: 0.

executable;;
Either just the name of the executable or its pathname.
Default: the tool name.

args;;
The arguments to pass to the tool executable. You can refer to the files
being merged as well as the output file through these variables: $base,
$local, $other, $output.
Default: $local $base $other

premerge;;
Attempt to run internal non�interactive 3�way merge tool before
launching external tool.
Default: True

binary;;
This tool can merge binary files. Defaults to False, unless tool
was selected by file pattern match.

symlink;;
This tool can merge symlinks. Defaults to False, even if tool was
selected by file pattern match.

checkconflicts;;
Check whether there are conflicts even though the tool reported
success.
Default: False

checkchanged;;
Check whether outputs were written even though the tool reported
success.
Default: False

fixeol;;
Attempt to fix up EOL changes caused by the merge tool.
Default: False

gui:;
This tool requires a graphical interface to run. Default: False

regkey;;
Windows registry key which describes install location of this tool.
Mercurial will search for this key first under HKEY_CURRENT_USER and
then under HKEY_LOCAL_MACHINE. Default: None

regname;;
Name of value to read from specified registry key. Defaults to the
unnamed (default) value.

regappend;;
String to append to the value read from the registry, typically the
executable name of the tool. Default: None

hooks
Commands or Python functions that get automatically executed by various actions such as
starting or finishing a commit. Multiple hooks can be run for the same action by appending a
suffix to the action. Overriding a site�wide hook can be done by changing its value or setting it
to an empty string.

Example .hg/hgrc:

[hooks]
do not use the site�wide hook
incoming =
incoming.email = /my/email/hook
incoming.autobuild = /my/build/hook

Most hooks are run with environment variables set that give added
useful information. For each hook below, the environment variables

967

HGRC(8) HGRC(8)

it is passed are listed with names of the form "$HG_foo".

changegroup
Run after a changegroup has been added via push, pull or unbundle. ID of the first new
changeset is in $HG_NODE. URL from which changes came is in $HG_URL.

commit
Run after a changeset has been created in the local repository. ID of the newly created
changeset is in $HG_NODE. Parent changeset IDs are in $HG_PARENT1 and $HG_PARENT2.

incoming
Run after a changeset has been pulled, pushed, or unbundled into the local repository.
The ID of the newly arrived changeset is in $HG_NODE. URL that was source of changes
came is in $HG_URL.

outgoing
Run after sending changes from local repository to another. ID of first changeset sent is in
$HG_NODE. Source of operation is in $HG_SOURCE; see "preoutgoing" hook for
description.

post�<command>
Run after successful invocations of the associated command. The contents of the
command line are passed as $HG_ARGS and the result code in $HG_RESULT. Hook failure
is ignored.

pre�<command>
Run before executing the associated command. The contents of the command line are
passed as $HG_ARGS. If the hook returns failure, the command doesn�t execute and
Mercurial returns the failure code.

prechangegroup
Run before a changegroup is added via push, pull or unbundle. Exit status 0 allows the
changegroup to proceed. Non�zero status will cause the push, pull or unbundle to fail.
URL from which changes will come is in $HG_URL.

precommit
Run before starting a local commit. Exit status 0 allows the commit to proceed. Non�zero
status will cause the commit to fail. Parent changeset IDs are in $HG_PARENT1 and
$HG_PARENT2.

preoutgoing
Run before collecting changes to send from the local repository to another. Non�zero
status will cause failure. This lets you prevent pull over http or ssh. Also prevents against
local pull, push (outbound) or bundle commands, but not effective, since you can just copy
files instead then. Source of operation is in $HG_SOURCE. If "serve", operation is
happening on behalf of remote ssh or http repository. If "push", "pull" or "bundle",
operation is happening on behalf of repository on same system.

pretag
Run before creating a tag. Exit status 0 allows the tag to be created. Non�zero status will
cause the tag to fail. ID of changeset to tag is in $HG_NODE. Name of tag is in $HG_TAG.
Tag is local if $HG_LOCAL=1, in repo if $HG_LOCAL=0.

pretxnchangegroup
Run after a changegroup has been added via push, pull or unbundle, but before the
transaction has been committed. Changegroup is visible to hook program. This lets you
validate incoming changes before accepting them. Passed the ID of the first new changeset
in $HG_NODE. Exit status 0 allows the transaction to commit. Non�zero status will cause
the transaction to be rolled back and the push, pull or unbundle will fail. URL that was
source of changes is in $HG_URL.

pretxncommit
Run after a changeset has been created but the transaction not yet committed. Changeset
is visible to hook program. This lets you validate commit message and changes. Exit status
0 allows the commit to proceed. Non�zero status will cause the transaction to be rolled
back. ID of changeset is in $HG_NODE. Parent changeset IDs are in $HG_PARENT1 and
$HG_PARENT2.

968

HGRC(8) HGRC(8)

preupdate
Run before updating the working directory. Exit status 0 allows the update to proceed.
Non�zero status will prevent the update. Changeset ID of first new parent is in
$HG_PARENT1. If merge, ID of second new parent is in $HG_PARENT2.

tag
Run after a tag is created. ID of tagged changeset is in $HG_NODE. Name of tag is in
$HG_TAG. Tag is local if $HG_LOCAL=1, in repo if $HG_LOCAL=0.

update
Run after updating the working directory. Changeset ID of first new parent is in
$HG_PARENT1. If merge, ID of second new parent is in $HG_PARENT2. If update
succeeded, $HG_ERROR=0. If update failed (e.g. because conflicts not resolved),
$HG_ERROR=1.

Note: it is generally better to use standard hooks rather than the
generic pre� and post� command hooks as they are guaranteed to be
called in the appropriate contexts for influencing transactions.
Also, hooks like "commit" will be called in all contexts that
generate a commit (eg. tag) and not just the commit command.

Note2: Environment variables with empty values may not be passed to
hooks on platforms like Windows. For instance, $HG_PARENT2 will
not be available under Windows for non�merge changesets while being
set to an empty value under Unix�like systems.

The syntax for Python hooks is as follows:

hookname = python:modulename.submodule.callable

Python hooks are run within the Mercurial process. Each hook is
called with at least three keyword arguments: a ui object (keyword
"ui"), a repository object (keyword "repo"), and a "hooktype"
keyword that tells what kind of hook is used. Arguments listed as
environment variables above are passed as keyword arguments, with no
"HG_" prefix, and names in lower case.

If a Python hook returns a "true" value or raises an exception, this
is treated as failure of the hook.

http_proxy
Used to access web�based Mercurial repositories through a HTTP proxy.

host
Host name and (optional) port of the proxy server, for example "myproxy:8000".

no
Optional. Comma�separated list of host names that should bypass the proxy.

passwd
Optional. Password to authenticate with at the proxy server.

user
Optional. User name to authenticate with at the proxy server.

smtp
Configuration for extensions that need to send email messages.

host
Host name of mail server, e.g. "mail.example.com".

port
Optional. Port to connect to on mail server. Default: 25.

tls
Optional. Whether to connect to mail server using TLS. True or False. Default: False.

969

HGRC(8) HGRC(8)

username
Optional. User name to authenticate to SMTP server with. If username is specified,
password must also be specified. Default: none.

password
Optional. Password to authenticate to SMTP server with. If username is specified, password
must also be specified. Default: none.

local_hostname
Optional. It�s the hostname that the sender can use to identify itself to the MTA.

paths
Assigns symbolic names to repositories. The left side is the symbolic name, and the right gives
the directory or URL that is the location of the repository. Default paths can be declared by
setting the following entries.

default
Directory or URL to use when pulling if no source is specified. Default is set to repository
from which the current repository was cloned.

default�push
Optional. Directory or URL to use when pushing if no destination is specified.

server
Controls generic server settings.

uncompressed
Whether to allow clients to clone a repo using the uncompressed streaming protocol. This
transfers about 40% more data than a regular clone, but uses less memory and CPU on
both server and client. Over a LAN (100Mbps or better) or a very fast WAN, an
uncompressed streaming clone is a lot faster (~10x) than a regular clone. Over most WAN
connections (anything slower than about 6Mbps), uncompressed streaming is slower,
because of the extra data transfer overhead. Default is False.

trusted
For security reasons, Mercurial will not use the settings in the .hg/hgrc file from a repository if
it doesn�t belong to a trusted user or to a trusted group. The main exception is the web
interface, which automatically uses some safe settings, since it�s common to serve repositories
from different users.

This section specifies what users and groups are trusted. The
current user is always trusted. To trust everybody, list a user
or a group with name "*".

users
Comma�separated list of trusted users.

groups
Comma�separated list of trusted groups.

ui
User interface controls.

archivemeta
Whether to include the .hg_archival.txt file containing metadata (hashes for the repository
base and for tip) in archives created by the hg archive command or downloaded via
hgweb. Default is true.

debug
Print debugging information. True or False. Default is False.

editor
The editor to use during a commit. Default is $EDITOR or "vi".

fallbackencoding
Encoding to try if it�s not possible to decode the changelog using UTF�8. Default is
ISO�8859�1.

970

HGRC(8) HGRC(8)

ignore
A file to read per�user ignore patterns from. This file should be in the same format as a
repository�wide .hgignore file. This option supports hook syntax, so if you want to specify
multiple ignore files, you can do so by setting something like "ignore.other =
~/.hgignore2". For details of the ignore file format, see the hgignore(8) man page.

interactive
Allow to prompt the user. True or False. Default is True.

logtemplate
Template string for commands that print changesets.

merge
The conflict resolution program to use during a manual merge. There are some internal
tools available:

internal:local
keep the local version

internal:other
use the other version

internal:merge
use the internal non�interactive merge tool

internal:fail
fail to merge

See the merge�tools section for more information on configuring tools.
patch;;

command to use to apply patches. Look for �gpatch� or �patch� in PATH if
unset.

quiet;;
Reduce the amount of output printed. True or False. Default is False.

remotecmd;;
remote command to use for clone/push/pull operations. Default is �hg�.

report_untrusted;;
Warn if a .hg/hgrc file is ignored due to not being owned by a
trusted user or group. True or False. Default is True.

slash;;
Display paths using a slash ("/") as the path separator. This only
makes a difference on systems where the default path separator is not
the slash character (e.g. Windows uses the backslash character ("\")).
Default is False.

ssh;;
command to use for SSH connections. Default is �ssh�.

strict;;
Require exact command names, instead of allowing unambiguous
abbreviations. True or False. Default is False.

style;;
Name of style to use for command output.

timeout;;
The timeout used when a lock is held (in seconds), a negative value
means no timeout. Default is 600.

username;;
The committer of a changeset created when running "commit".
Typically a person�s name and email address, e.g. "Fred Widget
<fred@example.com>". Default is $EMAIL or username@hostname.
If the username in hgrc is empty, it has to be specified manually or
in a different hgrc file (e.g. $HOME/.hgrc, if the admin set "username ="
in the system hgrc).

verbose;;
Increase the amount of output printed. True or False. Default is False.

971

HGRC(8) HGRC(8)

web
Web interface configuration.

accesslog
Where to output the access log. Default is stdout.

address
Interface address to bind to. Default is all.

allow_archive
List of archive format (bz2, gz, zip) allowed for downloading. Default is empty.

allowbz2
(DEPRECATED) Whether to allow .tar.bz2 downloading of repo revisions. Default is false.

allowgz
(DEPRECATED) Whether to allow .tar.gz downloading of repo revisions. Default is false.

allowpull
Whether to allow pulling from the repository. Default is true.

allow_push
Whether to allow pushing to the repository. If empty or not set, push is not allowed. If the
special value "*", any remote user can push, including unauthenticated users. Otherwise,
the remote user must have been authenticated, and the authenticated user name must be
present in this list (separated by whitespace or ","). The contents of the allow_push list are
examined after the deny_push list.

allowzip
(DEPRECATED) Whether to allow .zip downloading of repo revisions. Default is false. This
feature creates temporary files.

baseurl
Base URL to use when publishing URLs in other locations, so third�party tools like email
notification hooks can construct URLs. Example: "http://hgserver/repos/"

contact
Name or email address of the person in charge of the repository. Defaults to ui.username
or $EMAIL or "unknown" if unset or empty.

deny_push
Whether to deny pushing to the repository. If empty or not set, push is not denied. If the
special value "*", all remote users are denied push. Otherwise, unauthenticated users are
all denied, and any authenticated user name present in this list (separated by whitespace
or ",") is also denied. The contents of the deny_push list are examined before the
allow_push list.

description
Textual description of the repository�s purpose or contents. Default is "unknown".

encoding
Character encoding name. Example: "UTF�8"

errorlog
Where to output the error log. Default is stderr.

hidden
Whether to hide the repository in the hgwebdir index. Default is false.

ipv6
Whether to use IPv6. Default is false.

name
Repository name to use in the web interface. Default is current working directory.

maxchanges
Maximum number of changes to list on the changelog. Default is 10.

maxfiles
Maximum number of files to list per changeset. Default is 10.

972

HGRC(8) HGRC(8)

port
Port to listen on. Default is 8000.

prefix
Prefix path to serve from. Default is �� (server root).

push_ssl
Whether to require that inbound pushes be transported over SSL to prevent password sniff
ing. Default is true.

staticurl
Base URL to use for static files. If unset, static files (e.g. the hgicon.png favicon) will be
served by the CGI script itself. Use this setting to serve them directly with the HTTP server.
Example: "http://hgserver/static/"

stripes
How many lines a "zebra stripe" should span in multiline output. Default is 1; set to 0 to
disable.

style
Which template map style to use.

templates
Where to find the HTML templates. Default is install path.

AUTHOR
Bryan O�Sullivan <bos@serpentine.com>.

Mercurial was written by Matt Mackall <mpm@selenic.com>.

SEE ALSO
hg(1), hgignore(8).

COPYING
This manual page is copyright 2005 Bryan O�Sullivan. Mercurial is copyright 2005�2007 Matt Mack
all. Free use of this software is granted under the terms of the GNU General Public License (GPL).

973

HISTOGRAM(8) HISTOGRAM(8)

NAME
histogram � draw a histogram

SYNOPSIS
histogram [−h] [−c index] [−r minx,miny,maxx,maxy] [−s scale] [−t title] [−v maxv]

DESCRIPTION
Histogram reads numbers, one per line, from its standard input and draws them as bars in a his
togram.

Use −c to set the color index for the graph. A modulus operation on the value keeps the color
index within the available range.

Unless −h (hold) is given, histogram will exit when it reaches the end-of-file. It will exit immedi
ately if it is interrupted or if the exit menu option is chosen.

−r sets the initial window rectangle coordinates.

−s sets the scaling factor.

−t sets the title displayed on a line above the histogram. The last value read is displayed to the
right of the title.

−v sets the maximum value that can be expected.

EXAMPLE
Plot a sine wave:

hoc −e ’for(i=0.0;i<20*PI;i=i+0.1) print (10+10*sin(i)), "\n"’|
histogram −t ’sin(t), 0 d t d 20π’ −v 20 −h

Show the Dow Jones adjusted daily closing price back to January 1, 2000:

site=http://ichart.finance.yahoo.com
hget $site’/table.csv?s=^DJI&a=00&b=1&c=2000’ |

awk −F, ’{print $NF}’ | histogram −t DJI −v 15000 −h

SOURCE
/sys/src/cmd/histogram.c

SEE ALSO
statusbar(8)

974

HJFS(8) HJFS(8)

NAME
hjfs � file server maintenance

SYNOPSIS
allow
chatty
create path uid gid perm [lad]
df
disallow
dump
echo [on|off]
halt
newuser name [options]
users
sync
debug−chdeind file [offset value]
debug−deind file
debug−getblk file [blk|start end]

DESCRIPTION
The following commands should be written to the console of an hjfs(4) file server.

Allow disables permission checking and allows changing file ownership (see chgrp(1)). This may
help in initializing a file system. Use this with caution.

Chatty enables chatty 9p.

Create creates a file on the current file system. Uid and gid are names or numbers from
/adm/users. Perm is the low 9 bits of the permission mode of the file, in octal. An optional
final l, a, or d creates a locked file, append-only file, or directory.

Df prints the number of free, used and total blocks/megabytes. It scans the block table and can
be slow on large hard disks.

Disallow restores permission checking back to normal after a file system has been initialized.

Dump immediately starts a dump.

Echo expects the argument on or off. On causes all executed commands to be printed on the sys
tem console. Off reverses the effects of on.

Halt exits the program.

Newuser requires a name argument. With no options it adds user name, with group leader name,
to /adm/users and makes the directory /usr/name owned by user and group name. The
options are

: Add a group: add the name to /adm/users but don�t create the directory. By
convention, groups are numbered starting from 10000, users from 0.

newname Rename existing user name to newname.
=leader Change the leader of name to leader. If leader is missing, remove the existing

leader.
+member Add member to the member list of name.
−member Remove existing member from the member list of name.

After a successful newuser command the file server overwrites /adm/users to reflect the inter
nal state of the user table.

Users reads the contents of file /adm/users to initialize the file server�s internal representation
of the users structure.

Sync writes dirty blocks in memory to the magnetic disk cache.

Note: Debug commands operate on internal data structures; they are inherently dangerous and can
cause file system damage.

Debug−chdeind changes the value of the byte at the specified offset in the in-memory directory
entry and prints the old value. Dangerous if used carelessly.

975

HJFS(8) HJFS(8)

Debug−deind requires a file argument. It prints the directory entry of file.

Debug−getblk prints the physical blocks of file corresponding to the logical block blk or the logical
blocks between start and end.

EXAMPLES
Check disk usage (output appears on the system console).

% echo df >>/srv/hjfs.cmd

SEE ALSO
hjfs(4)

SOURCE
/sys/src/cmd/hjfs

BUGS
Debug−chdeind should perhaps be less crazy and have a portable interface.

976

HTTPD(8) HTTPD(8)

NAME
httpd, save, imagemap, man2html, webls � HTTP server

SYNOPSIS
ip/httpd/httpd [−a srvaddr] [−c cert [−C certchain]] [−d domain] [−n namespace] [−w
webroot]

ip/httpd/save [−b inbuf] [−d domain] [−r remoteip] [−w webroot] [−N netdir] method
version uri [search]
ip/httpd/imagemap ...
ip/httpd/man2html ...
ip/httpd/webls ...

DESCRIPTION
Httpd serves the webroot directory of the file system described by namespace (default
/lib/namespace.httpd), using version 1.1 of the HTTP protocol. It announces the service
srvaddr (default tcp!*!http), and listens for incoming calls. If an X.509 certificate is supplied
with the −c option, then the service is instead tcp!*!https. There should already be a facto
tum holding the corresponding private key. If the specified certificate has been signed by a certifi
cate authority, the −C option may be used to specify a file containing a chain of signed certificates.

Httpd supports only the GET and HEAD methods of the HTTP protocol; some magic programs sup
port POST as well. Persistent connections are supported for HTTP/1.1 or later clients; all connec
tions close after a magic command is executed. The Content-type (default
application/octet−stream) and Content-encoding (default binary) of a file are deter
mined by looking for suffixes of the file name in /sys/lib/mimetype.

Redirection
Each requested URI is looked up in a redirection table, read from /sys/lib/httpd.rewrite.
Fields are separated by spaces and tabs. Anything following a # is ignored. The first field of each
line is a URI; the second a replacement path. If a prefix of the URI matches a redirection path, the
URI is rewritten using the corresponding replacement path instead of the prefix, and a temporary
redirect is sent to the HTTP client. If the replacement path does not specify a server name, and the
request has no explicit host, then domain is the host name used in the redirection. The prefix can
either be a domain root like http://system/ (which matches that URL only) or a path like
/who/rob (which matches that path no matter what the requested server), but not both:
http://system/who/rob will never match a request. If the first field ends in a slash, this is
an exact match; otherwise it is a prefix match. The first field is a literal string, matched against
each file prefix of each URL. The most specific, i.e., longest, pattern wins, and is applied once
(there is no rescanning), except for the following exceptions. Httpd matches only the prefix and
not subordinate pages if a replacement is prefixed with >. Httpd omits the unmatched part of the
original URI from the rewritten URI if the replacement is prefixed with *. This permits many-to-
one mappings; for example, to send all references to an old subtree to a single error page.

Httpd handles replacements prefixed with @ internally, treating the request as if it were for the
replacement (without the @) but not informing the client of the rewritten name. Replacement URLs
prefixed with = generate a permanent redirection instead of a temporary one. Httpd checks to see
if this file has changed once every 50 new TCP connections. HTTP 1.1 persistent connection
implies many pages may come in one browser connection, so to kick-start httpd, try

for(i in ‘{seq 50}) hget http://www.your−domain.com/ >/dev/null

Access Control
Before opening any file, httpd looks for a file in the same directory called .httplogin. If the file
exists, the directory is considered locked and the client must specify a user name and password
matching a pair in the file. .httplogin contains a list of space or newline separated tokens,
each possibly delimited by single quotes. The first is a domain name presented to the HTTP client.
The rest are pairs of user name and password. Thus, there can be many user name/password
pairs valid for a directory.

Auxiliaries (magic)
If the requested URI begins with /magic/server/, httpd executes the file
/bin/ip/httpd/server to finish servicing the request. All the auxiliaries take the same

977

HTTPD(8) HTTPD(8)

arguments. Method and version are those received on the first line of the request. Uri is the
remaining portion of the requested URI. Inbuf contains the rest of the bytes read by the server,
and netdir is the network directory for the connection. There are routines for processing com
mand arguments, parsing headers, etc. in the httpd library,
/sys/src/cmd/ip/httpd/libhttpd.a.$O. See httpd.h in that directory and existing
magic commands for more details.

Save writes a line to /usr/web/save/uri.data and returns the contents of
/usr/web/save/uri.html. Both files must be accessible for the request to succeed. The
saved line includes the current time and either the search string from a HEAD or GET or the first
line of the body from a POST. It is used to record form submissions.

Imagemap processes an HTML imagemap query. It looks up the point search in the image map file
given by uri, and returns a redirection to the appropriate page. The map file defaults to NCSA for
mat. Any entries after a line starting with the word #cern are interpreted in CERN format.

Man2html converts man(6) format manual pages into html. It includes some abilities to search the
manuals.

Webls produces directory listings on the fly, with output in the style of ls(1).
/sys/lib/webls.allowed and /sys/lib/webls.denied contain regular expressions
describing what parts of httpd’s namespace may and may not be listed, respectively.
Webls.denied is first searched to see if access is by default denied. If so webls.allowed is
then searched to see if access is explicitly allowed. Thus one can have very general expressions in
the denied list (like .*), yet still allow exceptions. If webls.denied does not exist or is unread
able, all accesses are assumed to be denied unless explicitly allowed in webls.allowed.

Other sites will note that if neither webls.denied nor webls.allowed exist, any portion of
httpd’s namespace can be listed (however, webls will always endeavor to prevent listing of �.� and
�..�). If webls.allowed exists but webls.denied does not, any directory to be listed must
be described by a regular expression in webls.allowed. Similarly, if webls.denied exists
but webls.allowed does not, any directory to be listed must not be described by a regular
expression in webls.denied. If both exist, a directory is listable if either it doesn�t appear in
webls.denied, or it appears in both webls.denied and webls.allowed. In other
words, webls.allowed overrides webls.denied. If a listing for a directory is requested and
access is denied, or another error occurs, a simple error page is returned.

EXAMPLES
These are all examples of how to use httpd.rewrite.

A local redirection:
/netlib/c++/idioms/index.html.Z /netlib/c++/idioms/index.html

Redirection to another site:
/netlib/lapack/lawns =http://netlib.org/lapack/lawns
http://inferno.bell−labs.com =http://www.vitanuova.com

Root directory for virtual host:
http://www.ampl.com /cm/cs/what/ampl

FILES
/sys/lib/mimetype content type description file
/lib/namespace.httpd default namespace file for httpd
/sys/lib/httpd.rewrite redirection file
/sys/lib/webls.allowed regular expressions describing explicitly listable pathnames;

overrides webls.denied
/sys/lib/webls.denied regular expressions describing explicitly unlistable pathnames

SOURCE
/sys/src/cmd/ip/httpd

SEE ALSO
newns in auth(2), listen(8), rsa(8)

978

ICANHASMSI(8) ICANHASMSI(8)

NAME
icanhasmsi � print MSI configuration

SYNOPSIS
aux/icanhasmsi

DESCRIPTION
Prints information about Message Signaled Interrupt (MSI) devices found on the system, one line
per device.

SOURCE
/sys/src/cmd/aux/icanhasmsi.c

SEE ALSO
pci(8), pnp(3)

BUGS
Should probably be renamed to msi or merged with pci(8).

HISTORY
Icanhasmsi first appeared in 9front (May, 2011).

979

INIT(8) INIT(8)

NAME
init � initialize machine upon booting

SYNOPSIS
/$cputype/init [−ctm] [command ...]

DESCRIPTION
Init initializes the machine: it establishes the name space (see namespace(4) and newns in
auth(2)), and environment (see env(3)) and starts a shell (rc(1)) on the console. If a command is
supplied, that is run instead of the shell. On a CPU server the invoked shell runs cpurc(8) before
accepting commands on the console; on a terminal, it runs termrc and then the user�s profile.
Options −t (terminal) and −c (CPU) force the behavior to correspond to the specified service class.
Otherwise init uses the value of the environment variable $service to decide the service class.

Init sets environment variables $service (either to the incoming value or according to −t or
−c), $objtype (to the value of $cputype), $user (to the contents of #c/user), and
$timezone (to the contents of /adm/timezone/local).

With option −m init starts only an interactive shell regardless of the command or service class.

On a CPU server, init requires the machine�s password to be supplied before starting rc on the con
sole.

Init is invoked by boot(8), which sets the arguments as appropriate.

SOURCE
/sys/src/cmd/init.c

SEE ALSO
rc(1), auth(2), boot(8)

980

IPCONFIG(8) IPCONFIG(8)

NAME
ipconfig, rip, linklocal � Internet configuration and routing

SYNOPSIS
ip/ipconfig [−6DGNOPdnpruX] [−b baud] [−c ctl] [−g gateway] [−h host] [−m mtu] [−o

dhcp−opt] [−f dbfile] [−x netmtpt] [type [device]] [verb] [local [mask [remote [file−server
[auth]]]]]

ip/rip [−bdr] [−x netmtpt]

ip/linklocal [−t gwipv4] mac ...

DESCRIPTION
Ipconfig binds a device interface to a mounted IP stack (default /net) and configures the interface
with a local address and optionally a mask, a remote address, a file server and an authentication
server address. If no device is specified, the first ether device on the mounted IP stack is used.
The addresses can be specified in the command line or obtained via DHCP. If DHCP is requested,
it will also obtain the addresses of DNS servers, NTP servers, gateways, a Plan 9 file server, and a
Plan 9 authentication server. Information from DHCP and IPv6 router advertisements is written to
/net/ndb in the form of an ndb(8) entry unless the P flag has been specified.

Type may be ether, gbe, ppp, pkt, or loopback. The gbe type is equivalent to ether
except that it allows jumbo packets (up to ~9KB). The pkt interface passes all IP packets to and
from a user program. For ppp the device can be any byte stream device.

The verb (default add) determines the action performed. The usual verbs are:

add if the device is not bound to the IP stack, bind it. Add the given local address, mask,
and remote address to the interface. An interface may have multiple addresses.

remove remove the address from the device interface.
unbind unbind the device interface and all its addresses from the IP stack.

The IPv6-specific verbs, which take different arguments, are:

add6 prefix pfx−len onlink auto validlt preflt
sets the named IPv6 parameters; see ip(3) for more detail.

ra6 [keyword value] ...
sets IPv6 router advertisement parameter keyword�s value. See ip(3) for more detail. Set
ting recvra non-zero also forks a process to receive and process router advertisements.
Setting sendra non-zero also enables IP routing on the interface, forks a process to send
router advertisements, and if no recvra process is running, forks one.

The options are:

6 if adding an address (the default action), add the IPv6 link-local address.

b the baud rate to use on a serial line when configuring PPP.

c write the control string ctl to the ethernet device control file before starting to configure it.
May be repeated to specify multiple control writes.

d use DHCP to determine any unspecified configuration parameters.

D turn on debugging.

g the default gateway.

G use only generic DHCP and RA options. Without this option, ipconfig adds to requests a Ven
dor Class option with value plan9_$cputype and also requests vendor specific options 128
and 129 which we interpret as the Plan 9 file server and auth server. Replies to these options
contain a list of IP addresses for possible file servers and auth servers.

h the hostname to add to DHCP requests. Some DHCP servers, such as the one used by Com
cast, will not respond unless a correct hostname is in the request.

m the maximum IP packet size to use on this interface.

n determine parameters but don�t configure the interface.

981

IPCONFIG(8) IPCONFIG(8)

N look in dbfile (default /lib/ndb/local) for the IP parameters for the specified local IP
address or if local is omited and the device is an ethernet then all IP parameters associated
with the MAC address. IPv6 addresses are added only if a IPv6 link-local address exists on the
interface or the 6 flag has been given to automatically configure one.

O addresses specified on the command line override those obtained via DHCP. A command line
address of 0 implies no override.

p write configuration information to /net/ndb.

P do not write configuration information to /net/ndb.

r by default, ipconfig exits after trying DHCP for 15 seconds with no answer. This option directs
ipconfig instead to fork a background process that keeps trying forever.

u disable IPv6 duplicate discovery detection, which removes any existing ARP table entry for one
of our IPv6 addresses before adding new ones.

f use the ndb database file dbfile.

x use the IP stack mounted at netmtpt instead of at /net.

X don�t fork a process to keep the DHCP lease alive.

o adds dhcpoption to the list of paramters requested of the DHCP server. The result will appear
in /net/ndb should this be the first interface. The known options are:

arptimeout, baddr, bflen, bootfile, clientid, cookie, discover
mask, discoverrouter, dns, dom, dumpfile, etherencap, extpath,
finger, homeagent, impress, ipaddr, ipforward, ipgw, ipmask,
irc, lease, log, lpr, maxdatagram, maxmsg, message, mtu, name,
netbiosdds, netbiosns, netbiosscope, netbiostype, ni, nisdomain,
nisplus, nisplusdomain, nntp, nonlocal, ntp, overload, params,
pathplateau, pathtimeout, policyfilter, pop3, rebindingtime,
renewaltime, rl, rootpath, rs, serverid, smtp, st, staticroutes,
stdar, subnetslocal, supplymask, swap, sys, tcpka, tcpkag,
tcpttl, tftp, time, timeoff, trailerencap, ttl, type, vendor
class, www, xdispmanager, xfont

The options ipmask, ipgw, dns, sys, and ntp are always requested.

If DHCP is requested, a process is forked off to renew the lease before it runs out. If the lease
does run out, this process will remove any configured addresses from the interface.

Rip runs the routing protocol RIP. It listens for RIP packets on connected networks and updates the
kernel routing tables. The options are:

b broadcasts routing information onto the networks.

n gathers routing information but doesn�t write to the route table. This is useful with �d to
debug a network.

x use the IP stack mounted at netmtpt instead of at /net.

d turn on (voluminous) debugging.

Linklocal prints the IPv6 link-local address corresponding to the given mac address. Given −t,
linklocal instead prints the 6to4 EUI-64-based IPv6 address corresponding to mac and 6to4 gate
way gwipv4.

EXAMPLES
Configure Ethernet 0 as the primary IP interface. Get all addresses via DHCP. Start up a connec
tion server and DNS resolver for this IP stack.

% bind −b ’#l0’ /net
% bind −a ’#I0’ /net
% ip/ipconfig
% ndb/cs
% ndb/dns −r

982

IPCONFIG(8) IPCONFIG(8)

Add a second address to the stack.

% ip/ipconfig ether /net/ether0 add 12.1.1.2 255.255.255.0

At Bell Labs, our primary IP stack is always to the company�s internal firewall-protected network.
The following creates an external IP stack to directly access the outside Internet. Note that the
connection server uses a different set of ndb files. This prevents us from confusing inside and out
side name/address bindings.

% bind −b ’#l1’ /net.alt
% bind −b ’#I1’ /net.alt
% ip/ipconfig −x /net.alt −g 204.178.31.1 ether /net.alt/ether1\

204.178.31.6 255.255.255.0
% ndb/cs −x /net.alt −f /lib/ndb/external
% ndb/dns −sx /net.alt −f /lib/ndb/external
% aux/listen −d /rc/bin/service.alt /net.alt/tcp

Configure the IPv6 link-local address automatically and listen for router announcements.

ip/ipconfig −6
ip/ipconfig ra6 recvra 1

FILES
/sys/log/ipconfig

SOURCE
/sys/src/cmd/ip/ipconfig
/sys/src/cmd/ip/rip.c
/sys/src/cmd/ip/linklocal.c

SEE ALSO
ether(3), ip(3), loopback(3), ndb(6), 6in4(8), dhcpd(8), ppp(8)
/lib/rfc/rfc2373 for IPv6�s modified EUI-64

983

IPSERV(8) IPSERV(8)

NAME
telnetd, rlogind, rexexec, ftpd, socksd, hproxy � Internet remote access daemons

SYNOPSIS
ip/telnetd [−adnptN] [−u user]

ip/rlogind

ip/rexexec

ip/ftpd [−aAde] [−n namepace−file]

ip/socksd [−x inside] [−o outside]

ip/hproxy

DESCRIPTION
These programs support remote access across the Internet. All expect the network connection to
be standard input, output, and error. They are normally started from scripts in
/rc/bin/service (see listen(8)).

Telnetd allows login from a remote client. There are three types of login:

normal Normal users log in by encrypting and returning a challenge printed by telnetd. The
user can use either the netkey program (see passwd(1)) or a SecureNet handheld
authenticator to encrypt the challenge. /lib/namespace defines the namespace.

noworld Users in group noworld in /adm/users authenticate with a password in the clear.
/lib/namespace.noworld defines the namespace.

anonymous User none requires no authentication. /lib/namespace defines the namespace.

Telnetd�s options are:

a allow anonymous login by none

d print debugging to standard error

p don�t originate any telnet control codes

n turn on local character echoing and imply the p option

t trusted, that is, don�t authenticate

u use user as the local account name

N permit connections by �noworld� users only.

Rlogind logs in using the BSD remote login protocol. Rlogind execs telnetd −nu after completing
its initial handshake.

Rexexec executes a command locally for a remote client. It uses the standard Plan 9 authentication
(see authsrv(6)).

Ftpd runs the Internet file transfer protocol. Users may transfer files in either direction between
the local and remote machines. As for telnetd, there are three types of login:

normal Normal users authenticate via the same challenge/response as for telnetd.
/usr/username/lib/namespace.ftp or, if that file does not exist,
/lib/namespace defines the namespace.

noworld Users in group noworld in /adm/users login using a password in the clear.
/lib/namespace.noworld defines the namespace.

anonymous Users anonymous and none require no authentication. The argument to the �n
option (default /lib/namespace.ftp) defines the namespace. Anonymous users may
only store files in the subtree below /incoming.

Ftpd�s options are:

a allow anonymous access

A allow only anonymous access

d write debugging output to standard error

e treat any user as anonymous

984

IPSERV(8) IPSERV(8)

n the namespace for anonymous users (default /lib/namespace.ftp)

To preserve intended protections in shared file trees, any directory containing a file .httplogin is
locked by ftpd; see httpd(8).

Socksd is a SOCKS4 and SOCKS5 proxy server allowing non Plan9 machines to access the outside
network. The net to use for outgoing calls can be specified with the −o outside and the internal
network is specified with −x inside (for UDP relay). If not specified, inside and outside will default
to /net.

Hproxy is a simple HTTP proxy server.

FILES
/lib/namepace
/usr/username/lib/namespace.ftp
/lib/namespace.world
/lib/namespace.ftp

SOURCE
/sys/src/cmd/ip/telnetd.c
/sys/src/cmd/ip/rlogind.c
/sys/src/cmd/ip/rexexec.c
/sys/src/cmd/ip/ftpd.c
/sys/src/cmd/ip/socksd.c
/sys/src/cmd/ip/hproxy.c

SEE ALSO
ftpfs(4), pop3(8)

HISTORY
Hproxy first appeared in 9front (July, 2012). Socksd first appeared in 9front (March, 2012).

985

KBDFS(8) KBDFS(8)

NAME
kbdfs, console � keyboard and console filesystem

SYNOPSIS
aux/kbdfs [−Dd] [−s srv] [−m mntpnt] [consfile]

mount −b /srv/cons /dev
/dev/cons
/dev/consctl
/dev/kbd
/dev/kbdin
/dev/kbin
/dev/kbmap

console [cmd args...]

DESCRIPTION
Started on boot(8), kbdfs translates raw keyboard scancodes from /dev/scancode (see kbd(3))
and its kbin and kbdin file and optionally reads console input from consfile to provide initial
keyboard and console input.

It serves a one-level directory containing the files cons, consctl, kbd, kbdin, kbin and
kbmap.

The −D flag enables a debug trace of 9p messages and −d prevents kbdfs from making its mem
ory private.

The −s option causes kbdfs to post its channel on /srv/srv. On system startup, boot(8) sets
this to cons. With the −m option, kbdfs mounts itself on mntpnt (see bind(2)), otherwise on
/dev (the default).

The console command executes cmd (defaults to the system shell) under its own kbdfs instance
providing a serial console if $console environment variable is set.

Console
Reading the cons file returns characters typed on the console. Normally, characters are buffered
to enable erase and kill processing. A control-U, ^U, typed at the keyboard erases the current
input line (removes all characters from the buffer of characters not yet read via cons), and a back
space erases the previous non-kill, non-erase character from the input buffer. The combination
control-W, ^W, deletes the input last word. Killing and erasing only delete characters back to, but
not including, the last newline. Characters typed at the keyboard actually produce 16-bit runes
(see utf(6)), but the runes are translated into the variable-length UTF encoding (see utf(6)) before
putting them into the buffer. A read(2) of a length greater than zero causes the process to wait
until a newline or a ^D ends the buffer, and then returns as much of the buffer as the argument to
read allows, but only up to one complete line. A terminating ^D is not put into the buffer. If part
of the line remains, the next read will return bytes from that remainder and not part of any new
line that has been typed since.

If the string rawon has been written to the consctl file and the file is still open, cons is in raw
mode: characters are not echoed as they are typed, backspace, ^U, ^W and ^D are not treated
specially, and characters are available to read as soon as they are typed. Ordinary mode is reen
tered when rawoff is written to consctl or this file is closed.

A write (see read(2)) to cons causes the characters to be printed on the console screen.

When a consfile is passed to kbdfs(8) as its last argument, it reads and processes the characters
from that file and forwards them to the cons file with the same text processing applied as on key
board input. This is used to provide a serial console when $console environment variable is set.
(see plan9.ini(8)).

Keyboard
A read on the kbd file returns the character k, K or c followed by a null terminated, variable-
length, UTF encoded string. The k message is sent when a key is pressed down and K when a key
is released. The following string contains all the keycodes of the keys that are currently pressed
down in unshifted form. This includes all keys that have a keyboard mapping and modifier keys.

986

KBDFS(8) KBDFS(8)

The string following the c message contains the single character that would have been returned on
the cons file instead. The c message will be resent at the keyboard repeat rate. A single read(2)
can return multiple concatenated messages at once (delimited by the null byte) or block when
there are no messages queued. Opening the kbd file disables input processing on the cons file
until it is closed again.

K, k and c messages can be written to kbdin and will forwarded to the reader of cons or kbd.
Writing a r or R message followed by a UTF encoded rune will simulate the press or release of that
particular rune.

Raw scancodes can be written to the kbin file for external keyboard input (used for USB key
boards).

Keyboard map
Scancodes are mapped to Unicode characters with a number of translation tables. These tables can
be accessed with the kbmap file.

Reads return the current contents of the map. Each entry is one line containing three 11 character
numeric fields, each followed by a space: a table number, an index into the table (scan code), and
the decimal value of the corresponding Unicode character (0 if none). The table numbers are plat
form dependent; they typically distinguish between unshifted and shifted keys. The scan code val
ues are hardware dependent and can vary from keyboard to keyboard.

Writes to the file change the map. Lines written to the file must contain three space-separated
fields, representing the table number, scan code index, and Unicode character. Values are taken
to be decimal unless they start with 0x (hexadecimal) or 0 (octal). The Unicode character can also
be represented as ’x where x gives the UTF-8 representation of the character (see utf(6)), or as
^X to represent a control character.

SEE ALSO
cons(3), keyboard (6), utf(6), kbd(3), plan9.ini(8)

FILES
/sys/lib/kbmap/*

SOURCE
/sys/src/cmd/aux/kbdfs
/rc/bin/console

HISTORY
Kbdfs first appeared in 9front (May, 2011).

987

LISTEN(8) LISTEN(8)

NAME
listen, listen1, tcp7, tcp9, tcp19, tcp21, tcp23, tcp25, tcp53, tcp110, tcp113, tcp143, tcp445,
tcp513, tcp515, tcp564, tcp565, tcp566, tcp567, tcp993, tcp995, tcp1723, tcp17007, tcp17008,
tcp17009, tcp17010, tcp17013, tcp17019, tcp17020 � listen for calls on a network device

SYNOPSIS
aux/listen [−iq] [−d srvdir] [−t trustsrvdir] [−n namespace] [−p maxprocs] [−a addr]
[proto]

aux/listen1 [−1tv] [−p maxprocs] [−n namespace] addr cmd [args...]

DESCRIPTION
Listen listens on a network for inbound calls to local services. Proto is the network protocol on
which to listen, by default tcp. Incoming calls to any address * are accepted unless addr is speci
fied with the −a option. The services available are executable, non-empty files in srvdir or
trustsrvdir. If neither srvdir nor trustsrvdir is given, listen looks for executable files in
/bin/service. Services found in srvdir are executed as user none; services found in
trustsrvdir are executed as the user who started listen. When changing user to none, a new
namespace is created, usually by executing /lib/namespace, but −n selects an alternate
namespace. The −p option limits the number of processes that listen spawns to service the con
nections. If the maxprocs limit is reached, listen will log the event and delay servicing until the
number of connection processes drops below the limit again. A maxprocs smaller or equal zero
means no limit (default). Option −q suppresses affirmative log information. Option −i sup
presses the periodic scan of the service directories for changes.

Service names are made by concatenating the name of the network with the name of the service or
port. For example, an inbound call on the TCP network for port 565 executes service tcp565.

At least the following services are available in /bin/service.

tcp564 serve a piece of the name space using the Plan 9 file system protocol, with authenti
cation via Tauth (in attach(5)), no encryption, and multiplex multiple users on a sin
gle connection (used by srv(4), and also by Unix systems to see Plan 9 files).

tcp17007 serve a piece of the name space using the Plan 9 file system protocol, with authenti
cation at the start, optional SSL encryption, and no multiplexing of users (typically
used by cpu(1) and import(4)). Not usable by user none.

tcp17008 like tcp17007, but serves the root of the tree, forgoing the negotiation for which
subtree to serve.

tcp17009 rx remote execution.
tcp17010 server for cpu(1) command.
tcp17013 server for old cpu(1) command for compatibility with old clients.
tcp17019 server for rcpu(1), replaces rx, import(4) and cpu(1) using TLS for encryption.
tcp17020 TLS encrypted 9P fileserver (t9fs) for srvtls (see srv(4)).
tcp7 echo any bytes received (bit mirror)
tcp9 consume any bytes received (bit bucket)
tcp19 chargen service.
tcp21 FTP daemon
tcp23 telnet terminal connection.
tcp25 mail delivery.
tcp53 TCP port for DNS.
tcp110 POP3 port.
tcp113 Ident port (always reports none).
tcp143 IMAP4rev1 port.
tcp445 CIFS/SMB file sharing.
tcp513 rlogin terminal connection.
tcp515 LP daemon; see lp(8).
tcp565 report the address of the incoming call.
tcp993 Secure IMAP4rev1 port.
tcp995 Secure POP3 port.
tcp1723 PPTP (point-to-point tunnelling protocol) service.

988

LISTEN(8) LISTEN(8)

At least the following services are available in /bin/service.auth, the usual trustsrvdir.

tcp566 validate a SecureNet box.
tcp567 Plan 9 authentication-ticket service.

Listen1 is a lightweight listener intended for personal use, modeled from Inferno�s listen(1). It
announces on address, running cmd args... for each incoming connection; the network directory is
passed in the environment as $net. Option −t causes listen1 to run as the invoking user; the
default is to become none before listening. Option −1 arms a one-shot listener; it terminates lis
ten1 upon receiving a single call. Option −v causes verbose logging on standard output. See
/rc/bin/tlssrvtunnel for an example.

FILES
/net/tcp by convention, TCP device bind point

SOURCE
/sys/src/cmd/aux/listen*.c
/rc/bin/service*

SEE ALSO
authsrv(6), dial(2)

BUGS
Srvdir, trustsrvdir and namespace must all be absolute path names.

989

LP(8) LP(8)

NAME
lp � PostScript preprocessors

DESCRIPTION
These programs are part of the lp(1) suite. Each corresponds to a process in the −pprocess option
of lp and exists as an rc(1) script in /sys/lib/lp/process that provides an interface to a
PostScript conversion program in /$cputype/bin/aux. The list of processors follows; after
each description is a bracketed list of lp options to which the processor responds:

dpost converts troff(1) output for device post to PostScript. This is used for files troff�ed on
our UNIX systems that do not handle UTF characters. [DLcimnorxy]

dvipost converts tex output to PostScript. [Lcinor]
g3post converts CCITT Group 3 FAX data to PostScript. [DLm]
gifpost converts GIF image data to PostScript. [DLm]
generic is the default processor. It uses file(1) to determine the type of input and executes the

correct processor for a given (input, printer) pair.
hpost adds a header page to the beginning of a PostScript printer job so that it may be sepa

rated from other jobs in the output bin. The header has the image of the job�s owner
from the directory of faces (see face(6)). Page reversal is also done in this processor.

jpgpost converts JPEG image data to PostScript. [DLm]
noproc passes files through untouched.
p9bitpost converts a Plan 9 image to PostScript, such as /dev/screen for the whole screen,

/dev/window for that window�s data, and /dev/wsys/.../window for some
other window�s data. [DLm]

pdfpost converts PDF data to PostScript.
post passes PostScript through, adding option patches for paper tray information. This

does not always work with PostScript generated on other systems.
ppost converts UTF text to PostScript. [DLcfilmnorxy]
tr2post converts troff(1) output for device utf (the default) to PostScript. See

/sys/lib/troff/font/devutf directory for troff font width table descriptions.
See also the /sys/lib/postscript/troff directory for mappings of troff UTF

character space to PostScript font space. [DLcimnorxy]

SOURCE
/sys/src/cmd/postscript

SEE ALSO
lp(1)

BUGS
The file command is not always smart enough to deal with certain file types. There are PostScript
conversion programs that do not have processors to drive them.

990

MEMORY(8) MEMORY(8)

NAME
memory � print memory statistics in human-readable format

SYNOPSIS
memory

DESCRIPTION
Memory prints statistics about the total system memory, followed by the memory that is currently
use, by concatenating the file /dev/swap and filtering the output for human consumption.

SOURCE
/rc/bin/memory

991

MK9660(8) MK9660(8)

NAME
dump9660, mk9660 � create an ISO-9660 CD image

SYNOPSIS
disk/mk9660 [−:D] [−9cjr] [−b bootfile] [−B bootfile] [−E bootfile] [−p proto] [−s src
] [−v volume] image

disk/dump9660 [−:D] [−9cjr] [−p proto] [−s src] [−v volume] [−m maxsize] [−n now
] image

DESCRIPTION
Mk9660 writes to the random access file image an ISO-9660 CD image containing the files named
in proto (by default, /sys/lib/sysconfig/proto/portproto) from the file tree src (by
default, the current directory). The proto file format is described in proto(2).

The created CD image will be in ISO-9660 format, but by default the file names will be stored in
UTF-8 with no imposed length or character restrictions. The −c flag causes mk9660 to use only
file names in ��8.3�� form that use digits, letters, and underscore. File names that do not conform
are changed to Dnnnnnn (for directories) or Fnnnnnn (for files); a key file _CONFORM.MAP is cre
ated in the root directory to ease the reverse process.

If the −9 flag is given, the system use fields at the end of each directory entry will be populated
with Plan directory information (owner, group, mode, full name); this is interpreted by 9660srv.

If the −j flag is given, the usual directory tree is written, but an additional tree in Microsoft Joliet
format is also added. This second tree can contain long Unicode file names, and can be read by
9660srv as well as most versions of Windows and many Unix clones. The characters *, :, ;, ?,
and \ are allowed in Plan 9 file names but not in Joliet file names; non-conforming file names are
translated and a _CONFORM.MAP file written as in the case of the −c option.

If the −r flag is given, Rock Ridge extensions are written in the format of the system use sharing
protocol; this format provides Posix-style file metadata and is common on Unix platforms.

The options −c, −9, −j, and −r may be mixed freely with the exception that −9 and −r are
mutually exclusive.

The −v flag sets the volume title; if unspecified, the base name of proto is used.

The −: flag causes mk9660 to replace colons in scanned file names with spaces; this is the
inverse of the map applied by dossrv(4) and is useful for writing Joliet CDs containing data from
FAT file systems.

The −b option creates a bootable CD. Bootable CDs contain pointers to floppy images which are
loaded and booted by the BIOS. Bootfile should be the name of the floppy image to use; it is a
path relative to the root of the created CD. That is, the boot floppy image must be listed in the
proto file already: the −b option just creates a pointer to it.

The −B option is similar to −b but the created CD image is marked as having a non-floppy-
emulation boot block. This gives the program in the boot block full (ATA) LBA access to the CD
filesystem, not just the initial blocks that would fit on a floppy.

In addition to −b and −B a boot entry for UEFI systems can be created with the −E option and with
bootfile pointing to a FAT image containing the contents of the efi system partition.

The −D flag creates immense amounts of debugging output on standard error.

Dump9660 is similar in specification to mk9660 but creates and updates backup CD images in the
style of the dump file system (see fs(4)). The dump is file-based rather than block-based: if a file�s
contents have not changed since the last backup, only its directory entry will be rewritten.

The −n option specifies a time (in seconds since January 1, 1970) to be used for naming the dump
directory.

The −m option specifies a maximum size for the image; if a backup would cause the image to grow
larger than maxsize, it will not be written, and dump9660 will exit with a non-empty status.

EXAMPLE
Create an image of the Plan 9 source tree, including a conformant ISO-9660 directory tree, Plan 9
extensions in the system use fields, and a Joliet directory tree.

992

MK9660(8) MK9660(8)

disk/mk9660 −9cj −s /sys/src \
−p /sys/lib/sysconfig/proto/allproto cdimage

SOURCE
/sys/src/cmd/disk/9660

SEE ALSO
9660srv (in dossrv(4)), cdfs(4), mkfs(8)

993

MKFLASHFS(8) MKFLASHFS(8)

NAME
mkflashfs � make a journalling file system for flash memory

SYNOPSIS
aux/mkflashfs [−n nsect] [−z sectsize] file

DESCRIPTION
Mkflashfs creates an empty journalling file system in file, typically /dev/flash/flash.

The files and directory structure are divided into sectsize (default 4096) byte blocks. Larger
blocks make large files more compact but take longer to access. Supplying the −n option forces
file to contain exactly nsect sectors.

SOURCE
/sys/src/cmd/aux/flashfs/mkfs.c

SEE ALSO
flashfs(4), paqfs(4), sacfs(4)

994

MKFS(8) MKFS(8)

NAME
mkfs, mkext � archive or update a file system

SYNOPSIS
disk/mkfs [−aprvoxU] [−d root] [−s source] [−z n] proto ...

disk/mkext [−d name] [−u] [−h] [−v] [−x] [−T] file ...

DESCRIPTION
Mkfs copies files from the file tree source (default /) to a new file system root (default
/n/newfs). The proto files are read (see proto(2) for their format) and any files specified in
them that are out of date are copied.

Mkfs copies only those files that are out of date. Such a file is first copied into a temporary file in
the appropriate destination directory and then moved to the destination file. Files that are not
specified in the proto file are not updated and not removed.

The options to mkfs are:

a Instead of writing to new file system, write an archive file to standard output, suit
able for mkext. All files in proto, not just those out of date, are archived.

x For use with −a, this option writes a list of file names, dates, and sizes to standard
output rather than producing an archive file.

o Similar to −x above, but produces a list of source file names to standard output
rather than producing an archive file.

d root Copy files into the tree rooted at root (default /n/newfs). This option suppresses
setting the uid and gid fields when copying files. Use −U to reenable it.

p Update the permissions of a file even if it is up to date.
U Update of uid and gid of the target files.
r Copy all files.
s source Copy from files rooted at the tree source.
v Print the names of all of the files as they are copied.
z n Copy files assuming block size n (default 1024) bytes long. If a block contains only

0-valued bytes, it is not copied.

Mkext unpacks archive files made by the −a option of mkfs. Each file on the command line is
unpacked in one pass through the archive. If the file is a directory, all files and subdirectories of
that directory are also unpacked. When a file is unpacked, the entire path is created if it does not
exist. If no files are specified, the entire archive is unpacked; in this case, missing intermediate
directories are not created. The options are:

d specifies a directory (default /) to serve as the root of the unpacked file system.

u sets the owners of the files created to correspond to those in the archive and restores the
modification times of the files.

T restores only the modification times of the files.

v prints the names and sizes of files as they are extracted.

h prints headers for the files on standard output instead of unpacking the files.

EXAMPLES
Make an archive to establish a new file system:

disk/mkfs −a −s dist proto > arch

Unpack that archive onto a new file system:

srv newfs
mount −c /srv/newfs /n/newfs
disk/mkext −u −d /n/newfs < arch

SOURCE
/sys/src/cmd/disk/mkfs.c
/sys/src/cmd/disk/mkext.c

SEE ALSO
prep(8), sd(3), tar(1)

995

MKPAQFS(8) MKPAQFS(8)

NAME
mkpaqfs � make a compressed read-only file system

SYNOPSIS
mkpaqfs [−u] [−b blocksize] [−l label] [−o file] [source]

DESCRIPTION
Mkpaqfs copies files from the file tree source (default .) to the paqfs(4) file system archive file.

The files and directory structure are divided into blocksize (default 4096) byte blocks. Larger
blocks make large files more compact but take longer to access. Blocksize must be in the range of
512 bytes to 512K bytes. If the −u option is set, the blocks are not compressed. Otherwise each
block is compressed using the flate(2) compression algorithm. The −l option embeds a label of
up to 32 bytes within the file header and may be useful for identifying the file system.

SOURCE
/sys/src/cmd/paqfs/mkpaqfs.c

SEE ALSO
paqfs(4)

996

MKSACFS(8) MKSACFS(8)

NAME
mksacfs � make a compressed file system

SYNOPSIS
disk/mksacfs [−u] [−b blocksize] [−o file] source

DESCRIPTION
Mksacfs copies files from the file tree source (default .) to a the sacfs(4) file system archive file.

The files and directory structure are divided into blocksize (default 4096) byte blocks. Larger
blocks make large files more compact but take longer to access. Blocksize must be at least 116. If
−u is given, the blocks are not compressed. Otherwise each block is compressed using an effi
cient compression algorithm.

SOURCE
/sys/src/cmd/disk/sacfs/mksacfs.c

SEE ALSO
sacfs(4)

997

MOUSE(8) MOUSE(8)

NAME
aux/mouse, aux/accupoint � configure a mouse to a port

SYNOPSIS
aux/mouse [−b baud] [−d type] [−n] port

aux/accupoint

DESCRIPTION
Mouse queries a mouse on a serial or PS2 port for its type and then configures the port and the
mouse to be used to control the cursor.

Port can be either a port number (e.g. 0 or 1) or the string ps2 or ps2intellimouse. The ini
tialization can be automated by setting mouseport in plan9.ini(8), which will enable a call to
mouse in termrc (see cpurc(8)).

The option −d provides a default mouse type should mouse fail to determine it. The types are:

C Logitech type C mouse

W Logitech type W mouse

M Microsoft compatible mouse

The −n flag queries the mouse and reports its type but does not set the device type.

The −b flag sets the baud rate for communication; it is effectual only for serial mice.

Accupoint is a process, to be used with pipefile(1), that processes events from an AccuPoint II
pointing device with four buttons, such as on Toshiba Portégé 3440CT and 3480CT laptops, con
verting events on the two extra buttons (which appear as buttons 4 and 5 in the mouse(3) inter
face) into a simulation of button 2. These extra buttons on laptops are in turn simulations of Intel
limouse scrolling buttons and have peculiar properties: they generate only �down� events that
repeat automatically, like a keypad, in an approximation of the Intellimouse scroll wheel.
Accupoint overcomes this behavior to produce a reasonable approximation of a normal mouse but
ton 2: it makes left button act like a regular button 2, but is slow to release (the program must
wait for a repeat time before it knows the button has been released), while the right button gener
ates a fast button 2 �click�. To use accupoint, add a line like this to
/usr/$user/lib/profile or to a system-dependent configuration script in termrc (see
cpurc(8)):

pipefile -dr /bin/aux/accupoint /dev/mouse

Before running accupoint, the mouse should be configured as an intellimouse or
ps2intellimouse.

SOURCE
/sys/src/cmd/aux/mouse.c
/sys/src/cmd/aux/accupoint.c

SEE ALSO
cons(3), cpurc(8), pipefile(1).

BUGS
Due to the limitations of pipefile(1), when running accupoint it is difficult restart rio(1) if it has
exited.

998

NA(8) NA(8)

NAME
na � assembler for the Symbios Logic PCI-SCSI I/O Processors

SYNOPSIS
aux/na file

DESCRIPTION
The SYM53C8XX series of PCI-SCSI I/O Processors contain loadable microcode to control their
operation. The microcode is written in a language called SCRIPTS. Aux/na is an assembler for the
SCRIPTS programming language. It assembles SCRIPTS code in file into an array of assembled
SCRIPTS instructions, patches, defines and enums that can be included in a C device driver.

SOURCE
/sys/src/cmd/aux/na

SEE ALSO
Symbios Logic, ��PCI-SCSI I/O Processors Programming Guide Version 2.1��

/sys/src/9/*/sd53c8xx.n SCRIPTS source code
/sys/src/9/*/sd53c8xx.c driver for the SYM53C8XX series of PCI-SCSI controllers

AUTHOR
Nigel Roles (ngr@9fs.org)

999

NDB(8) NDB(8)

NAME
query, ipquery, mkhash, mkdb, mkhosts, cs, csquery, dns, dnstcp, dnsquery, dnsdebug, dnsgetip,
inform � network database

SYNOPSIS
ndb/query [−am] [−f dbfile] attr value [rattr]
ndb/ipquery attr value rattr...
ndb/mkhash file attr
ndb/mkdb
ndb/mkhosts [domain [dbfile]]
ndb/cs [−46n] [−f dbfile] [−x netmtpt]
ndb/csquery [−s] [/net/cs [addr...]]
ndb/dns [−norRs] [−a maxage] [−f dbfile] [−N target] [−x netmtpt] [−z program]
ndb/dnstcp [−arR] [−f dbfile] [−x netmtpt] [conn−dir]
ndb/dnsquery [−x] [/net/dns]
ndb/dnsdebug [−rxc] [−f dbfile] [[@server] domain−name [type]]
ndb/dnsgetip [−ax] domain−name
ndb/inform [−x netmtpt]

DESCRIPTION
The network database holds administrative information used by network programs such as
dhcpd(8), ipconfig(8), con(1), etc.

Ndb/query searches the database dbfile (/lib/ndb/local by default) for an attribute of type
attr and value value. If rattr is not specified, all entries matched by the search are printed. If rattr
is specified, the value of the first pair with attribute rattr of all the matched entries normally is
printed. Under −m and rattr, the values of all pairs with a rattr attribute within the first matching
entry are printed. Under −a and rattr, all values of pairs with a rattr attribute within all entries
are printed.

Ndb/ipquery uses ndbipinfo (see ndb(2)) to search for the values of the attributes rattr corre
sponding to the system with entries of attribute type attr and value value.

Ndb/inform sends an RFC2136 DNS inform packet to a nameserver to associate the host�s IP
address with its DNS name. This is required if the domain�s nameserver is a Microsoft Windows
Active Directory controller. The host�s domain name will be sent to the AD controller unless a
tuple of the form inform=xxx is found in the host�s ndb entry.

Database maintenance
Ndb/mkhash creates a hash file for all entries with attribute attr in database file file. The hash files
are used by ndb/query and by the ndb library routines.

Ndb/mkdb is used in concert with awk(1) scripts to convert uucp systems files and IP host files
into database files. It is very specific to the situation at Murray Hill.

When the database files change underfoot, ndb/cs and ndb/dns track them properly. Nonetheless,
to keep the database searches efficient it is necessary to run ndb/mkhash whenever the files are
modified. It may be profitable to control this by a frequent cron(8) job.

Ndb/mkhosts generates a BSD style hosts, hosts.txt, and hosts.equiv files from an ndb
data base file specified on the command line (default /lib/ndb/local). For local reasons the
files are called hosts.1127, astro.txt, and hosts.equiv.

Connection service
Ndb/cs is a server used by dial(2) to translate network names. It is started at boot time. It finds
out what networks are configured by looking for /net/*/clone when it starts. It can also be
told about networks by writing to /net/cs a message of the form:

add net1 net2 ...

Ndb/cs also sets the system name in /dev/sysname if it can figure it out. The options are:

−4 Only look up IPv4 addresses (A records) when consulting DNS. The default is to also look up
v6 addresses (AAAA records). Writing ipv4 to /net/cs will toggle IP v4 look-ups.

−6 Only look up IPv6 addresses in DNS. Writing ipv6 to /net/cs toggles v6 lookups.

1000

NDB(8) NDB(8)

−f supplies the name of the data base file to use, default /lib/ndb/local.
−n causes cs to do nothing but set the system name.
−x specifies the mount point of the network.

Ndb/csquery queries ndb/cs to see how it resolves addresses. Ndb/csquery prompts for addresses
and prints what ndb/cs returns. Server defaults to /net/cs. If any addrs are specified,
ndb/csquery prints their translations and immediately exits. The exit status will be nil only if all
addresses were successfully translated. The −s flag sets exit status without printing any results.

Domain name service
Ndb/dns serves ndb/cs and remote systems by translating Internet domain names. Ndb/dns is
started at boot time. By default dns serves only requests written to /net/dns. Programs must
seek to offset 0 before reading or writing /net/dns or /net/cs. The options are:

−a sets the maximum time in seconds that an unreferenced domain name will remain cached.
The default is one hour (3600).

−f supplies the name of the data base file to use, default /lib/ndb/local.
−n whenever a DNS zone that we serve changes, send UDP NOTIFY messages to any dns slaves

for that zone (see the dnsslave attribute below).
−N sets the goal for the number of domain names cached to target rather than the default of

8,000.
−o used with −s, −o causes dns to assume that it straddles inside and outside networks and

that the outside network is mounted on /net.alt. Queries for inside addresses will be
sent via /net/udp (or /net/tcp in response to truncated replies) and those for outside
addresses via /net.alt/udp (or /net.alt/tcp). This makes dns suitable for serving
non-Plan-9 systems in an organization with firewalls, DNS proxies, etc., particularly if they
don�t work very well. See �Straddling Server� below for details.

−r act as a resolver only: send �recursive� queries, asking the other servers to complete lookups.
If present, /env/DNSSERVER must be a space-separated list of such DNS servers� IP
addresses, otherwise optional ndb(6) dns attributes name DNS servers to forward queries
to.

−R ignore the �recursive� bit on incoming requests. Do not complete lookups on behalf of
remote systems.

−s also answer domain requests sent to UDP port 53.
−x specifies the mount point of the network.
−z whenever we receive a UDP NOTIFY message, run program with the domain name of the area

as its argument.

When the −r option is specified, the servers used come from the dns attribute in the database.
For example, to specify a set of dns servers that will resolve requests for systems on the network
mh−net:

ipnet=mh−net ip=135.104.0.0 ipmask=255.255.0.0
dns=ns1.cs.bell−labs.com
dns=ns2.cs.bell−labs.com

dom=ns1.cs.bell−labs.com ip=135.104.1.11
dom=ns2.cs.bell−labs.com ip=135.104.1.12

The server for a domain is indicated by a database entry containing both a dom and a ns attribute.

dom=
ns=A.ROOT−SERVERS.NET
ns=B.ROOT−SERVERS.NET
ns=C.ROOT−SERVERS.NET

dom=A.ROOT−SERVERS.NET ip=198.41.0.4
dom=B.ROOT−SERVERS.NET ip=128.9.0.107
dom=C.ROOT−SERVERS.NET ip=192.33.4.12

The last three lines provide a mapping for the server names to their ip addresses. This is only a
hint and will be superseded from whatever is learned from servers owning the domain.

Authoritative Name Servers
You can also serve a subtree of the domain name space from the local database. You indicate sub
trees that you would like to serve by adding an soa= attribute to the root entry. For example, the
Bell Labs CS research domain is:

1001

NDB(8) NDB(8)

dom=cs.bell−labs.com soa=
refresh=3600 ttl=3600
ns=plan9.bell−labs.com
ns=ns1.cs.bell−labs.com
ns=ns2.cs.bell−labs.com
mb=presotto@plan9.bell−labs.com
mx=mail.research.bell−labs.com pref=20
mx=plan9.bell−labs.com pref=10
dnsslave=nslocum.cs.bell−labs.com
dnsslave=vex.cs.bell−labs.com

Here, the mb entry is the mail address of the person responsible for the domain (default
postmaster). The mx entries list mail exchangers for the domain name and refresh and
ttl define the area refresh interval and the minimum TTL for records in this domain. The
dnsslave entries specify slave DNS servers that should be notified when the domain changes.
The notification also requires the −n flag.

Reverse Domains
You can also serve reverse lookups (returning the name that goes with an IP address) by adding an
soa= attribute to the entry defining the root of the reverse space.

For example, to provide reverse lookup for all addresses in starting with 135.104 or fd00::,
ndb must contain a record like:

dom=104.135.in−addr.arpa soa=
dom=d.f.ip6.arpa soa= # special case, rfc 4193
refresh=3600 ttl=3600
ns=plan9.bell−labs.com
ns=ns1.cs.bell−labs.com
ns=ns2.cs.bell−labs.com

Notice the form of the reverse address. For IPv4, it�s the bytes of the address range you are serv
ing reversed and expressed in decimal, and with .in−addr.arpa appended. For IPv6, it�s the
nibbles (4-bit fields) of the address range you are serving reversed and expressed in hexadecimal,
and with .ip6.arpa appended. These are the standard forms for a domain name in a PTR
record.

If such an soa entry exists in the database, reverse addresses will automatically be generated
from any IP addresses in the database that are under this root. For example

dom=ns1.cs.bell−labs.com ip=135.104.1.11

will automatically create both forward and reverse entries for ns1.cs.bell−labs.com.
Unlike other DNS servers, there�s no way to generate inconsistent forward and reverse entries.

Classless reverse delegation
Following RFC 2317, it is possible to serve reverse DNS data for IPv4 subnets smaller than /24.
Declare the non-/24 subnet, the reverse domain and the individual systems.

For example, this is how to serve RFC-2317 ptr records for the subnet 65.14.39.128/123.

ipnet=our−t1 ip=65.14.39.128 ipmask=/123
dom=128.39.14.65.in−addr.arpa soa=

refresh=3600 ttl=3600
ns=ns1.our−domain.com
ns=ns2.our−domain.com

ip=65.14.39.129 dom=router.our−domain.com

Delegating Name Service Authority
Delegation of a further subtree to another set of name servers is indicated by an
soa=delegated attribute.

dom=bignose.cs.research.bell−labs.com
soa=delegated
ns=anna.cs.research.bell−labs.com
ns=dj.cs.research.bell−labs.com

1002

NDB(8) NDB(8)

Nameservers within the delegated domain (as in this example) must have their IP addresses listed
elsewhere in ndb files.

Wildcards, MX and CNAME records
Wild-carded domain names can also be used. For example, to specify a mail forwarder for all Bell
Labs research systems:

dom=*.research.bell−labs.com
mx=research.bell−labs.com

�Cname� aliases may be established by adding a cname attribute giving the real domain name; the
name attached to the dom attribute is the alias. �Cname� aliases are severely restricted; the aliases
may have no other attributes than dom and are daily further restricted in their use by new RFCs.

cname=anna.cs.bell−labs.com dom=www.cs.bell−labs.com

makes www.... a synonym for the canonical name anna.....

Straddling Server
Many companies have an inside network protected from outside access with firewalls. They usually
provide internal �root� DNS servers (of varying reliability and correctness) that serve internal
domains and pass on DNS queries for outside domains to the outside, relaying the results back
and caching them for future use. Some companies don�t even let DNS queries nor replies through
their firewalls at all, in either direction.

In such a situation, running dns −so on a machine that imports access to the outside network via
/net.alt from a machine that straddles the firewalls, or that straddles the firewalls itself, will let
internal machines query such a machine and receive answers from outside nameservers for outside
addresses and inside nameservers for inside addresses, giving the appearance of a unified domain
name space, while bypassing the corporate DNS proxies or firewalls. This is different from run
ning dns −s and dns −sRx /net.alt −f /lib/ndb/external on the same machine,
which keeps the inside and outside namespaces entirely separate.

Under −o, several sys names are significant: inside−dom, inside−ns, and outside−ns.
Inside−dom should contain a series of dom pairs naming domains internal to the organization.
Inside−ns should contain a series of ip pairs naming the internal DNS �root� servers. Outside−ns
should contain a series of ip pairs naming the external DNS servers to consult.

Zone Transfers and TCP
Dnstcp is invoked, usually from /rc/bin/service/tcp53, to answer DNS queries with long
answers via TCP, notably to transfer a zone within the database dbfile (default
/lib/ndb/local) to its invoker on the network at netmtpt (default /net). Standard input will
be read for DNS requests and the DNS answers will appear on standard output. Recursion is dis
abled by −R; acting as a pure resolver is enabled by −r. Unless the −a flag is provided, clients
requesting DNS zone transfer must be listed with a dnsslave attribute for the relevant domain.
If conn−dir is provided, it is assumed to be a directory within netmtpt/tcp and is used to find the
caller�s address.

DNS Queries and Debugging
Ndb/dnsquery can be used to query ndb/dns to see how it resolves requests. Ndb/dnsquery
prompts for commands of the form

domain−name request−type

where request−type can be ip, ipv6, mx, ns, cname, ptr.... In the case of the inverse query
type, ptr, dnsquery will reverse the ip address and tack on the .in−addr.arpa if necessary.
The −x option switches ndb/dnsquery to query the dns server on /net.alt instead of /net

Ndb/dnsdebug is like ndb/dnsquery but bypasses the local server. It communicates via UDP (and
sometimes TCP) with the domain name servers in the same way that the local resolver would and
displays all packets received. The query can be specified on the command line or can be
prompted for. The queries look like those of ndb/dnsquery with one addition. Ndb/dnsdebug can
be directed to query a particular name server by the command @name−server. From that point on,
all queries go to that name server rather than being resolved by dnsdebug . The @ command
returns query resolution to dnsdebug . Finally, any command preceded by a @name−server sets the
name server only for that command.

1003

NDB(8) NDB(8)

Normally dnsdebug uses the /net interface and the database file /lib/ndb/local. The −f
option supplies the name of the data base file to use. The −r option is the same as for ndb/dns.
The −x option directs dnsdebug to use the /net.alt interface and /lib/ndb/external
database file. The −c option enables caching which is handy for debugging the dns code.

Ndb/dnsgetip resolves and prints A and AAAA records without consulting ndb/dns . By default,
ndb/dnsgetip queries A records first and then AAAA records. As with ndb/dns,
/env/DNSSERVER or ndb(6) dns attributes are used as the DNS server. The −a flag will return
all records. The −x option switches ndb/dnsgetip to query the dns server through /net.alt
instead of /net.

EXAMPLES
Look up helix in ndb.

% ndb/query sys helix
sys=helix dom=helix.research.bell−labs.com bootf=/mips/9powerboot

ip=135.104.117.31 ether=080069020427

Look up plan9.bell−labs.com and its IP address in the DNS.

% ndb/dnsquery
> plan9.bell−labs.com ip
plan9.bell−labs.com ip 204.178.31.2
> 204.178.31.2 ptr
2.31.178.204.in−addr.arpa ptr plan9.bell−labs.com
2.31.178.204.in−addr.arpa ptr ampl.com
>

Print the names of all systems that boot via PXE.

% ndb/query −a bootf /386/9bootpxe sys

FILES
/env/DNSSERVER resolver�s DNS servers� IP addresses.
/lib/ndb/local first database file searched
/lib/ndb/local.* hash files for /lib/ndb/local
/srv/cs service file for ndb/cs
/net/cs where /srv/cs gets mounted
/srv/dns service file for ndb/dns
/net/dns where /srv/dns gets mounted

SOURCE
/sys/src/cmd/ndb

SEE ALSO
ndb(2), ndb(6)

BUGS
Ndb databases are case-sensitive; ethernet addresses must be in lower-case hexadecimal.

1004

NETAUDIT(8) NETAUDIT(8)

NAME
netaudit - network configuration checker

SYNOPSIS
netaudit

DESCRIPTION
Netaudit checks the effective network configuration on the local system and reports any inconsis
tencies found.

It starts its search by querying common ndb entries for $sysname, checking and validating the
ip=, ether= and dom= entries.

The presence of an ipnet= entry and the reachability of dns and auth servers is checked.

If the machine is an auth server, netaudit checks if keyfs(4) is running and the local tcp port 567 is
open and listening.

The root filesystem /srv/boot is tested if it requires authentication on mount.

SOURCE
/rc/bin/netaudit

SEE ALSO
keyfs(4), auth(8), ndb(8), ndb(6).

HISTORY
Netaudit first appeared in 9front (August, 2012).

1005

NEWUSER(8) NEWUSER(8)

NAME
newuser � adding a new user

SYNOPSIS
/sys/lib/newuser

DESCRIPTION
To establish a new user on Plan 9, add the user to /adm/users by running the newuser com
mand on the console of the file server (see fs(8)). Next, give the user a password using
auth/changeuser on the console of the authentication server (see auth(8)). At this point, the user
can bootstrap a terminal using the new name and password. The terminal will only get as far as
running rc, however, as no profile exists for the user.

The rc(1) script /sys/lib/newuser sets up a sensible environment for a new user of Plan 9.
Once the terminal is running rc, type

/sys/lib/newuser

to build the necessary directories in /usr/$user, create /mail/box/$user/mbox,
/cron/$user/cron, a reasonable initial profile in /usr/$user/lib/profile and plumb
ing rules in /usr/$user/lib/plumbing (see plumber(4)). The script then runs the profile
which, as its last step, brings up rio(1). At this point the user�s environment is established and
running. (There is no need to reboot.) It may be prudent at this point to run passwd(1) to change
the password, depending on how the initial password was chosen.

The profile built by /sys/lib/newuser looks like this:

bind −a $home/bin/rc /bin
bind −a $home/bin/$cputype /bin
bind −c tmp /tmp
font = /lib/font/bit/pelm/euro.9.font
switch($service){
case terminal

plumber
upas/fs
echo −n accelerated > ’#m/mousectl’
echo −n ’res 3’ > ’#m/mousectl’
prompt=(’term% ’ ’ ’)
fn term%{ $* }
exec rio

case cpu
if (test −e /mnt/term/mnt/wsys) {

rio already running
wsys = /mnt/term^‘{cat /mnt/term/env/wsys}
bind −a /mnt/term/mnt/wsys /dev
echo −n $sysname > /dev/label

}
bind /mnt/term/dev/cons /dev/cons
bind /mnt/term/dev/consctl /dev/consctl
bind −a /mnt/term/dev /dev
prompt=(’cpu% ’ ’ ’)
fn cpu%{ $* }
upas/fs
news
if (! test −e /mnt/term/mnt/wsys) {

cpu call from drawterm
font=/lib/font/bit/pelm/latin1.8.font
auth/factotum
plumber
exec rio

}
case con

1006

NEWUSER(8) NEWUSER(8)

prompt=(’cpu% ’ ’ ’)
news

}

Sites may make changes to /sys/lib/newuser that reflect the properties of the local environ
ment.

SEE ALSO
passwd(1), rio(1), namespace(4), fs(8), auth(8).

1007

NFSSERVER(8) NFSSERVER(8)

NAME
nfsserver, portmapper, pcnfsd � NFS service

SYNOPSIS
aux/nfsserver [rpc−options...] [nfs−options...]
aux/pcnfsd [rpc−options...]
aux/portmapper [rpc−options...]

DESCRIPTION
These programs collectively provide NFS access to Plan 9 file servers. Nfsserver, pcnfsd, and
portmapper run on a Plan 9 CPU server, and should be started in that order. All users on client
machines have the access privileges of the Plan 9 user none. Currently only NFS version 2 is
served.

The rpc−options are all intended for debugging:

−r Reject: answer all RPC requests by returning the AUTH_TOOWEAK error.

−v Verbose: show all RPC calls and internal program state, including 9P messages. (In any
case, the program creates a file /srv/name.chat where name is that of the program;
echoing 1 or 0 into this file sets or clears the −v flag dynamically.)

−D Debug: show all RPC messages (at a lower level than −v). This flag may be repeated to
get more detail.

−C Turn off caching: do not answer RPC requests using the RPC reply cache.

The nfs−options are:

−a addr Set up NFS service for the 9P server at network address addr.

−f file Set up NFS service for the 9P server at file (typically an entry in /srv).

−n Do not allow per-user authentication (default and mandatory).

−c file File contains the uid/gid map configuration. It is read at startup and subsequently every
hour (or if c is echoed into /srv/nfsserver.chat). Blank lines or lines beginning
with # are ignored; lines beginning with ! are executed as commands; otherwise lines
contain four fields separated by white space: a regular expression (in the notation of
regexp(6)) for a class of servers, a regular expression for a class of clients, a file of user
id�s (in the format of a Unix password file), and a file of group id�s (same format).

−s Expect a network connection on file descriptor 1 instead of listening for incoming calls.

−t Listen for incoming TCP calls, rather than UDP calls.

NFS clients must be in the Plan 9 /lib/ndb database. The machine name is deduced from the IP
address via ndb/query. The machine name specified in the NFS Unix credentials is completely
ignored.

Pcnfsd is a toy program that authorizes PC-NFS clients. All clients are mapped to uid=1, gid=1
(daemon on most systems) regardless of name or password.

EXAMPLES
A simple /lib/ndb/nfs might contain:

!9fs tcp!ivy
.+ [^.]+\.cvrd\.hall\.edu /n/ivy/etc/passwd /n/ivy/etc/group

A typical entry in /rc/bin/cpurc might be:

aux/nfsserver −a tcp!pie −a tcp!yoshimi −c /lib/ndb/nfs
aux/pcnfsd
aux/portmapper

Assuming the CPU server�s name is eduardo, the mount commands on the client would be:

/etc/mount −o soft,intr eduardo:pie /n/pie
/etc/mount −o soft,intr eduardo:yoshimi /n/yoshimi

Note that a single instance of nfsserver may provide access to several 9P servers.

1008

NFSSERVER(8) NFSSERVER(8)

FILES
/lib/ndb/nfs List of uid/gid maps.
/sys/log/nfs Log file.

SOURCE
/sys/src/cmd/9nfs

BUGS
It would be nice to provide authentication for users, but Unix systems provide too low a level of
security to be trusted in a Plan 9 world.

SEE ALSO
nfs(4)
RFC1057, RPC: Remote Procedure Call Protocol Specification, Version 2, describes Sun�s RPC proto
col.
RFC1094, NFS: Network File System Protocol Specification, describes NFS version 2.
RFC1813, NFS Version 3 Protocol Specification.
RFC3530, Network File System (NFS) version 4 Protocol.

1009

NUSBRC(8) NUSBRC(8)

NAME
nusbrc - Universal Serial Bus startup script

SYNOPSIS
nusbrc

DESCRIPTION
Started by bootrc (see boot(8)), termrc or cpurc (see cpurc(8)), nusbrc handles the startup and
shutdown of usb drivers on physical device attach and detach events by reading
/dev/usbevent file.

SOURCE
/rc/bin/nusbrc /sys/src/9/boot/nusbrc

SEE ALSO
nusb(4)

BUGS
Usb devices appear as files under /dev and /shr identified by the devices unique name assigned
by usbd. When the environment variable nousbhname is defined, devies are named by ther
dynamically assigned usb device address instead. This emulates the old behaviour.

1010

PARTFS(8) PARTFS(8)

NAME
partfs � serve file, with partitions

SYNOPSIS
disk/partfs [−Dr] [−d diskname] [−m mtpt] [−s srvname] diskimage

DESCRIPTION
Partfs presents the file diskimage in the manner of sd(3) on mtpt/diskname (default
/dev/sdXX). Changes made to the disk are written through to diskimage unless the −r option
is given.

When setting disk geometry with the geometry control message, the arguments are sectors and
sector size.

The −s option causes partfs to post its 9P service at /srv/service.

EXAMPLES
Partition a USB flash device:

usb/disk
disk/partfs /n/disk/0/data
disk/mbr −m /386/mbr /dev/sdXX/data
disk/fdisk −baw /dev/sdXX/data
disk/prep /dev/sdXX/plan9

SOURCE
/sys/src/cmd/disk/partfs.c

SEE ALSO
sd(3), disksim(8), prep(8)

1011

PCI(8) PCI(8)

NAME
pci � print PCI bus configuration

SYNOPSIS
pci [−bv] [vid/did ...]

DESCRIPTION
Pci normally prints one line per device found on the local PCI bus described by #$/pci. The
fields are bus.device.function, class, class code, vendor/device ids , IRQ (interrupt), followed by
the configuration registers in pairs of index:address and size. The −b option suppresses output
for PCI bridges. The −v option adds a second line per device, containing an English description
obtained from /lib/pci.

If any number of vid/did pairs is specified, pci instead looks up each pair in the database and
prints the vid/did, followed by the English description of the vendor and device on a new line if
it exists in the database.

FILES
/lib/pci

SOURCE
/rc/bin/pci

SEE ALSO
pnp(3)

1012

PCMCIA(8) PCMCIA(8)

NAME
pcmcia � identify a PCMCIA card

SYNOPSIS
aux/pcmcia [file]

DESCRIPTION
Aux/pcmcia translates the PCMCIA information structure from file (default #y/pcm0attr) into
a readable description and writes it to standard output.

FILES
#y/pcm0attr The attribute memory of the card in the PCMCIA slot.

SOURCE
/sys/src/cmd/aux/pcmcia.c

1013

PEM(8) PEM(8)

NAME
pemdecode, pemencode � encode files in Privacy Enhanced Mail (PEM) format

SYNOPSIS
auth/pemdecode section [file]

auth/pemencode section [file]

DESCRIPTION
PEM is a textual encoding for binary data originally used by the Privacy Enhanced Mail program but
now commonly used for other applications, notably TLS. PEM encodes data in base 64 (see
encode(2)) between lines of the form:

−−−−−BEGIN SECTION−−−−−
−−−−−END SECTION−−−−−

where SECTION may be any string describing the encoded data. The most common use of PEM
format on Plan 9 is for encoding X.509 certificates; see rsa(8).

Pemdecode extracts the named section and writes the decoded data to standard output.

Pemencode encodes its standard input, labels it as a section, and writes it to standard output.

EXAMPLES
Encode and decode a simple greeting:

% echo hello world |
auth/pemencode GREETING

−−−−−BEGIN GREETING−−−−−
aGVsbG8gd29ybGQK
−−−−−END GREETING−−−−−
% echo hello world |

auth/pemencode GREETING |
auth/pemdecode GREETING

hello world
%

SOURCE
/sys/src/cmd/auth

SEE ALSO
rsa(8)

1014

PING(8) PING(8)

NAME
ping, gping, traceroute, hogports � probe the Internet

SYNOPSIS
ip/ping [−6aflqr] [−i interval] [−n count] [−s size] [−w waittime] destination

ip/gping [−r] [−l] [−i interval] destination [destination ...]

ip/traceroute [−dn][−a n][−h nbuck][−t sttl] dest

ip/hogports [mtpt/]proto!address!startport[−endport]

DESCRIPTION
Ping sends ICMP echo request messages to a system. It can be used to determine the network
delay and whether or not the destination is up. By default, a line is written to standard output for
each request. If a reply is received the line contains the request id (starting at 0 and increment
ing), the round trip time for this request, the average round trip time, and the time to live in the
reply packet. If no reply is received the line contains the word "lost", the request id, and the aver
age round trip time.

If a reply is received for each request, ping returns successfully. Otherwise it returns an error sta
tus of "lost messages".

The options are:

6 force the use of IPv6�s ICMP, icmpv6, instead of IPv4�s ICMP. Ping tries to determine
which version of IP to use automatically.

a adds the IP source and destination addresses to each report.

f send messages as fast as possible (flood).

i sets the time between messages to be interval milliseconds, default 1000 ms.

l causes only lost messages to be reported.

n requests that a total of count messages be sent, default 32.

q suppresses any output (i.e. be quiet).

r randomizes the delay with a minimum extra delay of 0 ms and a maximum extra delay of
the selected interval.

s sets the length of the message to be size bytes, ICMP header included. The size cannot be
smaller than 32 or larger than 8192. The default is 64.

w sets the additional time in milliseconds to wait after all packets are sent.

Gping is a ping with a graphical display. It presents separate graphs for each destination specified.

The options are:

r display round trip time in seconds. This is the default.

l display percentage of lost messages. A message is considered lost if not replied to in 10
seconds. The percentage is an exponentially weighted average.

i sets the time between messages to be interval milliseconds, default 5000 ms.

Graphs can be dropped and added using the button 3 menu. Clicking button 1 on a datapoint dis
plays the value of the datapoint and the time it was recorded.

Traceroute displays the IP addresses and average round trip times to all routers between the
machine it is run on and dest. It does this by sending packets to dest with increasing times to live
(TTL) in their headers. Each router that a packet expires at replies with an ICMP warning message.
The options are:

d print debugging to standard error

n just print out IP numbers, don�t try to look up the names of the routers.

a make n attempts at each TTL value (default 3).

t set the starting TTL value to sttl (default 1).

1015

PING(8) PING(8)

h print out a histogram of times from request to response at each TTL value. The histogram
contains nbuck buckets.

Hogports announces on a range of ports to keep them from other processes. For example, to keep
anyone from making a vncserver visible on the network mounted at /net.alt:

ip/hogports /net.alt/tcp!*!5900−5950

SOURCE
/sys/src/cmd/ip/ping.c
/sys/src/cmd/ip/gping.c
/sys/src/cmd/ip/traceroute.c
/sys/src/cmd/ip/hogports.c

SEE ALSO
ip(3)

1016

PLAN9.INI(8) PLAN9.INI(8)

NAME
plan9.ini � configuration file for PCs

SYNOPSIS
none

DESCRIPTION
When booting Plan 9 on a PC, the bootloader program 9boot(8) first reads configuration informa
tion from a file on the boot media. This file, plan9.ini, looks like a shell script containing lines
of the form

name=value

each of which defines a kernel or device parameter.

Blank lines and Carriage Returns (\r) are ignored. # comments are ignored, but are only recog
nised if # appears at the start of a line.

For devices, the generic format of value is

type=TYPE [port=N] [irq=N] [mem=N] [size=N] [dma=N] [ea=N]

specifying the controller type, the base I/O port of the interface, its interrupt level, the physical
starting address of any mapped memory, the length in bytes of that memory, the DMA channel,
and for Ethernets an override of the physical network address. Not all elements are relevant to all
devices; the relevant values and their defaults are defined below in the description of each device.

The file is used by the kernel to configure the hardware available. The information it contains is
also passed to the boot process, and subsequently other programs, as environment variables (see
boot(8)). However, values whose names begin with an asterisk * are used by the kernel and are not
converted into environment variables.

The following sections describe how variables are used.

ETHERNET
etherX=value

This defines an Ethernet interface. X, a unique monotonically increasing number beginning at 0,
identifies an Ethernet card to be probed at system boot. Probing stops when a card is found or
there is no line for etherX+1. After probing as directed by the etherX lines, any remaining
Ethernet cards that can be automatically detected are added. Almost all cards can be automatically
detected. For debugging purposes, automatic probing can be disabled by specifying the line
*noetherprobe=.

Some cards are software configurable and do not require all options. Unspecified options default
to the factory defaults.

Known TYPEs are

igbe The Intel 8254X Gigabit Ethernet controllers, as found on the Intel PRO/1000 adapters
for copper (not fiber). Completely configurable.

igbepcie
The Intel 8256[36], 8257[12], and 82573[ev] Gigabit Ethernet PCI-Express controllers.
Completely configurable.

rtl8169 The Realtek 8169 Gigabit Ethernet controller. Completely configurable.

ga620 Netgear GA620 and GA620T Gigabit Ethernet cards, and other cards using the Alteon
Acenic chip such as the Alteon Acenic fiber and copper cards, the DEC DEGPA-SA and
the SGI Acenic. Completely configurable.

dp83820 National Semiconductor DP83820-based Gigabit Ethernet adapters, notably the D-Link
DGE-500T. Completely configurable.

vgbe The VIA Velocity Gigabit Ethernet controller. Known to drive the VIA8237 (ABIT AV8),
but at 100Mb/s full-duplex only.

m10g The Myricom 10-Gigabit Ethernet 10G-PCIE-8A controller. Completely configurable.
Can�t boot through these due to enormous firmware loads.

1017

PLAN9.INI(8) PLAN9.INI(8)

i82598 The Intel 8259[89] 10-Gigabit Ethernet PCI-Express controllers. Completely config
urable.

i82557 Cards using the Intel 8255[789] Fast Ethernet PCI Bus LAN Controller such as the Intel
EtherExpress PRO/100B. Completely configurable, no options need be given. If you
need to force the media, specify one of the options (no value) 10BASE−T,
10BASE−2, 10BASE−5, 100BASE−TX, 10BASE−TFD, 100BASE−TXFD,
100BASE−T4, 100BASE−FX, or 100BASE−FXFD. Completely configurable.

2114x Cards using the Digital Equipment (now Intel) 2114x PCI Fast Ethernet Adapter Con
troller, for example the Netgear FA310. Completely configurable, no options need be
given. Media can be specified the same was as for the i82557. Some cards using the
PNIC and PNIC2 near-clone chips may also work.

83815 National Semiconductor DP83815-based adapters, notably the Netgear FA311, Netgear
FA312, and various SiS built-in controllers such as the SiS900. On the SiS controllers,
the Ethernet address is not detected properly; specify it with an ea= attribute. Com
pletely configurable.

rtl8139 The Realtek 8139 Fast Ethernet controller. Completely configurable.

vt6102 The VIA VT6102 Fast Ethernet Controller (Rhine II).

smc91cxx
SMC 91cXX chip-based PCMCIA adapters, notably the SMC EtherEZ card.

elnk3 The 3COM Etherlink III series of cards including the 5x9, 59x, and 905 and 905B.
Completely configurable, no options need be given. The media may be specified by
setting media= to the value 10BaseT, 10Base2, 100BaseTX, 100BaseFX, aui,
and mii. If you need to force full duplex, because for example the Ethernet switch
does not negotiate correctly, just name the word (no value) fullduplex or
100BASE−TXFD. Similarly, to force 100Mbit operation, specify force100. Port
0x110 is used for the little ISA configuration dance.

3c589 The 3COM 3C589 series PCMCIA cards, including the 3C562 and the 589E. There is no
support for the modem on the 3C562. Completely configurable, no options need be
given. Defaults are

port=0x240 irq=10
The media may be specified as media=10BaseT or media=10Base2.

ec2t The Linksys Combo PCMCIA EthernetCard (EC2T), EtherFast 10/100 PCMCIA cards
(PCMPC100) and integrated controllers (PCM100), the Netgear FA410TX 10/100 PCM
CIA card and the Accton EtherPair-PCMCIA (EN2216). Completely configurable, no
options need be given. Defaults are

port=0x300 irq=9
These cards are NE2000 clones. Other NE2000 compatible PCMCIA cards may be tried
with the option

id=string
where string is a unique identifier string contained in the attribute memory of the
card (see pcmcia(8)); unlike most options in plan9.ini, this string is case-sensitive.
The option dummyrr=[01] can be used to turn off (0) or on (1) a dummy remote
read in the driver in such cases, depending on how NE2000 compatible they are.

ne2000 Not software configurable iff ISA; PCI clones or supersets are software configurable;
includes the Realtek 8029 clone used by Parallels. 16-bit card. Defaults are

port=0x300 irq=2 mem=0x04000 size=0x4000
The option (no value) nodummyrr is needed on some (near) clones to turn off a
dummy remote read in the driver.

amd79c970
The AMD PCnet PCI Ethernet Adapter (AM79C970). (This is the Ethernet adapter used
by VMware.) Completely configurable, no options need be given.

wd8003 Includes WD8013 and SMC Elite and Elite Ultra cards. There are varying degrees of soft
ware configurability. Cards may be in either 8-bit or 16-bit slots. Defaults are

port=0x280 irq=3 mem=0xD0000 size=0x2000
BUG: On many machines only the 16 bit card works.

1018

PLAN9.INI(8) PLAN9.INI(8)

bcm Broadcom BCM57xx Gigabit Ethernet controllers. Completely configurable, no options
need be given.

yuk Marvell 88e8057 Yukon2 Gigabit Ethernet controller. Completely configurable, no
options need be given.

virtio Virtual Ethernet interface provided by QEMU/KVM and VirtualBox. No options need be
given. The MAC address can be changed with the ea= option.

sink A /dev/null for Ethernet packets � the interface discards sent packets and never
receives any. This is used to provide a test bed for some experimental Ethernet bridg
ing software.

wavelan Lucent Wavelan (Orinoco) IEEE 802.11b and compatible PCMCIA cards. Compatible
cards include the Dell TrueMobile 1150 and the Linksys Instant Wireless Network PC
Card. Port and IRQ defaults are 0x180 and 3 respectively.

These cards take a number of unique options to aid in identifying the card correctly on
the 802.11b network. The network may be ad hoc or managed (i.e. use an access
point):

mode=[adhoc, managed]
and defaults to managed . The 802.11b network to attach to (managed mode) or iden
tify as (ad hoc mode), is specified by

essid=string
and defaults to a null string. The card station name is given by

station=string
and defaults to Plan 9 STA. The channel to use is given by

channel=number
where number lies in the range 1 to 16 inclusive; the channel is normally negotiated
automatically.

If the card is capable of encryption, the following options may be used:
crypt=[off, on]

and defaults to on.
keyN=string

sets the encryption key N (where N is in the range 1 to 4 inclusive) to string; this will
also set the transmit key to N (see below). There are two formats for string which
depend on the length of the string. If it is exactly 5 or 13 characters long it is
assumed to be an alphanumeric key; if it is exactly 10 or 26 characters long the key is
assumed to be in hex format (without a leading 0x). The lengths are checked, as is the
format of a hex key.

txkey=number
sets the transmit key to use to be number in the range 1 to 4 inclusive. If it is desired
to exclude or include unencrypted packets

clear=[off, on]
configures reception and defaults to inclusion.

The defaults are intended to match the common case of a managed network with
encryption and a typical entry would only require, for example

essid=left−armpit key1=afish key2=calledraawaru
if the port and IRQ defaults are used. These options may be set after boot by writing
to the device�s ctl file using a space as the separator between option and value, e.g.

echo ’key2 1d8f65c9a52d83c8e4b43f94af’ >/net/ether0/0/ctl

Card-specific power management may be enabled/disabled by
pm=[on, off]

wavelanpci
PCI Ethernet adapters that use the same Wavelan programming interface. Currently the
only tested cards are those based on the Intersil Prism 2.5 chipset.

iwl Intel Wireless WiFi Link mini PCI-Express adapters require firmware from
http://firmware.openbsd.org/firmware/*/iwn−firmware*.tgz to
be present on attach in /lib/firmware or /boot. To limit the selected APs the
options essid= and bssid= may be set at boot or in the ether interface clone file

1019

PLAN9.INI(8) PLAN9.INI(8)

using a space as the separator between option and value, e.g.
echo essid left−armpit >/net/ether1/clone

Scan results appear in the ifstats file and can be read out like:
cat /net/ether1/ifstats

Ad-hoc mode or WEP encryption is currently not supported.

rt2860 Ralink Technology PCI/PCI-Express wireless adapters require firmware from
http://firmware.openbsd.org/firmware/*/ral−firmware*.tgz to
be present on attach in /lib/firmware or /boot. See iwl section above for con
figuration details.

wpi Intel PRO Wireless 3945abg PCI/PCI-Express wireless adapters require firmware from
http://firmware.openbsd.org/firmware/*/wpi−firmware*.tgz to
be present on attach in /lib/firmware or /boot. See iwl section above for con
figuration details.

wpapsk=password
WPA/WPA2 encryption is detected automatically and a prompt for the password will appear when
using the WIFI interface for netbooting. To avoid the prompt, the password can be specified with
the boot parameter above.

nora6=
Disable automatic IPv6 configuration from incoming router advertisements.

DISKS, TAPES
(S)ATA controllers are autodetected.

*nodma=
disables dma on ata devices.

*sdXXdma=on
explicitly enables dma on a specific ata device.

scsiX=value
This defines a SCSI interface which cannot be automatically detected by the kernel.

Known TYPEs are

aha1542
Adaptec 154x series of controllers (and clones). Almost completely configurable, only the

port=0x300
option need be given.

NCR/Symbios/LSI-Logic 53c8xx-based adapters and Mylex MultiMaster (Buslogic BT-*) adapters
are automatically detected and need no entries.

By default, the NCR 53c8xx driver searches for up to 32 controllers. This can be changed by set
ting the variable *maxsd53c8xx.

By default the Mylex driver resets SCSI cards by using both the hard reset and SCSI bus reset flags
in the driver interface. If a variable *noscsireset is defined, the SCSI bus reset flag is omitted.

aoeif=list
This specifies a space-separated list of Ethernet interfaces to be bound at boot to the ATA-over-
Ethernet driver, aoe(3). For example, aoeif=ether0 ether1. Only interfaces on this list will
initially be accessible via AoE.

aoedev=e!#æ/aoe/shelf.slot
This specifies an ATA-over-Ethernet device accessible via the interfaces named in aoeif on AoE
shelf and slot to use as a root device for bootstrapping.

ramdiskX=size
ramdiskX=size sectorsize
ramdiskX=address size sectorsize

This reserves physical memory as a ramdisk that will appear as sd(3) device sdZX. When the
address argument is omited or zero, then the ramdisk will be allocated from the top of physical
memory.

AUDIO

1020

PLAN9.INI(8) PLAN9.INI(8)

audioX=value
This defines a sound interface. PCI based audio devices such as Intel HD audio or AC97 are
autodetected and do not require any settings.

Known types are

hda Intel HD audio.

ac97 AC97 based card.

sb16 Sound Blaster 16.

ess1688 A Sound Blaster clone.

The DMA channel may be any of 5, 6, or 7. The defaults are

port=0x220 irq=7 dma=5

UARTS
Plan 9 automatically configures COM1 and COM2, if found, as eia0 (port 0x3F8, IRQ4) and eia1
(port 0x2F8, IRQ3) respectively. These devices can be disabled by adding a line:

eiaX=disabled

This is typically done in order to reuse the IRQ for another device.

Additional i8250 (ISA) uarts (uart2 to uart5) can be configured using:

uartX=type=isa port=port irq=irq

Perle PCI-Fast4, PCI-Fast8, and PCI-Fast16 controllers are automatically detected and need no con
figuration lines.

The line serial=type=com can be used to specify settings for a PCMCIA modem.

kbmap=value
This specifies the keyboard map to use. Value can be a map file found in /sys/lib/kbmap on
the ramdisk.

For example:

kbmap=colemak

mouseport=value
This specifies where the mouse is attached. Value can be a map file found in /sys/lib/kbmap
on the ramdisk.

ps2 the PS2 mouse/keyboard port. The BIOS setup procedure should be used to configure the
machine appropriately.

ps2intellimouse
an Intellimouse on the PS2 port.

0 for COM1

1 for COM2

modemport=value
Picks the UART line to call out on. This is used when connecting to a file server over an async line.
Value is the number of the port.

console=value params
This is used to specify the console device. The default value is cga; a number 0 or 1 specifies
COM1 or COM2 respectively. A serial console is initially configured with the uart(3) configuration
string b9600 l8 pn s1, specifying 9600 baud, 8 bit bytes, no parity, and one stop bit. If params
is given, it will be used to further configure the uart. Notice that there is no = sign in the params
syntax. For example,

console=0 b19200 po

would use COM1 at 19,200 baud with odd parity.

The value net specifies ��netconsole�� which sends console messages as UDP packets over the net
work. It bypasses the IP stack and writes Ethernet packets directly to the NIC. In this case params
is mandatory and takes the form

1021

PLAN9.INI(8) PLAN9.INI(8)

srcip [!srcport] [/devno] , dstip [!dstport] [/dstmac]

Srcip, srcport (default 6665), dstip and dstport (default 6666) specify the source IP address, source
port, destination IP address and destination port, respectively. Devno (default 0) specifies which
NIC to use, a value of n corresponds to NIC at #ln (see ether(3)). Dstmac specifies the destination
MAC address; broadcast packets are sent if it is unspecified. Note that it is possible, but not rec
ommended, to send packets to a host outside the local network by specifying the MAC address of
the gateway as dstmac. Example lines are

console=net 192.168.0.4,192.168.0.8
console=net 192.168.2.10!1337/1,192.168.2.3!1337/0ea7deadbeef

PC CARD
pccard0=disabled

Disable probing for and automatic configuration of PC card controllers.

pcmciaX=type=XXX irq=value
If the default IRQ for the PCMCIA is correct, this entry can be omitted. The value of type is
ignored.

pcmcia0=disabled
Disable probing for and automatic configuration of PCMCIA controllers.

BOOTING
bootfile=value

This is used to direct the actions of 9boot(8) by naming the file from which to load the kernel in
the current BIOS boot device.

bootargs=value
The value of this variable is passed to boot(8) by the kernel as the name of the root file system to
automatically mount and boot into. It is typically used to specify additional arguments to pass to
cwfs(4) or ipconfig(8). For example, if the system is to run from a local cwfs(4) partition, the defini
tion might read bootargs=local!/dev/sdC0/fscache. See boot(8) for more.

nobootprompt=value
Suppress the bootargs prompt and use value as the answer instead.

rootdir=/root/dir
rootspec=spec

Changes the mount arguments for the root file server that was specified by bootargs above. By
changing dir in $rootdir, a different sub-directory on the root file server can be used as the
system root. see boot(8) for details.

user=value
Suppress the user prompt and use value as the answer instead.

service=value
Changes the systems default role. Possible settings for value are cpu and terminal.

debugfactotum=
Causes boot(8) to start factotum with the −p option, so that it can be debugged.

cfs=value
This gives the name of the file holding the disk partition for the cache file system, cfs(4). Extend
ing the bootargs example, one would write cfs=#S/sdC0/cache.

bootdisk=value
This deprecated variable was used to specify the disk used by the cache file system and other
disk-resident services. It is superseded by bootargs and cfs.

fs=address
auth=address
secstore=address

These specify the network address (IP or domain name) of the file, authentication and secstore
server to use when mounting a network-provided root file system. When not specified, then these
settings are determined via DHCP. When secstore is not specified, then the authentication
server is used.

1022

PLAN9.INI(8) PLAN9.INI(8)

PROCESSOR
*e820=type 0xstart 0xend ...

This variable is automatically generated by the boot loader (see 9boot(8)) by doing a BIOS E820
memory scan while still in realmode and passed to the kernel. The format is a unordered list of
decimal region type and hexadecimal 64-bit start and end addresses of the area.

*maxmem=value
This defines the maximum physical address that the system will scan when sizing memory. By
default the PC operating system will scan up to 3.75 gigabytes (0xF0000000, the base of kernel
virtual address space), but setting *maxmem will limit the scan. *maxmem must be less than 3.75
gigabytes. This variable is not consulted if using the E820 memory map.

*kernelpercent=value
This defines what percentage of available memory is reserved for the kernel allocation pool. The
remainder is left for user processes. The default value is 30 on CPU servers, 60 on terminals with
less than 16MB of memory, and 40 on terminals with memories of 16MB or more. Terminals use
more kernel memory because draw(3) maintains its graphic images in kernel memory. This depre
cated option is rarely necessary in newer kernels.

*imagemaxmb=value
This limits the maximum amount of memory (in megabytes) the graphics image memory pool can
grow. The default is unlimited for terminals and cpu servers.

*noavx=
Disables AVX and AVX2 on AMD64 CPUs.

*nomce=
If machine check exceptions are supported by the processor, then they are enabled by default.
Setting *nomce causes them to be disabled even when available.

*nomp=
A multiprocessor machine will enable all processors by default. Setting *nomp restricts the kernel
to starting only one processor and using the traditional interrupt controller.

*ncpu=value
Setting *ncpu restricts the kernel to starting at most value processors.

*apicdebug=
Prints a summary of the multiprocessor APIC interrupt configuration.

*nomsi=
Disables message signaled interrupts for PCI devices. This option has no effect when *nomp is
set.

*nomtrr=
Disables memory type range register (MTRR) support when set. (debug)

*notsc=
Disables the use of the per processor timestamp counter registers as high resolution clock.

*nohpet=
Disables the HPET timer to be used as the high resolution clock.

*pcimaxbno=value
This puts a limit on the maximum bus number probed on a PCI bus (default 7). For example, a
value of 1 should suffice on a �standard� motherboard with an AGP slot. This, and *pcimaxdno
below are rarely used and only on troublesome or suspect hardware.

*pcimaxdno=value
This puts a limit on the maximum device number probed on a PCI bus (default 31).

*nopcirouting=
Disable pci routing during boot. May solve interrupt routing problems on certain machines.

*pcihinv=
Prints a summary of the detected PCI busses and devices.

*nodumpstack=
Disable printing a stack dump on panic. Useful if there is only a limited cga screen available, oth
erwise the textual information about the panic may scroll off.

1023

PLAN9.INI(8) PLAN9.INI(8)

ioexclude=value
Specifies a list of ranges of I/O ports to exclude from use by drivers. Ranges are inclusive on both
ends and separated by commas. For example:

ioexclude=0x330−0x337,0x430−0x43F

umbexclude=value
Specifies a list of ranges of UMB to exclude from use by drivers. Ranges are inclusive on both ends
and separated by commas. For example:

umbexclude=0xD1800−0xD3FFF

*acpi=value
The presence of this option enables ACPI and the export of the #P/acpitbls file in arch(3)
device. In multiprocessor mode, the kernel will use the ACPI tables to configure APIC interrupts
unless a value of 0 is specified.

apm0=
This enables the ��advanced power management�� interface as described in apm(3) and apm(8).
The main feature of the interface is the ability to watch battery life (see stats(8)). It is not on by
default because it causes problems on some laptops.

USB
*nousbprobe=

Disable USB host controller detection.

*nousbohci=
*nousbuhci=
*nousbehci=
*nousbxhci=

Disable specific USB host controller types.

nousbrc=
Disable nusbrc(8) startup at boot time.

nousbhname=
When defined, nusbrc(8) will use the dynamically assigned usb device address to name usb devices
instead of the device unique name.

VIDEO
monitor=value
vgasize=value

These are used not by the kernel but by termrc (see cpurc(8)) when starting vga(8). If value is set
to ask then the user is prompted for a choice on boot.

*bootscreen=value
This is used by the kernel to attach a pre-initialized linear framebuffer that was setup by the boot
loader or firmware. The value has four space separated fields: the resolution and bitdepth of the
screen, the color channel descriptor, the physical address of the framebuffer and a optional aper
ture size.

*bootscreen=800x600x32 x8r8g8b8 0x80000000 0x001d4c00

*dpms=value
This is used to specify the screen blanking behavior of the MGA4xx video driver. Values are
standby, suspend, and off. The first two specify differing levels of power saving; the third
turns the monitor off completely.

NVRAM
nvram=file
nvrlen=length
nvroff=offset

This is used to specify an nvram device and optionally the length of the ram and read/write offset
to use. These values are consulted by readnvram (see authsrv(2)). The most common use of the
nvram is to hold a secstore(1) password for use by factotum(4).

nvr=value
This is used by the WORM file server kernel to locate a file holding information to configure the file
system. The file cannot live on a SCSI disk. The default is fd!0!plan9.nvr (sic), unless
bootfile is set, in which case it is plan9.nvr on the same disk as bootfile. The syntax is

1024

PLAN9.INI(8) PLAN9.INI(8)

either fd!unit!name or hd!unit!name where unit is the numeric unit id. This variant syntax is
a vestige of the file server kernel�s origins.

EXAMPLES
A representative plan9.ini:

% cat /n/9fat:/plan9.ini
ether0=type=3C509
mouseport=ps2
modemport=1
serial0=type=generic port=0x3E8 irq=5
monitor=445x
vgasize=1600x1200x8
bootfile=/386/9pc
%

SEE ALSO
9boot(8), booting(8), boot(8)

1025

POP3(8) POP3(8)

NAME
pop3, imap4d � Internet mail servers

SYNOPSIS
upas/pop3 [−d debugfile][−a mailbox][−r peeraddr][−t tlscertfile][−p]

upas/imap4d [−acpv] [−d smtpdomain] [−s servername]

DESCRIPTION
These programs support remote access to mail across the Internet. All expect the network connec
tion to be standard input, output, and error. They are normally started from scripts in
/rc/bin/service (see listen(8)).

Pop3 provides access to a user�s mailboxes via the POP3 protocol. The options are:

−d create debugfile and write debugging output to it

−a causes pop3 to assume that it already authenticated and to read mailbox immediately

−r causes pop3 to create the file /mail/ratify/trusted/peeraddr#32 to allow subse
quent SMTP sessions from that address. See ratfs(4) for details.

−t get the local TLS certificate from the file tlscertfile.

−p allow passwords in the clear for authenticating the connection

Imap4d provides access to a user�s mailboxes via the IMAP4rev1 protocol. Only files rooted in
/mail/box/username/ are accessible. The list of subscribed mailboxes is contained in
/mail/box/username/imap.subscribed, and initially contains only INBOX, IMAP�s name
for the user�s mailbox. A shadow file, mailbox.imp, is created for each mailbox examined.

Imap4d�s options are:

−a Assume the user is already authenticated. By default, the user must authenticate using
CRAM-MD5 or securenet(8) challenge/response authentication.

−c Allow plan 9 challenge response authentication.

−p Allow login authentication. This option should only be enabled for servers using an encrypted
connection, such as SSL, and when enabled, all non-encrypted connections should be disal
lowed. Imap4d does not enforce this policy.

−v Turn on verbose output to the debug file.

−s The server�s name. If none is provided, cs (see ndb(8)) is queried or /env/sysname is
used.

−d The local mail domain. Defaults to the server /env/site in the mail server�s domain.

For both imap4d and pop3, the password used to authenticate the connection is the APOP secret
held by keyfs(4) running on the authentication server.

FILES
/sys/log/imap4d debugging output
/mail/box/username/mailbox
/mail/box/username/mailbox.imp
/mail/box/username/imap.subscribed

SOURCE
/sys/src/cmd/upas/pop3
/sys/src/cmd/upas/imap4d

SEE ALSO
aliasmail(8), faces(1), filter(1), mail(1), marshal(1), mlmgr(1), nedmail(1), qer(8), rewrite(6),
send(8), upasfs(4)

BUGS
Usually messages flagged for deletion with DELE are not actually deleted until the client sends a
QUIT command to end the conversation. Pop3 implements a non-standard command SYNC that
deletes messages flagged for deletion without ending the conversation.

1026

PPP(8) PPP(8)

NAME
ppp, pppoe, pptp, pptpd � point-to-point protocol

SYNOPSIS
ip/ppp [−CPSacdfu] [−b baud] [−k keyspec] [−m mtu] [−M chatfile] [−p dev] [−x
netmntpt] [−t modemcmd] [local [remote]]

ip/pppoe [−PdcC] [−A acname] [−S srvname] [−k keyspec] [−m mtu] [−b baud] [−x
pppnetmntpt] [ether]

ip/pptp [−dP] [−k keyspec] [−w window] [−x pppnetmntpt] server

ip/pptpd [−d] [−p pppnetmtpt] [−w window] [−D fraction] tcp−dir

DESCRIPTION
The Point-to-Point Protocol is used to encapsulate Internet Protocol packets in IPv4 packets for
transfer over serial lines or other protocol connections. Ppp can run either as a client or, with the
�S option, as a server. The only differences between a client and a server is that the server will not
believe any local address the client tries to supply it and that the server always initiates the authen
tication of the client.

With no option, ppp communicates with the remote system via standard input and output. This is
useful if a program wants to use ppp in a communications stream. However, the normal mode is
to specify a communications device, usually a serial line with a modem.

Ppp supports the following options:

a as server, don�t request authentication from the client

b set the baud rate on the communications device

c disallow packet compression

C disallow IP header compression

f make PPP add HDLC framing. This is necessary when using PPP over a serial line or a TCP con
nection

k add keyspec to the factotum(4) key pattern when looking for a user name and password for
authentication.

m set the maximum transfer unit (default 1450)

M chat with the modem as specified in the chat file. Each line in the chat file contains a string that
is transmitted to the modem and the response expected (e.g. �AT� �OK�)

P use this as the primary IP interface; set the default route through this interface and write its
configuration to /net/ndb

p communicate over dev instead of standard I/O

S run as a server

t before starting the PPP protocol, write modemcmd to the device

u before starting the PPP protocol with the remote end, shuttle bytes between the device and
standard I/O until an EOF on standard input. This allows a user to start ppp and then type com
mands at a modem before ppp takes over

x use the IP stack mounted at netmntpt

If both the local and remote addresses are specified, don�t ask the other end for either or believe it
if it supplies one. If either is missing, get it from the remote end.

Pppoe is a PPP over ethernet (PPPoE) client. It invokes ppp to start a PPP conversation which is tun
neled in PPPoE packets on the ethernet device mounted at etherdir (default /net/ether0). The
pppoe-specific options are:

A insist on an access concentrator named acname during PPPoE discovery

d write debugging output to standard error, and pass −d to ppp

S insist on a service named srvname during PPPoE discovery

1027

PPP(8) PPP(8)

The other options are relayed to ppp.

Pptp is a client for a PPTP encrypted tunnel. Server is the name of the server to dial. Pptp takes
the same options as pppoe, except for the lack of a −m option and the addition of a −w option.
The −w option specifies the local send window size (default 16) in packets.

Pptpd is the server side of a PPTP encrypted tunnel. Tcpdir is the directory of a TCP connection to
the client. The TCP connection is used to control the tunnel while packets are sent back and forth
using PPP inside of GRE packets. The options are:

d write debugging output to standard error.

D drop fraction of the received packets. This is used for testing.

p use the IP stack mounted at pppnetmtpt to terminate the PPP connection.

w set the receive window to window.

SOURCE
/sys/src/cmd/ip/ppp
/sys/src/cmd/ip/pptpd.c
/sys/src/cmd/ip/pppoe.c

SEE ALSO
gre in ip(3)

1028

PREP(8) PREP(8)

NAME
prep, edisk, fdisk, format, mbr � prepare disks, floppies and flashes

SYNOPSIS
disk/prep [−bcfnprw] [−a name]... [−s sectorsize] plan9partition

disk/edisk [−abfprw] [−s sectorsize] disk

disk/fdisk [−abfprw] [−s sectorsize] disk

disk/format [−dfvx] [−b bootblock] [−c csize] [−l label] [−r nresrv] [−t type] disk [
file...]

disk/mbr [−9] [−m mbrfile] disk

DESCRIPTION
A partition table is stored on a hard disk to specify the division of the physical disk into a set of
logical units. On PCs using traditional DOS partition table, the partition entries are stored at the
end of the master boot record of the disk. Partitions of type 0x39 are Plan 9 partitions. EFI sys
tems use GUID partition table (GPT) format where partition types are identied by a 128-bit long
identifiers. The randomly generated GUID C91818F9−8025−47AF−89D2−F030D7000C2C is
used to identify the Plan 9 partition type in this scheme. The names of DOS and GPT partitions are
chosen by convention from the type: dos, plan9, etc. Second and subsequent partitions of the
same type on a given disk are given unique names by appending a number (or a period and a num
ber if the name already ends in a number).

Plan 9 partitions (and Plan 9 disks on non-PCs) are themselves divided, using a textual partition
table, called the Plan 9 partition table, in the second sector of the partition (the first is left for
architecture-specific boot data, such as PC boot blocks). The table is a sequence of lines of the
format part name start end, where start and end name the starting and ending sector. Sector 0
is the first sector of the Plan 9 partition or disk, regardless of its position in a larger disk. Partition
extents do not contain the ending sector, so a partition from 0 to 5 and a partition from 5 to 10 do
not overlap.

The Plan 9 partition often contains a number of conventionally named subpartitions. They include:

9fat A small FAT file system used to hold configuration information (such as plan9.ini
and plan9.nvr) and kernels. This typically begins in the first sector of the partition,
and contains the partition table as a ��reserved�� sector. See the discussion of the −r
option to format.

arenas A venti(8) arenas partition.
bloom A venti(8) bloom-filter partition.
cache A cfs(4) file system cache.
fscache A cwfs(4) worm cache partition.
fsworm A cwfs(4) worm filesystem.
fs A kfs file system.
fscfg A one-sector partition used to store an fs(3) configuration.
isect A venti(8) index section.
nvram A one-sector partition used to simulate non-volatile RAM on PCs.
other A non-archived cwfs(4) file system.
swap A swap(8) swap partition.

Fdisk edits the DOS partition table and is usually invoked with a disk like /dev/sdC0/data as
its argument, while prep edits the Plan 9 partition table and is usually invoked with a disk partition
like /dev/sdC0/plan9 as its argument. Edisk is similar to fdisk but edits the GPT partition
table on EFI systems. Fdisk works in units of disk ��cylinders��: the cylinder size in bytes is printed
when fdisk starts. Prep and edisk works in units of disk sectors, which are almost always 512
bytes. Fdisk, edisk and prep share most of their options:

−a Automatically partition the disk. Fdisk and edisk will create a Plan 9 partition in the largest
unused area on the disk, doing nothing if a Plan 9 partition already exists. Edisk also adds a
EFI system partition (esp) when not already exists. If no other partition on the disk is marked
active (i.e. marked as the boot partition), fdisk will mark the new partition active. Prep�s −a
flag takes the name of a partition to create. (See the list above for partition names.) It can

1029

PREP(8) PREP(8)

be repeated to specify a list of partitions to create. If the disk is currently unpartitioned,
prep will create the named partitions on the disk, attempting to use the entire disk in a sen
sible manner. The partition names must be from the list given above.

−b Start with a blank disk, ignoring any extant partition table.

−p Print a sequence of commands that when sent to the disk device�s ctl file will bring the par
tition table information kept by the sd(3) driver up to date. Then exit. Prep will check to see
if it is being called with a disk partition (rather than an entire disk) as its argument; if so, it
will translate the printed sectors by the partition�s offset within the disk. Since fdisk and
edisk operate on a table of unnamed partitions, they assign names based on the partition
type (e.g., plan9, dos, ntfs, linux, linuxswap) and resolve collisions by appending a
numbered suffix. (e.g., dos, dos.1, dos.2).

−r In the absence of the −p and −w flags, prep, edisk and fdisk enter an interactive partition
editor; the −r flag runs the editor in read-only mode.

−s sectorsize
Specify the disk�s sector size. In the absence of this flag, prep, edisk and fdisk look for a
disk ctl file and read it to find the disk�s sector size. If the ctl file cannot be found, a
message is printed and a sector size of 512 bytes is assumed.

−w Write the partition table to the disk and exit. This is useful when used in conjunction with
−a or −b.

If neither the −p flag nor the −w flag is given, prep, edisk and fdisk enter an interactive partition
editor that operates on named partitions. The DOS partition table distinguishes between primary
partitions, which can be listed in the boot sector at the beginning of the disk, and secondary (or
extended) partitions, arbitrarily many of which may be chained together in place of a primary parti
tion. Primary partitions are named pn, secondary partitions sn. The number of primary partitions
plus number of contiguous chains of secondary partitions cannot exceed four. The GPT partition
table is a fixed array of partition entries (usually 128). Partitions are named pn, where n indexes
the entry in array starting from 1 for the first entry.

The commands are as follows. In the descriptions, read ��sector�� as ��cylinder�� when using fdisk.

a name [start [end]]
Create a partition named name starting at sector offset start and ending at offset end.
The new partition will not be created if it overlaps an extant partition. If start or end are
omitted, the editor will prompt for them. In fdisk and edisk the newly created partition
is of the Plan 9 type; to set a different type, use the t command (q.v.). Start and end
may be expressions using the operators +, −, *, and /, numeric constants, and the
pseudovariables . and $. At the start of the program, . is set to zero; each time a par
tition is created, it is set to the end sector of the new partition. It can also be explicitly
set using the . command. When evaluating start, $ is set to one past the last disk sec
tor. When evaluating end, $ is set to the maximum value that end can take on without
running off the disk or into another partition. Numeric constants followed by k, m, g, or
t (or upper-case equivalents) are scaled to the respective size in kilo-, mega-, giga-, or
tera-bytes. Finally, the expression n% evaluates to (n×disksize)/100. As examples, a
. .+20% creates a new partition starting at . that takes up a fifth of the disk, a .
.+21G creates a new partition starting at . that takes up 21 gigabytes (21×2

30
bytes),

and a 1000 $ creates a new partition starting at sector 1000 and extending as far as
possible.

. newdot Set the value of the variable . to newdot, which is an arithmetic expression as described
in the discussion of the a command.

d name Delete the named partition.

h Print a help message listing command synopses.

p Print the disk partition table. Unpartitioned regions are also listed. The table consists
of a number of lines containing partition name, beginning and ending sectors, and total
size. A ’ is prefixed to the names of partitions whose entries have been modified but
not written to disk. Fdisk adds to the end of each line a textual partition type, and
places a * next to the name of the active partition (see the A command below).

1030

PREP(8) PREP(8)

P Print the partition table in the format accepted by the disk�s ctl file, which is also the
format of the output of the −p option.

w Write the partition table to disk. Prep will also inform the kernel of the changed parti
tion table. The write will fail if any programs have any of the disk�s partitions open. If
the write fails (for this or any other reason), the program will attempt to restore the par
tition table to its former state.

q Quit the program. If the partition table has been modified but not written, a warning is
printed. Typing q again will quit the program.

Fdisk also has the following commands.

A name Set the named partition active. The active partition is the one whose boot block is used
when booting a PC from disk.

t name [type]
Set the partition type. If it is not given, fdisk will display a list of choices and then
prompt for it.

Edisk also has the following commands.

t name [type]
Set the partition type; like fdisk above.

f name [+−attr]
Set or clear partition attributes.

l name [label]
Set the partition label.

Format prepares for use the floppy diskette or hard disk partition in the file named disk, for exam
ple /dev/fd0disk or /dev/sdC0/9fat. The options are:

−f Do not physically format the disc. Used to install a FAT file system on a previously format
ted disc. If disk is not a floppy device, this flag is a no-op.

−t specify a density and type of disk to be prepared. The possible types are:

3½DD 3½" double density, 737280 bytes

3½HD 3½" high density, 1474560 bytes

5¼DD 5¼" double density, 368640 bytes

5¼HD 5¼" high density, 1146880 bytes

hard fixed disk

The default when disk is a floppy drive is the highest possible on the device. When disk is a
regular file, the default is 3½HD. When disk is an sd(3) device, the default is hard.

−d initialize a FAT file system on the disk.

−b use the contents of bootblock as a bootstrap block to be installed in sector 0.

The remaining options have effect only when −d is specified:

−c use a FAT cluster size of csize sectors when creating the FAT.

−l add a label when creating the FAT file system.

−r mark the first nresrv sectors of the partition as ��reserved��. Since the first sector always
contains the FAT parameter block, this really marks the nresrv-1 sectors starting at sector
1 as ��reserved��. When formatting the 9fat partition, −r 2 should be used to jump over
the partition table sector.

Again under −d, any files listed are added, in order, to the root directory of the FAT file system.
The files are contiguously allocated.

Format checks for a number of common mistakes; in particular, it will refuse to format a 9fat
partition unless −r is specified with nresrv larger than two. It also refuses to format a raw sd(3)
partition that begins at offset zero in the disk. (The beginning of the disk should contain an fdisk
partition table with master boot record, not a FAT file system or boot block.) Both checks are

1031

PREP(8) PREP(8)

disabled by the −x option. The −v option prints debugging information.

The file /386/pbs is an example of a suitable bfile to make the disk a boot disk. It gets loaded
by the BIOS at 0x7C00, reads the first sector of the root directory into address 0x7E00, and looks
for a directory entry named 9BOOTFAT. If it finds such an entry, it uses single sector reads to
load the file into address 0x7C00 and then jumps to the loaded file image.

Mbr installs a new boot block in sector 0 (the master boot record) of a disk such as
/dev/sdC0/data. If mbrfile contains more than one sector of �boot block�, the rest will be
copied into the first track of the disk, if it fits. This boot block should not be confused with the
boot block used by format, which goes in sector 0 of a partition. Typically, the boot block in the
master boot record scans the PC partition table to find an active partition and then executes the
boot block for that partition. The partition boot block then loads a bootstrap program such as
9boot(8), which then loads the operating system. If MS-DOS or Windows 9[58] is already installed
on your hard disk, the master boot record already has a suitable boot block. Otherwise,
/386/mbr is an appropriate mbrfile. It detects and uses LBA addressing when available from the
BIOS (the same could not be done in the case of pbs due to space considerations). If the mbrfile
is not specified, a boot block is installed that prints a message explaining that the disk is not boot
able. The −9 option initialises the partition table to consist of one plan9 partition which spans
the entire disc starting at the end of the first track.

EXAMPLES
Initialize the kernel disk driver with the partition information from the FAT boot sectors. If Plan 9
partitions exist, pass that partition information as well.

for(disk in /dev/sd??) {
if(test −f $disk/data && test −f $disk/ctl)

disk/fdisk −p $disk/data >$disk/ctl
for(part in $disk/plan9*)

if(test −f $part)
disk/prep −p $part >$disk/ctl

}

Initialize the blank hard disk /dev/sdC0/data.

disk/mbr −m /386/mbr /dev/sdC0/data
disk/fdisk −baw /dev/sdC0/data
disk/prep −bw −a^(9fat nvram fscache fsworm other swap) /dev/sdC0/plan9
disk/format −b /386/pbs −d −r 2 /dev/sdC0/9fat \

/386/9bootfat /386/9pc /tmp/plan9.ini

FILES
/386/mbr

/386/pbs

SOURCE
/sys/src/cmd/disk/prep
/sys/src/boot/pc

SEE ALSO
floppy(3), sd(3), nusb(4), 9boot(8), partfs(8), diskparts(8)

BUGS
If prep −p doesn�t find a Plan 9 partition table, it will emit commands to delete all extant parti
tions. Similarly, fdisk −p will delete all partitions, including data, if there are no partitions
defined in the MBR.

1032

QER(8) QER(8)

NAME
qer, runq � queue management for spooled files

SYNOPSIS
qer [−q subdir] [−f file] root tag reply args
runq [−adER] [−f file] [−q subdir] [−t time] [−r nfiles] [−n njobs] root cmd

DESCRIPTION
Qer creates a control and a data file in a queue directory. The control file contents consist of the
tag, reply, and args separated by spaces. The data file contains the standard input to qer. The
files are created in the directory root/subdi The names of the control and data files differ only in
the first character which is �C� and �D� respectively. Mktemp(2) is used to create the actual names
of the control and data file.

Some commands, such as fax (see telco(4)), must queue more files than just the data file. Each file
following a �f flag is copied into the queue directory. The names of the copies differ from the
name of the data file only in the first character. The first one starts with �F�, the second �G�, etc.

Qer takes the following arguments:

−q subdir
Specifies the queue subdirectory to use. If unspecified, the contents of /dev/user are
used.

−f file
Specifies the files to copy into the queue directory, in the manner described above.

Runq processes the files queued by qer. Runq processes all requests in the directory root/subdir,
where subdir is the argument to −q if present, else the contents of /dev/user. Each request is
processed by executing the command cmd with the contents of the control file as its arguments,
the contents of the data file as its standard input, and standard error appended to the error file
E.XXXXXX.

The action taken by runq depends on the return status of cmd. If cmd returns a null status, the
processing is assumed successful and the control, data, and error files are removed. If cmd
returns an error status containing the word Retry, the files are left to be reprocessed at a later
time. For any other status, an error message is mailed to the requester and the files are removed.
Runq uses the reply field in the control file as a mail address to which to send an error notification.
The notification contains the contents of the control file to identify the failed request.

To avoid reprocessing files too often, the following algorithm is used: a data file younger than one
hour will not be processed if its error file exists and was last modified within the preceding 10
minutes. A data file older than one hour will not be processed if its error file exists and was last
modified within the preceding hour.

The following flags are accepted by runq:

−a Causes runq to process all user directories in sequence, instead of only the directory of the
current user.

−E Causes all files to be reprocessed regardless of the file times.

−R Instructs runq never to give up on a failed queue job, instead leaving it in the queue to be
retried.

−d Causes debugging output on standard error describing the progress through the queues.

−t Specifies the number of hours that retries will continue after a send failure. The default is
48 hours.

−r Limits the number of files that are processed in a single pass of a queue. Runq accumu
lates the entire directory containing a queue before processing any files. When a queue
contains many files and the system does not have enough memory, runq exits without
making progress. This flag forces runq to process the directory in chunks, allowing the
queue to be drained incrementally. It is most useful in combination with the −q flag.

−n Specifies the number of queued jobs that are processed in parallel from the queue; the
default is 1. This is useful for a large queue to be processed with a bounded amount of

1033

QER(8) QER(8)

parallelism.

Runq is often called from cron(8) by an entry such as

0,10,20,30,40,50 * * * * kremvax
/bin/upas/runq −a /mail/queue /mail/lib/remotemail

The entry must be a single line; it is folded here only so it fits on the page.

FILES
root/user queue directory for user
root/user/D.XXXXXX data file
root/user/C.XXXXXX control file
root/user/E.XXXXXX error file
root/user/[F−Z].XXXXXX secondary data files

SOURCE
/sys/src/cmd/upas/q

SEE ALSO
mail(1)

1034

RC-HTTPD(8) RC-HTTPD(8)

NAME
rc-httpd � HTTP server

SYNOPSIS
rc−httpd/rc−httpd

DESCRIPTION
Rc−httpd serves the requested file or an index of files found under a website�s root directory, or, in
the case of CGI, executes a specified CGI program.

CONFIGURATION
As all pieces of rc−httpd are shell scripts, configuration is achieved by setting variables and
adding, removing or modifying commands in various files.

rc−httpd

rc_httpd_dir must be set to the root of the rc-httpd installation, the directory containing the rc-
httpd script.

path must include rc_httpd_dir/handlers ahead of the base system�s path elements.

cgi_path is substituted for path when cgi scripts are run. (Be sure to set path back in rc-based cgi
scripts.)

extra_headers is an optional list of strings to emit when sending http headers.

SERVER_PORT is the port HTTP is to be served on.

select−handler

PATH_INFO is the location relative to the website�s root directory of the file to be displayed. Typi
cally, the location from the incoming request is honored.

FS_ROOT sets the root directory of the website.

NOINDEXFILE instructs the dir−index module not to look for index.html files, otherwise if
an index.html file is found dir−index will exec serve−static to serve the file. At pre
sent there is no module to serve an index file but not a directory.

If you do not want directory indexing at all, replace static−or−index with serve−static,
which will report 503 forbidden for directories.

Multiple virtual hosts may be configured by creating conditional statements that act upon the
SERVER_NAME variable. Fine-grained control of specific request strings may be configured via a
similar method acting upon the location and/or other variables.

EXAMPLES
The following examples demonstrate possible ways to configure select−handler.

Serve static files:
if(~ $SERVER_NAME 9front.org){

PATH_INFO=$location
FS_ROOT=/usr/sl/www/$SERVER_NAME
exec static−or−index

}

CGI:
if(~ $SERVER_NAME *cat−v.org){

PATH_INFO=$location
FS_ROOT=/usr/sl/www/werc/sites/$SERVER_NAME
exec static−or−cgi /usr/sl/www/werc/bin/werc.rc

}

Custom error message for a denied URL:
fn do_error{

do_log $1
echo ’HTTP/1.1 ’^$1^$cr
emit_extra_headers
echo ’Content−type: text/html’^$cr

1035

RC-HTTPD(8) RC-HTTPD(8)

echo $cr
echo ’<html>

<head>
<title>’^$1^’</title>
</head>
<body>
<h1>’^$1^’</h1>’

echo $2
echo ’<p><i>rc−httpd at’ $SERVER_NAME ’</i>’
echo ’
</body>
</html>
’

}
if(~ $location /v8.tar.bz2){

do_error ’27b/6’
exit

}

STARTUP
Rc−httpd is run from a file in the directory scanned by listen(8), or called as an argument to
aux/listen1. The program�s standard error may be captured to a log file:

exec /rc/bin/rc−httpd/rc−httpd >>[2]/sys/log/www

FILES
/rc/bin/rc−httpd/rc−httpd
/rc/bin/rc−httpd/select−handler
/rc/bin/rc−httpd/handlers/cgi
/rc/bin/rc−httpd/handlers/dir−index
/rc/bin/rc−httpd/handlers/error
/rc/bin/rc−httpd/handlers/redirect
/rc/bin/rc−httpd/handlers/serve−static
/rc/bin/rc−httpd/handlers/static−or−cgi
/rc/bin/rc−httpd/handlers/static−or−index
/rc/bin/service/tcp80
/sys/log/www

SOURCE
/rc/bin/rc−httpd

SEE ALSO
rc(1), listen(8)

HISTORY
Rc−httpd first appeared in 9front (February, 2013).

1036

REALEMU(8) REALEMU(8)

NAME
realemu � software emulation of /dev/realmode

SYNOPSIS
aux/realemu [−Dpt] [−s srvname] [−m mountpoint]

DESCRIPTION
Originally, kernel provided /dev/realmode files with the arch(3) device to access and call the
BIOS.

Interrupts had to be disabled and the processor was switched in the legacy 16-bit realmode with
memory protection disabled to execute BIOS code.

This is problematic in case the BIOS reprograms hardware currently used by the operating system
or when it reenables interrupts or just crashes. This will freeze or reboot the machine with no way
to recover or diagnose the problem.

To avoid this, realemu is used to emulate the execution of the BIOS routines by interpreting the
machine instructions and intercepting dangerous actions that would compromise the systems sta
bility.

Running realemu with no arguments, it mounts itself before /dev and replaces the original
/dev/realmode file in the current namespace.

Then programs like vga(8) can use it to make their BIOS calls.

The D flag will enable debug messages for 9P. The p and t flags control tracing of i/o port access
and cpu instructions to stderr (fd 2).

When a srvname is given with the s argument, the default mountpoint is ignored and a 9P channel
is created in /srv that can be used to mount the filesystem from another namespace. If a
mountpoint is given before the srvname argument then it is ignored, otherwise it will be used.

EXAMPLES
The realemu process is only needed when accessing /dev/realmode. To invoke a subshell so
that realemu exits normally after aux/vga completes:

% @{rfork n; aux/realemu; aux/vga −m vesa −l $vgasize}

SOURCE
/sys/src/cmd/aux/realemu

SEE ALSO
vga(8), arch(3)

HISTORY
Realemu first appeared in 9front (April, 2011).

1037

REBOOT(8) REBOOT(8)

NAME
reboot � reboot the system upon loss of remote file server connection

SYNOPSIS
aux/reboot [file]

DESCRIPTION
Reboot stats file, default /$cputype/lib, once every five minutes. If the stat fails, rather than
timing out, reboot reboots the system. This is used to restart diskless cpu servers whenever their
file server connection is broken.

SOURCE
/sys/src/cmd/aux/reboot.c

1038

REPLICA(8) REPLICA(8)

NAME
applychanges, applylog, compactdb, updatedb � simple client-server replica management

SYNOPSIS
replica/compactdb db
replica/updatedb [−cl] [−p proto] [−r root] [−t now n] [−u uid] [−x path] ... db
replica/applylog [−nuv] [−c name]... [−s name]... clientdb clientroot serverroot [
path ...]
replica/applychanges [−nuv] [−p proto] [−x path] ... clientdb clientroot serverroot [
path ...]

DESCRIPTION
These four tools collectively provide simple log-based client-server replica management. The
shell scripts described in replica(1) provide a more polished interface.

Both client and server maintain textual databases of file system metadata. Each line is of the form

path mode uid gid mtime length

Later entries for a path supersede previous ones. A line with the string REMOVED in the mode
field annuls all previous entries for that path. The entries in a file are typically kept sorted by path
but need not be. These properties facilitate updating the database atomically by appending to it.
Compactdb reads in a database and writes out an equivalent one, sorted by path and without out
dated or annulled records.

A replica is further described on the server by a textual log listing creation and deletion of files
and changes to file contents and metadata. Each line is of the form:

time gen verb path serverpath mode uid gid mtime length

The time and gen fields are both decimal numbers, providing an ordering for log entries so that
incremental tools need not process the whole log each time they are run. The verb, a single char
acter, describes the event: addition of a file (a), deletion of a file (d), a change to a file�s contents
(c), or a change to a file�s metadata (m). Path is the file path on the client; serverpath the path on
the server (these are different when the optional fifth field in a proto file line is given; see
proto(2)). Mode, uid, gid, and mtime are the files metadata as in the Dir structure (see stat(5)).
For deletion events, the metadata is that of the deleted file. For other events, the metadata is that
after the event.

Updatedb scans the file system rooted at root for changes not present in db, noting them by
appending new entries to the database and by writing log events to standard output. The −c
option causes updatedb to consider only file and metadata changes, ignoring file additions and
deletions. By default, the log events have time set to the current system time and use increment
ing gen numbers starting at 0. The −t option can be used to specify a different time and starting
number. If the −u option is given, all database entries and log events will use uid rather than the
actual uids. The −x option (which may be specified multiple times) excludes the named path and
all its children from the scan. If the −l option is given, the database is not changed and the time
and gen fields are omitted from the log events; the resulting output is intended to be a human-
readable summary of file system activity since the last scan.

Applylog is used to propagate changes from server to client. It applies the changes listed in a log
(read from standard input) to the file system rooted at clientroot, copying files when necessary
from the file system rooted at serverroot. By default, applylog does not attempt to set the uid on
files; the −u flag enables this. Applylog will not overwrite local changes made to replicated files.
When it detects such conflicts, by default it prints an error describing the conflict and takes no
action. If the −c flag is given, applylog still takes no action for files beginning with the given
names, but does so silently and will not report the conflicts in the future. (The conflict is resolved
in favor of the client.) The −s is similar but causes applylog to overwrite the local changes. (The
conflict is resolved in favor of the server.)

Applychanges is, in some sense, the opposite of applylog ; it scans the client file system for
changes, and applies those changes to the server file system. Applychanges will not overwrite
remote changes made to replicated files. For example, if a file is copied from server to client and
subsequently changed on both server and client, applychanges will not copy the client�s new

1039

REPLICA(8) REPLICA(8)

version to the server, because the server also has a new version. Applychanges and applylog
detect the same conflicts; to resolve conflicts reported by applychanges , invoke applylog with the
−c or −s flags.

EXAMPLE
One might keep a client kfs file system up-to-date against a server file system using these tools.
First, connect to a CPU server with a high-speed network connection to the file server and scan the
server file system, updating the server database and log:

repl=$home/lib/replica
proto=/sys/lib/sysconfig/proto/portproto
db=$repl/srv.portproto.db
log=$repl/srv.portproto.log

9fs $fs
replica/updatedb −p $proto −r /n/$fs −x $repl $db >>$log
replica/compactdb $db >/tmp/a && mv /tmp/a $db

Then, update the client file system:
repl=$home/lib/replica
db=$repl/cli.portproto.db
log=$repl/srv.portproto.log

9fs $fs
9fs kfs
replica/applylog $db /n/kfs /n/$fs <$log
replica/compactdb $db >/tmp/a && mv /tmp/a $db

The $repl directory is excluded from the sync so that multiple clients can each have their own
local database. The shell scripts in /rc/bin/replica are essentially a further development of
this example.

The Plan 9 distribution update program operates similarly, but omits the first scan; it is assumed
that the Plan 9 developers run scans manually when the distribution file system changes. The
manual page replica(1) describes this in full.

SEE ALSO
replica(1)

BUGS
These tools assume that mtime combined with length is a good indicator of changes to a file�s con
tents.

1040

RSA(8) RSA(8)

NAME
rsagen, rsafill, asn12rsa, rsa2asn1, rsa2pub, rsa2ssh, rsa2x509, rsa2csr � generate and format rsa
keys

SYNOPSIS
rsagen [−b nbits] [−t tag]

rsafill [file]

asn12rsa [−t tag] [file]

rsa2asn1 [-a] [file]

rsa2pub [file]

rsa2ssh [−c comment] [file]

rsa2x509 [−e expiretime] certinfo [file]

rsa2csr subject [file]

DESCRIPTION
Plan 9 represents an RSA key as an attribute-value pair list prefixed with the string key; this is the
generic key format used by factotum(4). A full RSA private key has the following attributes:

proto must be rsa

size the number of significant bits in n

ek the encryption exponent

n the product of !p and !q

!dk the decryption exponent

!p a large prime

!q another large prime

!kp, !kq, !c2
parameters derived from the other attributes, cached to speed decryption

All the numbers are in hexadecimal except size , which is decimal. An RSA public key omits the
attributes beginning with ! . A key may have other attributes as well (for example, a service
attribute identifying how this key is typically used), but to these utilities such attributes are merely
comments.

For example, a very small (and thus insecure) private key and corresponding public key might be:

key proto=rsa size=8 ek=7 n=8F !dk=67 !p=B !q=D !kp=3 !kq=7 !c2=6
key proto=rsa size=8 ek=7 n=8F

Note that the order of the attributes does not matter.

Rsagen prints a randomly generated RSA private key whose n has exactly nbits (default 2048) sig
nificant bits. If tag is specified, it is printed between key and proto=rsa; typically, tag is a
sequence of attribute-value comments describing the key.

Rsafill reads a private key, recomputes the !kp, !kq, and !c2 attributes if they are missing, and
prints a full key.

Asn12rsa reads an RSA private or public key stored as ASN.1 encoded in the binary Distinguished
Encoding Rules (DER) and prints a Plan 9 RSA key, inserting tag exactly as rsagen does.
ASN.1/DER is a popular key format on Unix and Windows; it is often encoded in text form using
the Privacy Enhanced Mail (PEM) format in a section labeled as an ��RSA PRIVATE KEY.�� The
command:

auth/pemdecode ’RSA PRIVATE KEY’ | auth/asn12rsa

extracts the key section from a textual ASN.1/DER/PEM key into binary ASN.1/DER format and then
converts it to a Plan 9 RSA key.

Rsa2pub reads a Plan 9 RSA public or private key, removes the private attributes, and prints the
resulting public key. Comment attributes are preserved.

1041

RSA(8) RSA(8)

Rsa2asn1 is like rsa2pub but outputs the public key in ASN.1/DER format. With the −a flag a pri
vate key is read and encoded in ANS.1/DER format.

Rsa2ssh reads a Plan 9 RSA public or private key and prints the public portion in the format used
by SSH2. The −c option will set the comment.

Rsa2x509 reads a Plan 9 RSA private key and writes a self-signed X.509 certificate encoded in
ASN.1/DER format to standard output. (Note that ASN.1/DER X.509 certificates are different from
ASN.1/DER private keys). The certificate uses the current time as its start time and expires
expiretime seconds (default 3 years) later. It contains the public half of the key and includes
certinfo as the issuer/subject string (also known as a ��Distinguished Name��). This info is typically
in the form:

C=US ST=NJ L=07974 O=Lucent OU=’Bell Labs’ CN=G.R.Emlin

One can append further Distinguished Names, DNS Names and E-Mail addresses as a ��Subject
Alternative Name�� separated with a comma after the main subject.

The X.509 ASN.1/DER format is often encoded in text using a PEM section labeled as a
��CERTIFICATE.�� The command:

auth/rsa2x509 ’C=US OU=’’Bell Labs’’’ file |
auth/pemencode CERTIFICATE

generates such a textual certificate. Applications that serve TLS-encrypted sessions (for example,
httpd(8), pop3(8), and tlssrv(8)) expect certificates in ASN.1/DER/PEM format.

The Plan 9 RSA private key needs to be loaded into factotum for TLS server applications. It is rec
ommended to put the key into secstore(1), avoiding it being stored unencrypted on the filesystem.

Rsa2csr takes the subject and a RSA private key and outputs a signing request in ASN.1 format.

EXAMPLES
Generate a fresh key and use it to start a TLS-enabled web server:

auth/rsagen −t ’service=tls owner=*’ >key
auth/rsa2x509 ’C=US CN=*.cs.bell−labs.com’ key |

auth/pemencode CERTIFICATE >cert
cat key >/mnt/factotum/ctl
ip/httpd/httpd −c cert

Generate a fresh key and configure a remote Unix system to allow use of that key for logins:

auth/rsagen −t ’service=ssh’ >key
auth/rsa2ssh key | ssh unix ’cat >>.ssh/authorized_keys’
cat key >/mnt/factotum/ctl
ssh unix

Convert a private key in PEM format (as generated by OpenSSL) and load it into factotum:

auth/pemdecode ’PRIVATE KEY’ key.pem |
auth/asn12rsa −t ’service=tls’ >/mnt/factotum/ctl

Generate a certificate signing request (CSR) in PEM format:

auth/rsa2csr ’CN=example.com’ key |
auth/pemencode ’CERTIFICATE REQUEST’

Generate a tinc host key:

auth/rsagen −t ’service=tinc role=client host=myhost’ > myhost.key
auth/rsa2pub < myhost.key |

auth/rsa2asn1 | auth/pemencode ’RSA PUBLIC KEY’ > hosts/myhost

SOURCE
/sys/src/cmd/auth

SEE ALSO
factotum(4), pem(8),

BUGS
There are too many key formats.

1042

SCANMAIL(8) SCANMAIL(8)

NAME
scanmail, testscan � spam filters

SYNOPSIS
upas/scanmail [options] [qer−args] root mail sender system rcpt−list

upas/testscan [−avd] [−p patfile] [filename]

DESCRIPTION
Scanmail accepts a mail message supplied on standard input, applies a file of patterns to a por
tion of it, and dispatches the message based on the results. It exactly replaces the generic queu
ing command qer(8) that is executed from the rc(1) script /mail/lib/qmail in the mail pro
cessing pipeline. Associated with each pattern is an action in order of decreasing priority:

dump the message is deleted and a log entry is written to /sys/log/smtpd

hold the message is placed in a queue for human inspection

log a line containing the matching portion of the message is written to a log

If no pattern matches or only patterns with an action of log match, the message is accepted and
scanmail queues the message for delivery. Scanmail meshes with the blocking facilities of
smtpd(6) to provide several layers of filtering on gateway systems. In all cases the sender is noti
fied that the message has been successfully delivered, leaving the sender unaware that the mes
sage has been potentially delayed or deleted.

Scanmail accepts the arguments of qer(8) as well as the following:

−c Save a copy of each message in a randomly-named file in directory /mail/copy.
−d Write debugging information to standard error.
−h Queue held messages by sending domain name. The −q option must specify a root

directory; messages are queued in subdirectories of this directory. If the −h option
is not specified, messages are accumulated in a subdirectory of
/mail/queue.hold named for the contents of /dev/user, usually none.

−n Messages are never held for inspection, but are delivered. Also known as vacation
mode.

−p filename Read the patterns from filename rather than /mail/lib/patterns.
−q holdroot Queue deliverable messages in subdirectories of holdroot. This option is the same

as the −q option of qer(8) and must be present if the −h option is given.
−s Save deleted messages. Messages are stored, one per randomly-named file, in

subdirectories of /mail/queue.dump named with the date.
−t Test mode. The pattern matcher is applied but the message is discarded and the

result is not logged.
−v Print the highest priority match. This is useful with the −t option for testing the

pattern matcher without actually sending a message.

Testscan is the command line version of scanmail. If filename is missing, it applies the pattern set
to the message on standard input. Unlike scanmail, which finds the highest priority match,
testscan prints all matches in the portion of the message under test. It is useful for testing a pat
tern set or implementing a personal filter using the pipeto file in a user�s mail directory.
Testscan accepts the following options:

−a Print matches in the complete input message

−d Enable debug mode

−v Print the message after conversion to canonical form (q.v.).

−p filename
Read the patterns from filename rather than /mail/lib/patterns.

Canonicalization
Before pattern matching, both programs convert a portion of the message header and the begin
ning of the message to a canonical form. The amount of the header and message body processed
are set by compile-time parameters in the source files. The canonicalization process converts let
ters to lower-case and replaces consecutive spaces, tabs and newline characters with a single
space. HTML commands are deleted except for the parameters following A HREF, IMG SRC, and

1043

SCANMAIL(8) SCANMAIL(8)

IMG BORDER directives. Additionally, the following MIME escape sequences are replaced by their
ASCII equivalents:

Escape Seq ASCII
−−−−−−−−−− −−−−−

=2e .
=2f /
=20 <space>
=3d =

and the sequence =<newline> is elided. Scanmail assembles the sender, destination domain and
recipient fields of the command line into a string that is subjected to the same canonical process
ing. Following canonicalization, the command line and the two long strings containing the header
and the message body are passed to the matching engine for analysis.

Pattern Syntax
The matching engine compiles the pattern set and matches it to each canonicalized input string.
Patterns are specified one per line as follows:

{*}action: pattern−spec {~~override...~~override}

On all lines, a # introduces a comment; there is no way to escape this character.

Lines beginning with * contain a pattern−spec that is a string; otherwise, the pattern−spec is a
regular expression in the style of regexp(6). Regular expression matching is many times less effi
cient than string matching, so it is wiser to enumerate several similar strings than to combine them
into a regular expression. The action is a keyword terminated by a : and separated from the pat
tern by optional white-space. It must be one of the following:

dump if the pattern matches, the message is deleted. If the −s command line option is set,
the message is saved.

hold if the pattern matches, the message is queued in a subdirectory of
/mail/queue.hold for manual inspection. After inspection, the queue can be swept
manually using runq (see qer(8)) to deliver messages that were inadvertently matched.

header this is the same as the hold action, except the pattern is only applied to the message
header. This optimization is useful for patterns that match header fields that are
unlikely to be present in the body of the message.

line the sender and a section of the message around the match are written to the file
/sys/log/lines. The message is always delivered.

loff patterns of this type are applied only to the canonicalized command line. When a match
occurs, all patterns with line actions are disabled. This is useful for limiting the size
of the log file by excluding repetitive messages, such as those from mailing lists.

Patterns are accumulated into pattern sets sharing the same action. The matching engine applies
the dump pattern set first, then the header and hold pattern sets, and finally the line pattern
set. Each pattern set is applied three times: to the canonicalized command line, to the message
header, and finally to the message body. The ordering of patterns in the pattern file is insignifi
cant.

The pattern−spec is a string of characters terminated by a newline, # or override indicator, ~~.
Trailing white-space is deleted but patterns containing leading or trailing white-space can be
enclosed in double-quote characters. A pattern containing a double-quote must be enclosed in
double-quote characters and preceded by a backslash. For example, the pattern

"this is not \"spam\""

matches the string this is not "spam". The pattern−spec is followed by zero or more
override strings. When the specific pattern matches, each override is applied and if one matches,
it cancels the effect of the pattern. Overrides must be strings; regular expressions are not sup
ported. Each override is introduced by the string ~~ and continues until a subsequent ~~, # or
newline, white-space included. A ~~ immediately followed by a newline indicates a line con
tinuation and further overrides continue on the following line. Leading white-space on the contin
uation line is ignored. For example,

1044

SCANMAIL(8) SCANMAIL(8)

*hold: sex.com~~essex.com~~sussex.com~~sysex.com~~
lasex.com~~cse.psu.edu!owner−9fans

matches all input containing the string sex.com except for messages that also contain the
strings in the override list. Often it is desirable to override a pattern based on the name of the
sender or recipient. For this reason, each override pattern is applied to the header and the com
mand line as well as the section of the canonicalized input containing the matching data. Thus a
pattern matching the command line or the header searches both the command line and the header
for overrides while a match in the body searches the body, header and command line for overrides.

The structure of the pattern file and the matching algorithm define the strategy for detecting and
filtering unwanted messages. Ideally, a hold pattern selects a message for inspection and if it is
determined to be undesirable, a specific dump pattern is added to delete further instances of the
message. Additionally, it is often useful to block the sender by updating the smtpd control file.

In this regime, patterns with a dump action, generally match phrases that are likely to be unique.
Patterns that hold a message for inspection match phrases commonly found in undesirable mate
rial and occasionally in legitimate messages. Patterns that log matches are less specific yet. In all
cases the ability to override a pattern by matching another string, allows repetitive messages that
trigger the pattern, such as mailing lists, to pass the filter after the first one is processed manually.
The −s option allows deleted messages to be salvaged by either manual or semi-automatic review,
supporting the specification of more aggressive patterns. Finally, the utility of the pattern matcher
is not confined to filtering spam; it is a generally useful administrative tool for deleting inadver
tently harmful messages, for example, mail loops, stuck senders or viruses. It is also useful for
collecting or counting messages matching certain criteria.

FILES
/mail/lib/patterns default pattern file
/sys/log/smtpd log of deleted messages
/mail/log/lines file where log matches are logged
/mail/queue/* directories where legitimate messages are queued for delivery
/mail/queue.hold directory where held messages are queued for inspection
/mail/queue.dump/* directory where dumped messages are stored when the −s command

line option is specified.
/mail/copy/* directory where copies of all incoming messages are stored.

SOURCE
/sys/src/cmd/upas/scanmail

SEE ALSO
mail(1), qer(8), smtpd(6)

BUGS
Testscan does not report a match when the body of a message contains exactly one line.

1045

SCREENLOCK(8) SCREENLOCK(8)

NAME
screenlock � disable access to a terminal

SYNOPSIS
screenlock

DESCRIPTION
Screenlock grabs the screen, keyboard, and mouse devices to disable access to the Plan 9 terminal
on which it is run. The screen can be unlocked by typing the invoking user�s Plan 9 password and
a newline.

FILES
/lib/bunny.bit the image displayed while the terminal is locked

SOURCE
/sys/src/cmd/screenlock.c

BUGS
Use of this program on communal terminals is anti-social.

1046

SCUZZ(8) SCUZZ(8)

NAME
scuzz � SCSI target control

SYNOPSIS
scuzz [−6eq] [−m max−xfer] [[−r] sddev]

DESCRIPTION
Scuzz is an interactive program for exercising raw SCSI devices. Its intended purpose is to investi
gate and manipulate odd devices without the effort of writing a special driver, such as shuffling the
media around on an optical jukebox. It reads commands from standard input and applies them to
a SCSI target (other devices accessed through the sd(3) interface, such as ATA(PI) devices, may also
work). If sddev is given on the command line, an open (see below) is immediately applied to the
target. On successful completion of a command, ok n is printed, where n is the number of bytes
transferred to/from the target; the −q command line option suppresses the ok message.

The −6 forces the use of 6-byte SCSI commands rather than 10-byte ones. Some older devices
require this, though scuzz attempts to adapt automatically. The −e makes scuzz more willing to
retry I/O errors but less tolerant of other errors and implies −6. This option is often needed to
read Exabyte 8mm tapes. The −m option sets the maximum I/O transfer size to max−xfer.
Exabyte drives often require this to be 1024 or the exact tape block size and some 4mm drives
require this to be the exact tape block size or larger.

Commands
help command

Help is rudimentary and prints a one line synopsis for the named command, or for
all commands if no argument is given.

probe Probe attempts an inquiry command on all SCSI units, and prints the result pre
ceded by the name of those targets which respond.

The help and probe commands may be given at any time.

open [−r]sddev
Open must be given before any of the remaining commands will be accepted. Inter
nally, unless the −r option is given, open issues ready then inquiry, followed
by a device class-specific command to determine the logical block size of the target.
Sddev is an sd(3) device directory like /dev/sdC0.

close Close need only be given if another target is to be opened in the current session.

The remaining commands are in rough groups, intended for specific classes of device. With the
exception of the read, write, and space commands, all arguments are in the style of ANSI-C
integer constants.

ready Test Unit Ready checks if the unit is powered up and ready to do read and write
commands.

rezero Rezero Unit requests that a disk be brought to a known state, usually by seeking to
track zero.

rewind Rewind positions a tape at the beginning of current partition (there is usually only
one partition, the beginning of tape).

reqsense Request Sense retrieves Sense Data concerning an error or other condition and is usu
ally issued following the completion of a command that had check-condition status.
Scuzz automatically issues a reqsense in response to a check-condition status and
prints the result.

format Format Unit performs a ��low level�� format of a disk.

rblimits Read Block Limits reports the possible block lengths for the logical unit. Tapes only.

read file nbytes
Read transfers data from the target to the host. A missing nbytes causes the entire
device to be read.

1047

SCUZZ(8) SCUZZ(8)

write file nbytes
Write transfers data from the host to the target. A missing nbytes causes the entire
input file to be transferred.

The first argument to the read and write commands specifies a source (write)
or destination (read) for the I/O. The argument is either a plain file name or | fol
lowed by a command to be executed by rc(1). The argument may be quoted in the
style of rc(1).

seek offset whence
Seek requests the target to seek to a position on a disk, arguments being in the
style of seek(2); whence is 0 by default.

Scuzz maintains an internal notion of where the current target is positioned. The
seek, read, write, rewind, rezero, and wtrack commands all manipulate
the internal offset.

filemark howmany
Write Filemarks writes one (default) or more filemarks on a tape.

space [−b] [−f] [[−−]howmany]
Space positions a tape forwards or backwards. The arguments specify logical block
(−b) or filemark (−f) spacing; default is −b. If howmany is negative it specifies spac
ing backwards, and should be preceded by −− to turn off any further option process
ing. Default is 1.

inquiry Inquiry is issued to determine the device type of a particular target, and to deter
mine some basic information about the implemented options and the product name.

modeselectbytes...

modeselect6bytes...
Mode Select is issued to set variable parameters in the target. Bytes given as argu
ments comprise all the data for the target; see an appropriate manual for the format.
The default is the 10-byte form of the command; modeselect6 is the 6-byte version.

modesense [page[nbytes]]

modesense6 [page[nbytes]]
Mode Sense reports variable and fixed parameters from the target. If no page is
given, all pages are returned. Nbytes specifies how many bytes should be returned.
The default is the 10-byte form of the command; modesense6 is the 6-byte version.

start [code]

stop [code]

eject [code]

ingest [code]
Start, stop, eject, and ingest are synonyms for Start/Stop Unit with different
default values of code. Start/Stop Unit is typically used to spin up and spin down a
rotating disk drive. Code is 0 to stop, 1 to start and 3 to eject (if the device supports
ejection of the medium).

capacity Read Capacity reports the number of blocks and the block size of a disk.

The following commands are specific to CD and CD-R/RW devices. A brief description of each is
given; see the SCSI-3 Multimedia Commands (MMC) Specification for details of arguments and
interpretation of the results.

blank [track/LBA[type]]
Erase a CD-RW disk. Type identifies the method and coverage of the blanking.

rtoc [track/session−number[ses]]
The Read TOC/PMA command transfers data from one of the tables of contents (TOC
or PMA) on the CD medium.

rdiscinfo
(Note the spelling.) Provides information about disks, including incomplete CD-

1048

SCUZZ(8) SCUZZ(8)

R/RW.

rtrackinfo [track]
Provides information about a track, regardless of its status.

cdpause

cdresume Pause/resume playback.

cdstop Stop playback.

cdplay [track−number] or [−r[LBA[length]]]
Play audio. With no arguments, starts at the beginning of the medium. If a track
number is given, the table of contents is read to find the playback start point. If the
−r option is given, block addressing is used to find the playback start point.

cdload [slot]

cdunload [slot]
Load/unload a disk from a changer.

cdstatus Read the mechanism status.

The following commands are specific to Media Changer devices. A brief description of each is
given; see the SCSI-3 Medium Changer Commands (SMC) Specification for details of arguments.

einit Initialize element status.

estatus type [length]
Report the status of the internal elements. Type 0 reports all element types.

mmove transport source destination[invert]
Move medium.

FILES
/dev/sdXX/raw raw SCSI interface for command, I/O, and status.

SOURCE
/sys/src/cmd/scuzz

SEE ALSO
sd(3)
Small Computer System Interface − 2 (X3T9.2/86−109) , .}f Global Engineering Documents
SCSI Bench Reference, ENDL Publications
SCSI−3 Multimedia Commands (MMC) Specification, www.t10.org
SCSI−3 Medium Changer Commands (SMC) Specification, .}f www.t10.org

BUGS
Only a limited subset of SCSI commands has been implemented (as needed).

Only one target can be open at a time.

LUNs other than 0 are not supported.

No way to force 10-byte commands, though they are the default.

Should be recoded to use scsi(2) in order to get more complete sense code descriptions.

Scuzz betrays its origins by spelling rdiscinfo with a c even though the devices it manipulates
are spelled with a k.

The max−xfer value is currently limited to 245760 to limit kernel memory consumption.

It may be necessary to set max−xfer to exactly the block size used to write a tape in order to read
it on some drives.

1049

SECSTORE(8) SECSTORE(8)

NAME
secstored, secuser � secstore commands

SYNOPSIS
auth/secstored [−R] [−S servername] [−s address] [−x network] [−v]

auth/secuser [−v] username

DESCRIPTION
Secstored serves requests from secstore(1). By default it listens on port tcp!*!5356; the −s
option specifies an alternative address. In the connection protocol, secstored describes itself as
service secstore, but the −S option can specify a different servername . The −R option supple
ments the password check with a call to a RADIUS server, for checking hardware tokens or other
validation. The −x option specifies an alternative network to the default /net. By default,
secstored puts itself into the background; the −v option enables a verbose debugging mode that
suppresses that.

Secuser is an administrative command that runs on the secstore machine, normally the authserver,
to create new accounts and to change status on existing accounts. It prompts for account informa
tion such as password and expiration date, writing to /adm/secstore/who/user for a given
secstore user. The directory /adm/secstore should be created mode 770 with owner or group
allowing access to the user that runs secstored. The −v option makes the command chattier.

By default, secstored warns the client if no account exists. If you prefer to obscure this informa
tion, use secuser to create an account FICTITIOUS.

FILES
/adm/secstore/who/user secstore account name, expiration date, verifier
/adm/secstore/store/user/ user ’s file storage
/lib/ndb/auth for mapping local userid to RADIUS userid
/sys/log/secstore log file (if it does not exist, secstored logs to /dev/cons)

SOURCE
/sys/src/cmd/auth/secstore

SEE ALSO
secstore(1)

1050

SECURENET(8) SECURENET(8)

NAME
securenet � Digital Pathways SecureNet Key remote authentication box

DESCRIPTION
The SecureNet box is used to authenticate connections to Plan 9 from a foreign system such as a
Unix machine or plain terminal. The box, which looks like a calculator, performs DES encryption
with a key held in its memory. Another copy of the key is kept on the authentication server. Each
box is protected from unauthorized use by a four digit PIN.

When the system requires SecureNet authentication, it prompts with a numerical challenge. The
response is compared to one generated with the key stored on the authentication server. Respond
as follows:

Turn on the box and enter your PIN at the EP prompt, followed by the ENT button. Enter the chal
lenge at Ed prompt, again followed ENT. Then type to Plan 9 the response generated by the box.
If you make a mistake at any time, reset the box by pressing ON. The authentication server com
pares the response generated by the box to one computed internally. If they match, the user is
accepted.

The box will lose its memory if given the wrong PIN five times in succession or if its batteries are
removed.

To reprogram it, type a 4 at the E0 prompt.

At the E1 prompt, enter your key, which consists of eight three-digit octal numbers. While you are
entering these digits, the box displays a number ranging from 1 to 8 on the left side of the dis
play. This number corresponds to the octal number you are entering, and changes when you enter
the first digit of the next number.

When you are done entering your key, press ENT twice.

At the E2 prompt, enter a PIN for the box.

After you confirm by retyping the PIN at the E3 prompt, you can use the box as normal.

You can change the PIN using the following procedure. First, turn on the box and enter your cur
rent PIN at the EP prompt. Press ENT three times; this will return you to the EP prompt. Enter
your PIN again, followed by ENT; you should see a Ed prompt with a − on the right side of the dis
play. Enter a 0 and press ENT. You should see the E2 prompt; follow the instructions above for
entering a PIN.

The SecureNet box performs the same encryption as the netcrypt routine (see encrypt(2)). The
entered challenge, a decimal number between 0 and 100000, is treated as a text string with trail
ing binary zero fill to 8 bytes. These 8 bytes are encrypted with the DES algorithm. The first four
bytes are printed on the display as hexadecimal numbers. However, when set up as described, the
box does not print hexadecimal digits greater than 9. Instead, it prints a 2 for an A, B, or C, and a
3 for a D, E, or F. If a 5 rather than a 4 is entered at the E0 print, the hexadecimal digits are
printed. This is not recommended, as letters are too easily confused with digits on the SecureNet
display.

SEE ALSO
encrypt(2), auth(2)
Digital Pathways, Mountain View, California

BUGS
The box is clumsy to use and too delicate. If carried in a pocket, it can turn itself on and wear out
the batteries.

1051

SEND(8) SEND(8)

NAME
send � mail routing and delivery

SYNOPSIS
upas/send [−b] [−i] [−r] [−x] [−#] [mailaddr ...]

DESCRIPTION
Send is not normally run directly by the user. Instead, mail protocol agents like smtpd (see
smtp(8)) and mail preparers like marshal(1) fork and execute send.

Send reads a message from standard input and disposes of it in one of four ways:

� If mailaddr refers to a local mailbox, it appends it to the recipient�s mailbox.

� If mailaddr is remote, it queues the mail for remote delivery.

� If the −r option is given and the mail is undeliverable, the message mail rejected: is
printed on standard error, setting exit status.

� if the −r option is not given and the mail is undeliverable, it appends the mail to
/mail/box/username/dead.letter and prints a message to standard error.

The file /mail/lib/rewrite determines exactly how to deliver or queue the mail. The deci
sion is based purely on the recipient address.

The options are:

−b suppresses the addition of the To: line.
−i let the message input be terminated by a line containing only a period, for compatibility with

old mailers.
−x do not send mail, but instead report the full mail address of the recipient.
−# do not send mail, but instead report what command would be used to send the mail.
−r input is via a pipe from another program. Expect a From line at the start of the message to

provide the name of the sender and timestamp. This implies the −b option.

Send uses the login name as the reply address.

FILES
/sys/log/mail mail log file
/mail/box/*/dead.letter unmailable text
/mail/lib/rewrite rules for handling addresses
/mail/box/*/names personal alias files
/mail/lib/namefiles lists names of files containing system aliases

SOURCE
/sys/src/cmd/upas/send

SEE ALSO
aliasmail(8), faces(1), filter(1), mail(1), marshal(1), mlmgr(1), nedmail(1), qer(8), rewrite(6),
smtp(8), upasfs(4)

1052

SMART(8) SMART(8)

NAME
disk/smart � SMART error monitoring

SYNOPSIS
disk/smart [−aptv] drive...

DESCRIPTION
The disk/smart command uses the sd(3) raw interface for continuous disk health logging to
/sys/log/smart and, with the −v flag, the console for ATA and SCSI disks supporting
SMART-style reporting. The −t flag causes disk/smart to exit after a single probe and
implies −v. With the −p flag or no arguments, disk/smart probes for all SMART-capable
drives. With −a SMART-capable drives are announced. Logging behaves as if level triggered. If a
smart condition is set it will be logged every 6 hours. Condition reset also resets the log timer.

FILES
/lib/scsicodes, /dev/sdXX/raw

SEE ALSO
atazz(8), scuzz(8), sd(3).

SOURCE
/sys/src/cmd/disk/smart

BUGS
Past failures are no indication of future performance.

1053

SMTP(8) SMTP(8)

NAME
smtp, smtpd � mail transport

SYNOPSIS
upas/smtp [−aAdfipst] [−b busted−mx] ... [−g gateway] [−h host] [−u user] [

.domain] destaddr sender rcpt−list

upas/smtpd [−adDfrg] [−c certfile] [−h mydom] [−k evilipaddr] [−m mailer] [−n netdir
]

DESCRIPTION
Smtp sends the mail message from standard input to the users rcpt−list on the host at network
address address using the Simple Mail Transfer Protocol. The options are:

−a if the server supports PLAIN or LOGIN authentication, authenticate to the server using a pass
word from factotum(4). See RFCs 3207 and 2554. This option implies −s.

−A autistic server: don�t wait for an SMTP greeting banner but immediately send a NOOP com
mand to provoke the server into responding.

−b ignore busted−mx when trying MX hosts. May be repeated.

−d turn on debugging to standard error.

−f just filter the converted message to standard output rather than sending it.

−g makes gateway the system to pass the message to if smtp can�t find an address nor MX entry
for the destination system.

−h use host as the local system name; it may be fully-qualified or not. If not specified, it will
default to the contents of /dev/sysname.

−i under −a, authenticate even if we can�t start TLS.

−p ping: just verify that the users named in the rcpt−list are valid users at destaddr; don�t send
any mail.

−s if the server supports the ESMTP extension to use TLS encryption, turn it on for this session.
See RFC3207 for details.

−t preemtively establish TLS connection before SMTP handshake (SMTPS).

−u specify a user name to be used in authentication. The default name is the current login id.

Finally if .domain is given, it is appended to the end of any unqualified system names in the enve
lope or header.

Smtpd receives a message using the Simple Mail Transfer Protocol. Standard input and output are
the protocol connection. SMTP authentication by login and cram−md5 protocols is supported;
authenticated connections are permitted to relay.

The options are:

−a requires that all clients authenticate to be able to send mail.

−c specifies a certificate to use for TLS. Without this option, the capability to start TLS will not be
advertised.

−d turns on debugging output, with each connection�s output going to a uniquely-named file in
/sys/log/smtpdb.

−D sleeps for 15 seconds usually at the start of the SMTP dialogue; this deters some spammers.
Connections from Class A networks frequented by spammers will incur a longer delay.

−f prevents relaying from non-trusted networks. It also tags messages from non-trusted sites
when they deliver mail from an address in a domain we believe we represent.

−g turns on grey/white list processing. All mail is rejected (with a retry code) unless the sender�s
IP address is on the whitelist, /mail/grey/whitelist, an append only file. Addresses
can be added to the whitelist by the administrator. However, the usual way for addresses to
be added is by smtpd itself. Whenever a message is received and the sender�s address isn�t
on the whitelist, smtpd first looks for the file /mail/grey/tmp/ local/ remote/ recipient,

1054

SMTP(8) SMTP(8)

where local and remote are IP addresses of the local and remote systems, respectively. If it
exists and was created more than a few minutes go, the remote address is added to the whi
telist. If not, the file is created and the mail is rejected with a �try again� code. The expecta
tion is that spammers will not retry for more than a few minutes and that others will.

−h specifies the receiving domain. If this flag is not specified, the receiving domain is inferred
from the host name.

−k causes connections from the host at the IP address, evilipaddr , to be dropped at program
startup. Multiple addresses can be specified with several −k options. This option should be
used carefully; it is intended to lessen the effects of denial of service attacks or broken mailers
which continually connect. The connections are not logged and the remote system is not noti
fied via the protocol.

−m set the mailer to which smtpd passes a received message. The default is
/bin/upas/send.

−n specifies the name of the network directory assigned to the incoming connection. This is used
to determine the peer IP address. If this flag is not specified, the peer address is determined
using standard input.

−p permits clients to authenticate using protocols which transfer the password in the clear, e.g.
login protocol. This should only be used if the connection has previously encrypted using e.g.
tlssrv(8).

−r turns on forward DNS validation of non-trusted sender address.

−s causes copies of blocked messages to be saved in a sub-directory of /mail/queue.dump.

Smtpd is normally run by a network listener such as listen(8). Most of the command line options
are more conveniently specified in the smtpd configuration file stored in
/mail/lib/smtpd.conf.

SOURCE
/sys/src/cmd/upas/smtp

SEE ALSO
aliasmail(8), faces(1), filter(1), mail(1), marshal(1), mlmgr(1), nedmail(1), qer(8), rewrite(6),
send(8), tlssrv(8), upasfs(4)

1055

SNOOPY(8) SNOOPY(8)

NAME
snoopy � spy on network packets

SYNOPSIS
snoopy [−CDdpst] [−M m] [−N n] [−f filter−expression] [−h first−header] [packet−source
]

snoopy −? [proto...]

DESCRIPTION
Snoopy reads packets from a packet−source (default /net/ether0), matches them to a filter (by
default anything matches), and writes matching packets to standard output either in human read
able form (default) or in a binary trace format that can be later read by snoopy. Packet−source can
be the name of an Ethernet (e.g., /net/ether0), an interface (e.g., /net/ipifc/0), or a file
of captured packets.

The human readable format consists of multiple lines per packet. The first line contains the mil
liseconds since the trace was started. Subsequent ones are indented with a tab and each contains
the dump of a single protocol header. The last line contains the dump of any contained data. For
example, a BOOTP packet would look like:

324389 ms
ether(s=0000929b1b54 d=ffffffffffff pr=0800 ln=342)
ip(s=135.104.9.62 d=255.255.255.255 id=5099 frag=0000...
udp(s=68 d=67 ck=d151 ln= 308)
bootp(t=Req ht=1 hl=16 hp=0 xid=217e5f27 sec=0 fl=800...
dhcp(t=Request clientid=0152415320704e7266238ebf01030...

The binary format consists of:

2 bytes of packet length, msb first

8 bytes of nanosecond time, msb first

the packet

Filters are expressions specifying protocols to be traced and specific values for fields in the proto
col headers. The grammar is:

expr: protocol
| field ’=’ value
| field ’!=’ value
| protocol ’(’ expr ’)’
| ’(’ expr ’)’
| expr ’||’ expr
| expr ’&&’ expr
| ’!’ expr

The values for protocol and field can be obtained using the −? option. With no arguments, it lists
the known protocols. Otherwise it prints, for each protocol specified, which subprotocols it can
multiplex to, and which fields can be used for filtering. For example, the listing for ethernet is cur
rently:

ether’s filter attributes:
s − source address
d − destination address
a − source|destination address
sd − source|destination address
t − type

ether’s subprotos:
0x0800 ip 0x8863 pppoe_disc
0x0806 arp 0x8864 pppoe_sess
0x0806 rarp 0x888e eapol
0x86dd ip6

1056

SNOOPY(8) SNOOPY(8)

The format of value depends on context. In general, ethernet addresses are entered as a string of
hex digits; IP numbers in the canonical �.� format for v4 and �:� format for v6; and ports in decimal.

Snoopy�s options are:

−C compute the correct checksum for each packet; on mismatch, add a field !ck=xxxx where
xxxx is the correct checksum.

−D output will be a binary trace file in Unix pcap format.

−d output will be a binary trace file.

−t input is a binary trace file as generated with the −d option.

−p do not enter promiscuous mode. Only packets to this interface will be seen.

−s force one output line per packet. The default is multiline.

−M discard all but the first m bytes of each packet. The default is to keep the entire packet.
This option is most useful when writing packets to a file with the −d option.

−N dump n data bytes per packet. The default is 32.

−f use filter−expression to filter the packet stream. The default is to match all packets.

−h assume the first header per packet to be of the first−header protocol. The default is
ether.

EXAMPLES
To display only BOOTP and ARP packets:

% snoopy −f ’arp || bootp’
after optimize: ether(arp || ip(udp(bootp)))

The first line of output shows the completed filter expression. Snoopy will fill in other protocols as
necessary to complete the filter and then optimize to remove redundant comparisons.

To save all packets between 135.104.9.2 to 135.104.9.6 and later display those to/from TCP port
80:

% ramfs
% snoopy −df ’ip(s=135.104.9.2 && d=135.104.9.6) ||\

ip(s=135.104.9.6 && d=135.104.9.2)’ > /tmp/quux
<interrupt from the keyboard>
% snoopy −tf ’tcp(sd=80)’ /tmp/quux

FILES
/net/ether0

Ethernet device

SOURCE
/sys/src/cmd/ip/snoopy

BUGS
Snoopy only dumps ethernet packets, because there�s no device to get IP packets without a media
header.

1057

SPLITMBOX(8) SPLITMBOX(8)

NAME
splitmbox � split a mailbox into mdir format

SYNOPSIS
splitmbox [−l] [mbox]

DESCRIPTION
Splitmbox converts a mailbox in mbox format into mdir(6) format. Mbox is the mailbox to con
vert. The default is /mail/box/user/mbox and the temporary destination is
/mail/box/user/mboxdir.

After conversion, commands are printed to remove the old mailbox and replace it with the new.
These must be executed by hand to complete the conversion. The −l flag executes these com
mands rather than printing them.

SEE ALSO
mdir(6), pop3(8)

BUGS
Curious manumatic process.

It�s imperative that one close all imap clients using the old upas system on imap.coraid.com.

1058

STATS(8) STATS(8)

NAME
stats � display graphs of system activity

SYNOPSIS
stats [−option] [machine ...]

DESCRIPTION
Stats displays a rolling graph of various statistics collected by the operating system and updated
once per second. The statistics may be from a remote machine or multiple machines, whose
graphs will appear in adjacent columns. The columns are labeled by the machine names and the
number of processors on the machine if it is a multiprocessor.

The right mouse button presents a menu to enable and disable the display of various statistics; by
default, stats begins by showing the load average on the executing machine.

The lower-case options choose the initial set to display:

b battery percentage battery life remaining.
c context number of process context switches per second.
d draw draw memory allocation size in bytes.
e ether total number of packets sent and received per second.
E etherin,out

number of packets sent and received per second, displayed as separate graphs.
f fault number of page faults per second.
i intr number of interrupts per second.
I idle system load, % time in idle, and % time in interrupts. The last two are averaged

over all processors on a multiprocessor.
k kern kernel memory allocation size in bytes.
l load (default) system load average. The load is computed as a running average of

the number of processes ready to run, multiplied by 1000.
m mem total pages of active memory. The graph displays the fraction of the machine�s

total memory in use.
n etherin,out,err

number of packets sent and received per second, and total number of errors,
displayed as separate graphs.

p tlbpurge number of translation lookaside buffer flushes per second.
r reclaim total pages of reclaimable memory. The graph displays the fraction of the

machine�s total memory in use.
s syscall number of system calls per second.
t tlbmiss number of translation lookaside buffer misses per second.
w swap number of valid pages on the swap device. The swap is displayed as a fraction

of the number of swap pages configured by the machine.
8 802.11b display the signal strength detected by the 802.11b wireless ether card; the

value is usually below 50% unless the receiver is in the same room as the trans
mitter, so a midrange value represents a strong signal.

z temp current temperature reported by the cpu.

The graphs are plotted with time on the horizontal axis. The vertical axes range from 0 to
1000*sleepsecs, multiplied by the number of processors on the machine when appropriate. The
only exceptions are memory, and swap space, which display fractions of the total available, system
load, which displays a number between 0 and 1000, idle and intr, which display percentages and
the Ethernet error count, which goes from 0 to 10.. If the value of the parameter is too large for
the visible range, its value is shown in decimal in the upper left corner of the graph.

Upper-case options control details of the display. All graphs are affected; there is no mechanism
to affect only one graph.

−T sleepsecs
Set the number of seconds between samples to sleepsecs (default one second). Sleepsecs
may be a floating-point number.

−S scale
Sets a scale factor for the displays. A value of 2, for example, means that the highest value

1059

STATS(8) STATS(8)

plotted will be twice as large as the default.

−L Plot all graphs with logarithmic y axes. The graph is plotted so the maximum value that
would be displayed on a linear graph is 2/3 of the way up the y axis and the total range of
the graph is a factor of 1000; thus the y origin is 1/100 of the default maximum value and
the top of the graph is 10 times the default maximum.

−Y If the display is large enough to show them, place value markers along the y axes of the
graphs. Since one set of markers serves for all machines across the display, the values in
the markers disregard scaling factors due to multiple processors on the machines. On a
graph for a multiprocessor, the displayed values will be larger than the markers indicate.
The markers appear along the right, and the markers show values appropriate to the right
most machine; this only matters for graphs such as memory that have machine-specific
maxima.

FILES
/net/ether0/0/stats
#c/swap
#c/sysstat

SOURCE
/sys/src/cmd/stats.c

BUGS
Some machines do not have TLB hardware.

1060

STATUSBAR(8) STATUSBAR(8)

NAME
statusbar, statusmsg � display a bar graph or status message window

SYNOPSIS
aux/statusbar [−kt] [−w minx,miny,maxx,maxy] [title]
aux/statusmsg [−kt] [−w minx,miny,maxx,maxy] [title]

DESCRIPTION
Statusbar and statusmsg read textual status lines from standard input into a continuously updated
bar graph or text message displayed in a new window on the screen. The title is displayed on a
line above the bar graph or message. For statusbar, each input line is two space-separated deci
mal numbers: the numerator and denominator of a fraction.

The programs exit when it reaches end-of-file on standard input. Typing DEL or control-C will
also cause it to exit.

The options are:

−k do not allow typing to cause exit

−t print an ASCII version of the bar or message to standard output, using backspace to redraw
it.

−w set the coordinates of the window created

SOURCE
/sys/src/cmd/aux/statusbar.c
/sys/src/cmd/aux/statusmsg.c

1061

STUB(8) STUB(8)

NAME
stub � provide mount point stubs

SYNOPSIS
aux/stub [−Dd] path/name

DESCRIPTION
Aux/stub union mounts itself before path in the name space. It serves a file system containing a
single entry, name, with file mode 0. The intent is to provide a place to bind or mount other
resources. The options are:

−D print all 9P messages

−d make name a directory; by default it is a file

SOURCE
/sys/src/cmd/aux/stub.c

SEE ALSO
mntgen(4)

1062

SWAP(8) SWAP(8)

NAME
swap � establish a swap file

SYNOPSIS
swap file

DESCRIPTION
Swap establishes a file for the system to swap on. If file is an existing file, it is used for system
swap. If it does not exist, a new file is created. If file is a directory, a unique file is created in that
directory on which to swap. The environment variable swap is set to the full name of the resulting
file. The number of blocks available in the file or device must be at least the number of swap
blocks configured at system boot time.

If a swap channel has already been set and no blocks are currently valid in the file the old file will
be closed and then replaced. If any blocks are valid on the device an error is returned instead.

SOURCE
/sys/src/cmd/swap.c

BUGS
Swapping to a file served by a local user-level process will lead to deadlock if the process isn�t
made non-swappable (see the noswap ctl-message in proc(3)).

SEE ALSO
swap(3), proc(3)

1063

TIMESYNC(8) TIMESYNC(8)

NAME
timesync � synchronize the system clock to a time source

SYNOPSIS
aux/timesync [−a accuracy] [−S stratum] [−s netroot] [−frnDdLilG] [timeserver]

DESCRIPTION
Aux/timesync synchronizes the system clock to a time source, by default a file server. The
options are:

−f synchronize to a file server. If timeserver is missing, use /srv/boot.

−r synchronize to the local real time clock, #r/rtc.

−L used with −r to indicate the real time clock is in local time rather than GMT. This is useful
on PCs that also run the Windows OS.

−n synchronize to an NTP server. If timeserver is missing, dial the server udp!$ntp!ntp.

−D print debugging to standard error

−d put file containing last determined clock frequency in directory dir, default /tmp.

−i stands for impotent. Timesync announces what it would do but doesn�t do it. This is use
ful for tracking alternate time sources.

−a specifies the accuracy in nanoseconds to which the clock should be synchronized. This
determines how often the reference clock is accessed.

−G causes timesync to use a gps server (see gpsfs(8)) as a time source.

−s causes timesync to listen for UDP NTP requests on the network rooted at netroot. Up to 4
−s options are allowed.

−S sets the stratum number to stratum.

−l turns on logging to /sys/log/timesync.

FILES
/tmp/ts.<sysname>.<type>.timeserver where the last frequency guess is kept
/sys/log/timesync log file

SOURCE
/sys/src/cmd/aux/timesync.c

1064

TINC(8) TINC(8)

NAME
tinc - mesh peer to peer VPN

SYNOPSIS
ip/tinc [−d] [−p maxprocs] [−x inside] [−o outside] [−c confdir] [−n myname] localip
localmask [hosts...]

DESCRIPTION
Tinc implements the mesh peer to peer VPN protocol from https://www.tinc−vpn.org/ as of version
1.0.32. Within a tinc VPN one can reach all the subnets of all hosts within the network even when
not directly connected to the owning host of the subnet.

Each host that is directly connected to us has its own hostfile under confdir/hosts/hostname con
taining its public address, owned subnets, options and RSA public key. The hostfile format is the
same as the original tinc implementation. The confdir is specified with the −c option or defaults
to the current working directory. Other hosts might exist behind these directly connected nodes
but this information is distributed automatically within the protocol.

On startup, tinc creates an ip interface with the address localip and network mask localmask on
the inside ip stack (specified with −x option) and starts listening for incoming connections on the
outside ip stack (specified with the −o option). When optional hosts are specified on the command
line, then it will also do outgoing connections using the outside ip stack. The localmask usually is a
supernet of all the subnets within the VPN. Our own hostname myhost can be specified with −n
option or is assumed to be the sysname when not specified. This host�s RSA private key needs to
be present in factotum and tagged with service=tinc and host=myhost.

The options:

−d Enable debug output and do not fork to the background.

−p Limit the number of client processes (incoming and outgoing connections per protocol) to
maxprocs.

−x Specifies the inside and outside network stack directory where the tinc ip interface is
bound. Defaults to /net.

−o Specifies the outside network stack directory where incoming and outgoing tinc connections
are made. Defaults to inside.

−c Specifies the configuration directory confdir for the VPN.

−n Sets our hostname to myhost.

SEE ALSO
rsa(8), ip(3)
https://www.tinc−vpn.org/documentation/

SOURCE
/sys/src/cmd/ip/tinc.c

HISTORY
Tinc first appeared in 9front (October, 2017).

1065

TLSSRV(8) TLSSRV(8)

NAME
tlssrv, tlsclient, tlssrvtunnel, tlsclienttunnel � TLS server and client

SYNOPSIS
tlssrv [−D] [−[aA] [−k keyspec]] [−c cert.pem] [−l logfile] [−r remotesys] cmd [args ...
]

tlsclient [−D] [−a [−k keyspec]] [−c clientcert.pem] [−d servercert] [−t trustedkeys] [
−x excludedkeys] [−n servername] [−o] address [cmd [args ...]]

tlssrvtunnel plain−addr crypt−addr cert.pem

tlsclienttunnel crypt−addr plain−addr trustedkeys

DESCRIPTION
Tlssrv is a helper program, typically exec�d in a /bin/service file to establish an SSL or TLS
connection before launching cmd args; a typical command might start the IMAP or HTTP server.
Cert.pem is the server certificate; factotum(4) should hold the corresponding private key. The
specified logfile is by convention the same as for the target server. Remotesys is mainly used for
logging. If the −a or −A flag is specified, p9any authentication is run before the TLS handshake
and the resulting plan9 session secret is used as a pre-shared key for TLS encryption. This
enables the use of TLS without certificates and also runs the server command as the authorized
user when the −a flag was specified.

Tlsclient is the reverse of tlssrv: it connects to address, starts TLS, and then relays between the
network connection and standard input and output or executes cmd args with standard input and
output redirected to the connection. The −D flag enables some debug output. Specifying a certifi
cate in pem(8) format with the −c flag, causes the client to submit this certificate upon server�s
request. A corresponding key has to be present in factotum(4). The −d flag writes the server�s cer
tificate to the file servercert in binary ASN.1 encoding. If the server doesnt provide a certificate, an
empty file is created. If the −t flag (and, optionally, the −x flag) is given, the remote server must
present a public key whose SHA1 or SHA256 hash is listed in the file trustedkeys but not in the file
excludedkeys . See thumbprint(6) for more information. The −n option passes the string
servername in the TLS hello message (Server Name Idenfitication) which is usefull when talking to
webservers. When the −o option was specified, address is interpreted as a filename to be opend
read-write instead of a dial string.

Tlssrvtunnel and tlsclienttunnel use these tools and listen1 (see listen(8)) to provide TLS network
tunnels, allowing legacy application to take advantage of TLS encryption.

EXAMPLES
Listen for TLS-encrypted IMAP by creating a server certificate /sys/lib/tls/imap.pem and a
listener script /bin/service.auth/tcp993 containing:

#!/bin/rc
exec tlssrv −c/sys/lib/tls/imap.pem −limap4d −r‘{cat $3/remote} \

/bin/ip/imap4d −p −dyourdomain −r‘{cat $3/remote} \
>[2]/sys/log/imap4d

Interact with the server, putting the appropriate hash into /sys/lib/tls/mail and running:

tlsclient −t /sys/lib/tls/mail tcp!server!imaps

Create a TLS-encrypted VNC connection from a client on kremvax to a server on moscvax:

mosc% vncs −d :3
mosc% tlssrvtunnel tcp!moscvax!5903 tcp!*!12345 \

/usr/you/lib/cert.pem
krem% tlsclienttunnel tcp!moscvax!12345 tcp!*!5905 \

/usr/you/lib/cert.thumb
krem% vncv kremvax:5

(The port numbers passed to the VNC tools are offset by 5900 from the actual TCP port numbers.)

FILES
/sys/lib/tls

1066

TLSSRV(8) TLSSRV(8)

SOURCE
/sys/src/cmd/tlssrv.c
/sys/src/cmd/tlsclient.c
/rc/bin/tlssrvtunnel
/rc/bin/tlsclienttunnel

SEE ALSO
factotum(4), listen(8), rsa(8)
Unix�s stunnel

1067

TRAMPOLINE(8) TRAMPOLINE(8)

NAME
trampoline � forward incoming calls to another address

SYNOPSIS
aux/trampoline [−9] [−a altaddr] [−m netdir] [−t timeout] addr

DESCRIPTION
Trampoline can be used in a service file (see listen(8)) to link an incoming call to another address
that provides the service, typically on another machine.

Trampoline dials addr and copies data between that connection and its own standard input and
output.

The options are:

−9 The connection carries only 9P messages. In this case trampoline will relay whole mes
sages at a time.

−a altaddr
Dial altaddr and relay between the two network connections, ignoring standard input and
output.

−m netdir
Restrict forwarding to particular machines. Netdir must be the incoming call directory.
Trampoline finds the caller�s MAC address m and checks that ndb(6) contains an entry with
ether=m and the attribute trampok. If no such entry is found, the call is rejected.

−t timeout
Terminates the connection after timeout milliseconds of inactivity.

FILES
/sys/log/trampoline logs rejected calls

SOURCE
/sys/src/cmd/aux/trampoline.c

SEE ALSO
dial(2), listen(8)

1068

UDPECHO(8) UDPECHO(8)

NAME
udpecho � echo UDP packets

SYNOPSIS
ip/udpecho [−x ext]

DESCRIPTION
Listen on UDP port 7 and echo back any packets received. This should only be run for testing
since it can be used to disguise the identity of someone doing a denial of service attack.

1069

VBLADE(8) VBLADE(8)

NAME
vblade � virtual AoE target

SYNOPSIS
disk/vblade [−ir] [−s size] [−a shelf.slot] [−c config] file [−e ether]

DESCRIPTION
For each file specified, vblade serves it as an AoE (ATA-over-Ethernet) target via the specified
interfaces. The default interface is /net/ether0. Since AoE uses raw Ethernet frames, the tar
get is only visible on the local ethernet segment.

All target-related options are reset for each file.

Options
−i Initialize the configuration header in file. All previous configuration information is lost.

Without this option, configuration is read from file and command like options override
previous settings.

−r Raw. Do not use a configuration header. This is useful when exporting a device or file
not generally exported by vblade.

−s n The exported target will have size n, rather than the available space in the target. A
size may end in p, t, g, m, or k to specify a customary binary multiplier.

−a m.n Specify the shelf and slot (or major and minor) address of the target. Valid shelf num
bers are between 0 and 65534. Valid slots are 0-255.

−c s Set the AoE config string to s.

−e ether Listen to the network port ether. Multiple ports may be specified.

SEE ALSO
aoe(3), sdaoe(3), http://www.coraid.com/documents/AoEr11.txt.

SOURCE
/sys/src/cmd/disk/vblade

BUGS
Security depends on control of the local Ethernet segment. It may be unwise to serve AoE on a
segment bridged to a wireless network.

1070

VENTI(8) VENTI(8)

NAME
venti � archival storage server

SYNOPSIS
venti/venti [−Ldrs] [−a address] [−B blockcachesize] [−c config] [−C lumpcachesize]

[−h httpaddress] [−I indexcachesize] [−m free−memory%] [−W webroot]

DESCRIPTION
Venti is a SHA1-addressed archival storage server. See venti(6) for a full introduction to the sys
tem. This page documents the structure and operation of the server.

A venti server requires multiple disks or disk partitions, each of which must be properly formatted
before the server can be run.

Disk
The venti server maintains three disk structures, typically stored on raw disk partitions: the
append-only data log, which holds, in sequential order, the contents of every block written to the
server; the index, which helps locate a block in the data log given its score; and optionally the
bloom filter, a concise summary of which scores are present in the index. The data log is the pri
mary storage. To improve the robustness, it should be stored on a device that provides RAID func
tionality. The index and the bloom filter are optimizations employed to access the data log effi
ciently and can be rebuilt if lost or damaged.

The data log is logically split into sections called arenas, typically sized for easy offline backup
(e.g., 500MB). A data log may comprise many disks, each storing one or more arenas. Such disks
are called arena partitions. Arena partitions are filled in the order given in the configuration.

The index is logically split into block-sized pieces called buckets, each of which is responsible for
a particular range of scores. An index may be split across many disks, each storing many buckets.
Such disks are called index sections.

The index must be sized so that no bucket is full. When a bucket fills, the server must be shut
down and the index made larger. Since scores appear random, each bucket will contain approxi
mately the same number of entries. Index entries are 40 bytes long. Assuming that a typical
block being written to the server is 8192 bytes and compresses to 4096 bytes, the active index is
expected to be about 1% of the active data log. Storing smaller blocks increases the relative index
footprint; storing larger blocks decreases it. To allow variation in both block size and the random
distribution of scores to buckets, the suggested index size is 5% of the active data log.

The (optional) bloom filter is a large bitmap that is stored on disk but also kept completely in
memory while the venti server runs. It helps the venti server efficiently detect scores that are not
already stored in the index. The bloom filter starts out zeroed. Each score recorded in the bloom
filter is hashed to choose nhash bits to set in the bloom filter. A score is definitely not stored in
the index of any of its nhash bits are not set. The bloom filter thus has two parameters: nhash
(maximum 32) and the total bitmap size (maximum 512MB, 232 bits).

The bloom filter should be sized so that nhash × nblock f 0.7 × b, where nblock is the expected
number of blocks stored on the server and b is the bitmap size in bits. The false positive rate of
the bloom filter when sized this way is approximately 2�nblock. Nhash less than 10 are not very
useful; nhash greater than 24 are probably a waste of memory. Fmtbloom (see venti−fmt(8)) can
be given either nhash or nblock; if given nblock, it will derive an appropriate nhash.

Memory
Venti can make effective use of large amounts of memory for various caches.

The lump cache holds recently-accessed venti data blocks, which the server refers to as lumps.
The lump cache should be at least 1MB but can profitably be much larger. The lump cache can be
thought of as the level-1 cache: read requests handled by the lump cache can be served instantly.

The block cache holds recently-accessed disk blocks from the arena partitions. The block cache
needs to be able to simultaneously hold two blocks from each arena plus four blocks for the
currently-filling arena. The block cache can be thought of as the level-2 cache: read requests han
dled by the block cache are slower than those handled by the lump cache, since the lump data
must be extracted from the raw disk blocks and possibly decompressed, but no disk accesses are
necessary.

1071

VENTI(8) VENTI(8)

The index cache holds recently-accessed or prefetched index entries. The index cache needs to be
able to hold index entries for three or four arenas, at least, in order for prefetching to work prop
erly. Each index entry is 50 bytes. Assuming 500MB arenas of 128,000 blocks that are 4096
bytes each after compression, the minimum index cache size is about 6MB. The index cache can
be thought of as the level-3 cache: read requests handled by the index cache must still go to disk
to fetch the arena blocks, but the costly random access to the index is avoided.

The size of the index cache determines how long venti can sustain its �burst� write throughput,
during which time the only disk accesses on the critical path are sequential writes to the arena par
titions. For example, if you want to be able to sustain 10MB/s for an hour, you need enough index
cache to hold entries for 36GB of blocks. Assuming 8192-byte blocks, you need room for almost
five million index entries. Since index entries are 50 bytes each, you need 250MB of index cache.
If the background index update process can make a single pass through the index in an hour,
which is possible, then you can sustain the 10MB/s indefinitely (at least until the arenas are all
filled).

The bloom filter requires memory equal to its size on disk, as discussed above.

A reasonable starting allocation is to divide memory equally (in thirds) between the bloom filter,
the index cache, and the lump and block caches; the third of memory allocated to the lump and
block caches should be split unevenly, with more (say, two thirds) going to the block cache.

Network
The venti server announces two network services, one (conventionally TCP port venti, 17034)
serving the venti protocol as described in venti(6), and one serving HTTP (conventionally TCP port
http, 80).

The venti web server provides the following URLs for accessing status information:

/index A summary of the usage of the arenas and index sections.

/xindex An XML version of /index.

/storage Brief storage totals.

/set/variable
The current integer value of variable. Variables are: compress, whether or not to
compress blocks (for debugging); logging, whether to write entries to the debug
ging logs; stats, whether to collect run-time statistics; icachesleeptime, the
time in milliseconds between successive updates of megabytes of the index cache;
arenasumsleeptime, the time in milliseconds between reads while checksum
ming an arena in the background. The two sleep times should be (but are not) man
aged by venti; they exist to provide more experience with their effects. The other
variables exist only for debugging and performance measurement.

/set/variable/value
Set variable to value.

/graph/name/param/param
A PNG image graphing the named run-time statistic over time. The details of
names and parameters are undocumented; see httpd.c in the venti sources.

/log A list of all debugging logs present in the server�s memory.

/log/name The contents of the debugging log with the given name.

/flushicache
Force venti to begin flushing the index cache to disk. The request response will not
be sent until the flush has completed.

/flushdcache
Force venti to begin flushing the arena block cache to disk. The request response
will not be sent until the flush has completed.

Requests for other files are served by consulting a directory named in the configuration file (see
webroot below).

Configuration File
A venti configuration file enumerates the various index sections and arenas that constitute a venti

1072

VENTI(8) VENTI(8)

system. The components are indicated by the name of the file, typically a disk partition, in which
they reside. The configuration file is the only location that file names are used. Internally, venti
uses the names assigned when the components were formatted with fmtarenas or fmtisect (see
venti−fmt(8)). In particular, only the configuration needs to be changed if a component is moved to
a different file.

The configuration file consists of lines in the form described below. Lines starting with # are com
ments.

index name Names the index for the system.

arenas file File is an arena partition, formatted using fmtarenas.

isect file File is an index section, formatted using fmtisect.

bloom file File is a bloom filter, formatted using fmtbloom.

After formatting a venti system using fmtindex, the order of arenas and index sections should not
be changed. Additional arenas can be appended to the configuration; run fmtindex with the −a
flag to update the index.

The configuration file also holds configuration parameters for the venti server itself. These are:

mem size lump cache size
bcmem size block cache size
icmem size index cache size
addr netaddr network address to announce venti service (default tcp!*!venti)
httpaddr netaddr network address to announce HTTP service (default tcp!*!http)
queuewrites queue writes in memory (default is not to queue)
webroot dir directory tree containing files for venti�s internal HTTP server to consult for

unrecognized URLs

The units for the various cache sizes above can be specified by appending a k, m, or g (case-
insensitive) to indicate kilobytes, megabytes, or gigabytes respectively.

The file name in the configuration lines above can be of the form file:lo−hi to specify a range of
the file. Lo and hi are specified in bytes but can have the usual k, m, or g suffixes. Either lo or hi
may be omitted. This notation eliminates the need to partition raw disks on non-Plan 9 systems.

Command Line
Many of the options to Venti duplicate parameters that can be specified in the configuration file.
The command line options override those found in a configuration file. Additional options are:

−c config The server configuration file (default venti.conf)

−d Produce various debugging information on standard error. Implies −s.

−L Enable logging. By default all logging is disabled. Logging slows server operation con
siderably.

−m Allocate free−memory% percent of the available free RAM, and partition it per the guide
lines in the Memory subsection. This percentage should be large enough to include
the entire bloom filter. This overrides all other memory sizing parameters, including
those on the command line and in the configuration file.

−r Allow only read access to the venti data.

−s Do not run in the background. Normally, the foreground process will exit once the
Venti server is initialized and ready for connections.

EXAMPLE
A simple configuration:

% cat venti.conf
index main
isect /tmp/disks/isect0
isect /tmp/disks/isect1
arenas /tmp/disks/arenas
bloom /tmp/disks/bloom
%

1073

VENTI(8) VENTI(8)

Format the index sections, the arena partition, the bloom filter, and finally the main index:

% venti/fmtisect isect0. /tmp/disks/isect0
% venti/fmtisect isect1. /tmp/disks/isect1
% venti/fmtarenas arenas0. /tmp/disks/arenas &
% venti/fmtbloom /tmp/disks/bloom &
% wait
% venti/fmtindex venti.conf
%

Start the server and check the storage statistics:

% venti/venti
% hget http://$sysname/storage

SOURCE
/sys/src/cmd/venti/srv

SEE ALSO
venti(1), venti(2), venti(6), venti−backup(8), venti−fmt(8)
Sean Quinlan and Sean Dorward, ��Venti: a new approach to archival storage��, Usenix Conference
on File and Storage Technologies , 2002.

BUGS
Setting up a venti server is too complicated.

1074

VENTI-BACKUP(8) VENTI-BACKUP(8)

NAME
rdarena, wrarena � copy arenas between venti servers

SYNOPSIS
venti/rdarena [−qv] arenapart arenaname

venti/wrarena [−o fileoffset] [−h host] arenafile [clumpoffset]

DESCRIPTION
Rdarena extracts the named arena from the arena partition arenapart and writes this arena to
standard output. This command is typically used to back up an arena to external media. The −v
option generates more verbose output on standard error; −q generates only errors on standard
error.

Wrarena writes the blocks contained in the arena arenafile (typically, the output of rdarena) to a
Venti server. It is typically used to reinitialize a Venti server from backups of the arenas. For
example,

venti/rdarena /dev/sdC0/arenas arena.0 >external.media
venti/wrarena −h venti2 external.media

writes the blocks contained in arena.0 to the Venti server venti2 (typically not the one using
/dev/sdC0/arenas).

The −o option specifies that the arena starts at byte fileoffset (default 0) in arenafile . This is use
ful for reading directly from the Venti arena partition:

venti/wrarena −h venti2 −o 335872 /dev/sdC0/arenas

(In this example, 335872 is the offset shown in the Venti server�s index list (344064) minus one
block (8192). You will need to substitute your own arena offsets and block size.)

Finally, the optional offset argument specifies that the writing should begin with the clump starting
at offset within the arena. Wrarena prints the offset it stopped at (because there were no more
data blocks). This could be used to incrementally back up a Venti server to another Venti server:

last=‘{cat last}
venti/wrarena −h venti2 −o 335872 /dev/sdC0/arenas $last >output
awk ’/^end offset/ { print $3 }’ offset >last

Of course, one would need to add wrapper code to keep track of which arenas have been pro
cessed. See /sys/src/cmd/venti/words/backup.example for a version that does this.

SOURCE
/sys/src/cmd/venti/srv

SEE ALSO
venti(6), venti(8)

BUGS
Wrarena can�t read a pipe or network connection containing an arena; it needs a file already con
taining the entire arena.

1075

VENTI-FMT(8) VENTI-FMT(8)

NAME
buildindex, checkarenas, checkindex, conf, fmtarenas, fmtbloom, fmtindex, fmtisect, syncindex �

prepare and maintain a venti server

SYNOPSIS
venti/fmtarenas [−Z] [−a arenasize] [−b blocksize] name file

venti/fmtisect [−1Z] [−b blocksize] name file

venti/fmtbloom [−n nblocks | −N nhash] [−s size] file

venti/fmtindex [−a] venti.conf

venti/conf [−w] partition [configfile]

venti/buildindex [−bd] [−i isect] ... [−M imemsize] venti.conf

venti/checkindex [−f] [−B blockcachesize] venti.conf tmp

venti/checkarenas [−afv] file

DESCRIPTION
These commands aid in the setup, maintenance, and debugging of venti servers. See venti(6) for
an overview of the venti system and venti(8) for an overview of the data structures used by the
venti server.

Note that the units for the various sizes in the following commands can be specified by appending
k, m, or g to indicate kilobytes, megabytes, or gigabytes respectively.

Formatting
To prepare a server for its initial use, the arena partitions and the index sections must be format
ted individually, with fmtarenas and fmtisect. Then the collection of index sections must be com
bined into a venti index with fmtindex.

Fmtarenas formats the given file, typically a disk partition, into an arena partition. The arenas in
the partition are given names of the form name%d, where %d is replaced with a sequential number
starting at 0.

Options to fmtarenas are:

−a arenasize
The arenas are of arenasize bytes. The default is 512M, which was selected to provide a
balance between the number of arenas and the ability to copy an arena to external media
such as recordable CDs and tapes.

−b blocksize
The size, in bytes, for read and write operations to the file. The size is recorded in the file,
and is used by applications that access the arenas. The default is 8k.

−4 Create a �version 4� arena partition for backwards compatibility with old servers. The
default is version 5, used by the current venti server.

−Z Do not zero the data sections of the arenas. Using this option reduces the formatting time
but should only be used when it is known that the file was already zeroed. (Version 4 only;
version 5 sections are not and do not need to be zeroed.)

Fmtisect formats the given file, typically a disk partition, as a venti index section with the specified
name. Each of the index sections in a venti configuration must have a unique name.

Options to fmtisect are:

−b bucketsize
The size of an index bucket, in bytes. All the index sections within a index must have the
same bucket size. The default is 8k.

−1 Create a �version 1� index section for backwards compatibility with old servers. The default
is version 2, used by the current venti server.

−Z Do not zero the index. Using this option reduces the formatting time but should only be
used when it is known that the file was already zeroed. (Version 1 only; version 2 sections
are not and do not need to be zeroed.)

1076

VENTI-FMT(8) VENTI-FMT(8)

Fmtbloom formats the given file as a Bloom filter (see venti(6)). The options are:

−n nblock | −N nhash
The number of blocks expected to be indexed by the filter or the number of hash func
tions to use. If the −n option is given, it is used, along with the total size of the filter, to
compute an appropriate nhash.

−s size The size of the Bloom filter. The default is the total size of the file. In either case, size is
rounded down to a power of two.

The file argument in the commands above can be of the form file:lo−hi to specify a range of the
file. Lo and hi are specified in bytes but can have the usual k, m, or g suffixes. Either lo or hi may
be omitted. This notation eliminates the need to partition raw disks on non-Plan 9 systems.

Fmtindex reads the configuration file venti.conf and initializes the index sections to form a usable
index structure. The arena files and index sections must have previously been formatted using
fmtarenas and fmtisect respectively.

The function of a venti index is to map a SHA1 fingerprint to a location in the data section of one
of the arenas. The index is composed of blocks, each of which contains the mapping for a fixed
range of possible fingerprint values. Fmtindex determines the mapping between SHA1 values and
the blocks of the collection of index sections. Once this mapping has been determined, it cannot
be changed without rebuilding the index. The basic assumption in the current implementation is
that the index structure is sufficiently empty that individual blocks of the index will rarely overflow.
The total size of the index should be about 2% to 10% of the total size of the arenas, but the exact
percentage depends both on the index block size and the compressed size of blocks stored. See
the discussion in venti(8) for more.

Fmtindex also computes a mapping between a linear address space and the data section of the col
lection of arenas. The −a option can be used to add additional arenas to an index. To use this
feature, add the new arenas to venti.conf after the existing arenas and then run fmtindex −a.

A copy of the above mappings is stored in the header for each of the index sections. These copies
enable buildindex to restore a single index section without rebuilding the entire index.

To make it easier to bootstrap servers, the configuration file can be stored in otherwise empty
space at the beginning of any venti partitions using conf. A partition so branded with a configura
tion file can be used in place of a configuration file when invoking any of the venti commands. By
default, conf prints the configuration stored in partition. When invoked with the −w flag, conf
reads a configuration file from configfile (or else standard input) and stores it in partition.

Checking and Rebuilding
Buildindex populates the index for the Venti system described in venti.conf. The index must have
previously been formatted using fmtindex. This command is typically used to build a new index for
a Venti system when the old index becomes too small, or to rebuild an index after media failure.
Small errors in an index can usually be fixed with checkindex, but checkindex requires a large tem
porary workspace and buildindex does not.

Options to buildindex are:

−b Reinitialise the Bloom filter, if any.

−d �Dumb� mode; run all three passes.

−i isect Only rebuild index section isect; may be repeated to rebuild multiple sections. The
name none is special and just reads the arenas.

−M imemsize The amount of memory, in bytes, to use for caching raw disk accesses while running
buildindex. (This is not a property of the created index.) The usual suffices apply.
The default is 256M.

Checkindex examines the Venti index described in venti.conf. The program detects various error
conditions including: blocks that are not indexed, index entries for blocks that do not exist, and
duplicate index entries. If requested, an attempt can be made to fix errors that are found.

The tmp file, usually a disk partition, must be large enough to store a copy of the index. This tem
porary space is used to perform a merge sort of index entries generated by reading the arenas.

1077

VENTI-FMT(8) VENTI-FMT(8)

Options to checkindex are:

−B blockcachesize
The amount of memory, in bytes, to use for caching raw disk accesses while running
checkindex. The default is 8k.

−f Attempt to fix any errors that are found.

Checkarenas examines the Venti arenas contained in the given file. The program detects various
error conditions, and optionally attempts to fix any errors that are found.

Options to checkarenas are:

−a For each arena, scan the entire data section. If this option is omitted, only the end section
of the arena is examined.

−f Attempt to fix any errors that are found.

−v Increase the verbosity of output.

SOURCE
/sys/src/cmd/venti/srv

SEE ALSO
venti(6), venti(8)

BUGS
Buildindex should allow an individual index section to be rebuilt.

1078

VGA(8) VGA(8)

NAME
vga � configure a VGA card

SYNOPSIS
aux/vga [−BcdilpvV] [−b bios−string] [−m monitor] [−t tilt] [−x file] [mode [size]]

DESCRIPTION
Vga configures a VGA controller for various display sizes and depths. Using the monitor type
specified in /env/monitor (default vga) and the mode given as argument (default
640x480x1), vga uses the database of known VGA controllers and monitors in /lib/vgadb
(see vgadb(6)) to configure the display via the devices provided by vga(3). The options are:

−b bios−string
use the VGA database entry corresponding to bios−string (e.g. 0xC0045="Stealth 64
DRAM Vers. 2.02") rather than looking for identifying strings in the BIOS memory.

−B dump the BIOS memory (in hex) to standard output and exit.

−c disable the use of the hardware graphics cursor.

−d include the color palette in whatever actions are performed, usually printing the contents.

−i when used with −p display the register values that will be loaded.

−l load the desired mode.

−m monitor
override the /env/monitor value. /env/monitor is usually set by including it in the
plan9.ini file read by the PC boot program.

−p print the current or expected register values at appropriate points depending on other
options.

−v print a trace of the functions called.

−V print a verbose trace of the functions called.

−t can be used to change the tilt of the screen. The value is one of none, left, inverted
and right. See vga(3).

−x file
use file as the VGA database rather than /lib/vgadb.

Mode is of the form XxYxZ[,S][,#N] , where X, Y, and Z are numbers specifying the display height,
width, and depth respectively. S is scaling mode, either scalefull or scaleaspect; not specifying it
disables scaling altogether. #N is used to switch to a specific display using its index N.

The mode must appear in /lib/vgadb as a value for one of the monitor entries. The usual
modes are 640x480x[18], 800x600x[18], 1024x768x[18][i],
1280x1024x[18][i], 1376x1024x8, and 1600x1200x8. A trailing i indicates interlaced
operation. The default mode is 640x480x8. Size is of the form X x Y and configures the display
to have a virtual screen of the given size.

Using the monitor name vesa instructs vga to use VESA BIOS calls to configure the display. Also,
if our VGA controller can�t be found in vgadb, vga will try the VESA calls. There are no entries for
the vesa monitor in vgadb. For a list of available VESA modes and connected displays, use

aux/vga −m vesa −p

Loading the special mode text:

aux/vga −l text

switches out of graphics mode back into text mode. It uses the VESA BIOS.

EXAMPLES
Change the display resolution:

aux/vga −l 1600x1200x8

Show connected and active displays:

1079

VGA(8) VGA(8)

aux/vga −m vesa −p | grep dsp

Switch to display 4 and load a specific mode:

aux/vga −m vesa −l ’1920x1080x16,#4’

Print the current VGA controller registers. It is usually best to redirect the output of a −p com
mand to a file to prevent confusion caused by using the VGA controller while trying to dump its
state:

aux/vga −p >/tmp/x

Force the VGA controller to a known state:

aux/vga −m vga −l

Print the current VGA controller state and what would be loaded into it for a new resolution, but
don�t do the load:

aux/vga −ip 1376x1024x8 >/tmp/x

FILES
/env/monitor display type (default vga).
/lib/vgadb VGA configuration file.

SOURCE
/sys/src/cmd/aux/vga

SEE ALSO
vga(3), vgadb(6),

BUGS
Aux/vga makes every effort possible to verify that the mode it is about to load is valid and will
bail out with an error message before setting any registers if it encounters a problem. However,
things can go wrong, especially when playing with a new VGA controller or monitor setting. It is
useful in such cases to have the above command for setting the controller to a known state at your
fingertips.

Scaling modes currently work with Intel and NVIDIA video adapters only, using VESA. Intel doesn�t
support scaleaspect mode.

Display switching currently works with Intel video adapters only, using VESA.

1080

WOL(8) WOL(8)

NAME
wol � send wake-on-lan Ethernet packet

SYNOPSIS
ip/wol [−v] [−a dialstr] [−c password] macaddr

DESCRIPTION
Wol sends a magic wake-on-lan Ethernet packet to dialstr (default udp!255.255.255.255!0,
the IPv4 broadcast address), intended to wake up the machine with an Ethernet interface with the
MAC address macaddr. Macaddr is not used to route the packet, but is inserted into the magic
packet as required by the wake-on-lan protocol.

An optional password of at most six bytes can be sent. The option −v prints verbose information
about the packet sent.

SEE ALSO
dial(2), parseether in ip(2)
http://en.wikipedia.org/wiki/Wake−on−LAN

1081

WPA(8) WPA(8)

NAME
wpa � Wi-Fi Protected Access setup

SYNOPSIS
aux/wpa [−dp12] [−s essid] dev

DESCRIPTION
Wpa handles the authentication and key exchange with WPA protected wireless networks.

The dev parameter specifies the network interface that needs to be setup with WPA. The essid can
be set with the −s option. Otherwise, the previously configured essid on the interface will be used.
The −p option will prompt and install the preshared key or pap/chap credentials into factotum,
otherwise the key has to be already present in factotum or an interactive key prompter like
auth/fgui (see factotum(4)) needs to provide it.

The authentication protocol is initiated by the wireless access point so wpa will background itself
after the keyprompt and establish the encryption automatically as needed. The optional −1 or −2
arguments can be used to select between WPA1/TKIP (default) or WPA2/CCMP encryption with WPA
PSK.

The −d option enables debugging and causes wpa to stay in foreground writing protocol messages
to standard error.

EXAMPLES
Setup wireless encryption:
% bind −a ’#l1’ /net
% aux/wpa −s 9HAL −p /net/ether1
!Adding key: proto=wpapsk essid=9HAL
password: *****
!
% ip/ipconfig ether /net/ether1

SOURCE
/sys/src/cmd/aux/wpa.c

SEE ALSO
factotum(4), ipconfig(8)

HISTORY
Wpa first appeared in 9front (March, 2013).

1082

ZEROTRUNC(8) ZEROTRUNC(8)

NAME
zerotrunc � truncate input on zero byte

SYNOPSIS
aux/zerotrunc

DESCRIPTION
Zerotrunc copies input to output until reading a first zero byte or end-of-file.

EXAMPLES
Zerotrunc can be used to read metadata of Plan 9 image files, e. g.:

% aux/zerotrunc < /dev/window

SOURCE
/sys/src/cmd/aux/zerotrunc.c

SEE ALSO
cat(1)

1083

INTRO(9) INTRO(9)

NAME
intro � introduction to kernel functions

DESCRIPTION
This section of the manual describes the functions publicly available to the authors of kernel code,
particularly device drivers (real and virtual). This section will eventually be much expanded, but
this makes a start.

The SYNOPSIS subsections do not show the header files needed for the standard kernel declarations.
The primary combinations summarised below:

#include "u.h"
#include "../port/lib.h"
#include "mem.h"
#include "dat.h"
#include "fns.h"
#include "../port/error.h"

furthermore, added in IP code:
#include "../ip/ip.h"

furthermore, in hardware device drivers:
#include "io.h"
#include "ureg.h"

furthermore, in network interfaces or ether drivers:
#include "../port/netif.h"

There might also be specific include files needed by drivers on particular platforms or to use spe
cialised kernel interfaces. The easiest method is to check the source of likely-looking drivers
nearby.

1084

ALLOCB(9) ALLOCB(9)

NAME
allocb, iallocb, freeb, freeblist, BLEN, BALLOC, blocklen, blockalloclen, readblist, concatblock, copy
block, trimblock, packblock, padblock, pullblock, pullupblock, adjustblock, checkb � data block
management

SYNOPSIS
Block* allocb(int size)

Block* iallocb(int size)

void freeb(Block *b)

void freeblist(Block *b)

int blocklen(Block *b)

int blockalloclen(Block *b)

long readblist(Block *b, uchar *p, long n, ulong offset)

Block* concatblock(Block *b)

Block* copyblock(Block *b, int n)

Block* trimblock(Block *b, int offset, int n)

Block* packblock(Block *b)

Block* padblock(Block *b, int n)

int pullblock(Block **bph, int n)

Block* pullupblock(Block *b, int n)

Block* adjustblock(Block *b, int n)

void checkb(Block *b, char *msg)

#define BLEN(s)((s)−>wp − (s)−>rp)

#define BALLOC(s) ((s)−>lim − (s)−>base)

DESCRIPTION
A Block provides a receptacle for data:

typedef
struct Block
{

Block* next;
Block* list;
uchar* rp; /* first unconsumed byte */
uchar* wp; /* first empty byte */
uchar* lim; /* 1 past the end of the buffer */
uchar* base; /* start of the buffer */
void (*free)(Block*);
ushort flag;
ushort checksum; /* IP checksum of complete packet */

} Block;

Each Block has an associated buffer, located at base, and accessed via wp when filling the
buffer, or rp when fetching data from it. Each pointer should be incremented to reflect the
amount of data written or read. A Block is empty when rp reaches wp. The pointer lim
bounds the allocated space. Some operations described below accept lists of Blocks, which are
chained via their next pointers, with a null pointer ending the list. Blocks are usually intended
for a Queue (see qio(9)), but can be used independently.

A Block and its buffer are normally allocated by one call to malloc(9) and aligned on an 8 byte
(BY2V) boundary. Some devices with particular allocation constraints (eg, requiring certain
addresses for DMA) might allocate their own Block and buffer; free must then point to a func
tion that can deallocate the specially allocated Block.

1085

ALLOCB(9) ALLOCB(9)

Many Block operations cannot be used in interrupt handlers because they either sleep(9) or raise
an error(9). Of operations that allocate blocks, only iallocb is usable.

Allocb allocates a Block of at least size bytes. The block is initially empty: rp and wp point to
the start of the data. If it cannot allocate memory, allocb raises an error(9); it cannot be used by
an interrupt handler.

Iallocb is similar to allocb but is intended for use by interrupt handlers, and returns a null pointer
if no memory is available. It also limits its allocation to a quota allocated at system initialisation to
interrupt-time buffering.

Freeb frees a single Block (and its buffer).

Freeblist frees the whole list of blocks headed by b.

BLEN returns the number of unread bytes in a single block.

BALLOC returns the number of allocated bytes in a single block.

Blocklen returns the number of bytes of unread data in the whole list of blocks headed by b.

Blockalloclen returns the number of total bytes allocated in the whole list of blocks headed by b.

Readblist copies n bytes of data at offset offset from the list of blocks headed by b into p, then
returns the amount of bytes copied. It leaves the block list intact.

Concatblock returns b if it is not a list, and otherwise returns a single Block containing all the
data in the list of blocks b, which it frees.

Copyblock by contrast returns a single Block containing a copy of the first n bytes of data in the
block list b, padding with zeroes if the list contained less than n bytes. The list b is unchanged.

Padblock can pad a single Block at either end, to reserve space for protocol headers or trailers.
If ne0, it inserts n bytes at the start of the block, setting the read pointer rp to point to the new
space. If n<0, it adds n bytes at the end of the block, leaving the write pointer wp pointing at the
new space. In both cases, it allocates a new Block if necessary, freeing the old, and it always
returns a pointer to the resulting Block.

Trimblock trims the list b to contain no more than n bytes starting at offset bytes into the data of
the original list. It returns a new list, freeing unneeded parts of the old. If no data remains, it
returns a null pointer.

Packblock examines each Block in the list b, reallocating any block in the list that has four times
more available space than actual data. It returns a pointer to the revised list.

Pullblock discards up to n bytes from the start of the list headed by *bph. Unneeded blocks are
freed. Pullblock sets *bph to point to the new list head and returns the number of bytes discarded
(which might be less than n). It is used by transport protocols to discard ack�d data at the head of
a retransmission queue.

Pullupblock rearranges the data in the list of blocks b to ensure that there are at least n bytes of
contiguous data in the first block, and returns a pointer to the new list head. It frees any blocks
that it empties. It returns a null pointer if there is not enough data in the list.

Adjustblock ensures that the block b has at least n bytes of data, reallocating or padding with zero
if necessary. It returns a pointer to the new Block. (If n is negative, it frees the block and
returns a null pointer.)

Checkb does some consistency checking of the state of b; a panic(9) results if things look grim. It
is intended for internal use by the queue I/O routines (see qio(9)) but could be used elsewhere.

The only functions that can be called at interrupt level are iallocb, freeb, freeblist, BLEN , BALLOC ,
blocklen, blockalloclen, readblist and trimblock. The others allocate memory and can potentially
block.

SOURCE
/sys/src/9/port/allocb.c
/sys/src/9/port/qio.c

DIAGNOSTICS
Many functions directly or indirectly can raise an error(9), and callers must therefore provide for
proper error recovery as described therein to prevent memory leaks and other bugs. Except for

1086

ALLOCB(9) ALLOCB(9)

iallocb, any functions that allocate new blocks or lists are unsuitable for use by interrupt handlers.
Iallocb returns a null pointer when it runs out of memory.

SEE ALSO
qio(9)

1087

DELAY(9) DELAY(9)

NAME
delay, microdelay, addclock0link � small delays, clock interrupts

SYNOPSIS
void delay(int ms)

void microdelay(int µs)

Timer* addclock0link(void(*clockf)(void), int ms)

DESCRIPTION
Delay busy waits for ms milliseconds. The minimum value of ms is one on most architectures.

Microdelay works exactly the same as delay but using microseconds instead.

These routines are intended for use in interrupt contexts, device reset and shutdown functions,
and other places where the scheduler is unavailable. When you have a process context, and can
sleep, consider tsleep(9). Tsleep does not busy wait.

Addclock0link adds a new periodic timer to the current processor�s timer list, with clockf executing
every ms milliseconds. If ms is zero a default clock is used, it will panic otherwise (i.e. ms < 0).

SOURCE
/sys/src/9/port/portclock.c
/sys/src/9/*/clock.c

SEE ALSO
sleep(9)

1088

ERROR(9) ERROR(9)

NAME
error, nexterror, poperror, waserror � error handling functions

SYNOPSIS
void error(char*)

void nexterror(void)

#define poperror() (up−>nerrlab−−)

#define waserror() (setlabel(&up−>errlab[up−>nerrlab++]))

DESCRIPTION
The kernel handles error conditions using non-local gotos, similar to setjmp(2), but using a stack
of error labels to implement nested exception handling. This simplifies many of the internal inter
faces by eliminating the need for returning and checking error codes at every level of the call
stack, at the cost of requiring kernel routines to adhere to a strict discipline.

Each process has in its defining kernel Proc structure a stack of labels, NERR (currently 64) ele
ments deep. A kernel function that must perform a clean up or recovery action on an error makes
a stylised call to waserror, nexterror and poperror:

if(waserror()){
/* recovery action */
nexterror();

}
/* normal action */
poperror();

When called in the normal course of events, waserror registers an error handling block by pushing
its label onto the stack, and returns zero. The return value of waserror should be tested as shown
above. If non-zero (true), the calling function should perform the needed error recovery, ended by
a call to nexterror to transfer control to the next location on the error stack. Typical recovery
actions include deallocating memory, unlocking resources, and resetting state variables.

Within the recovery block, after handling an error condition, there must normally be a call to
nexterror to transfer control to any error recovery lower down in the stack. The main exception is
in the outermost function in a process, which must not call nexterror (there being nothing further
on the stack), but calls pexit (see kproc(9)) instead, to terminate the process.

When the need to recover a particular resource has passed, a function that has called waserror
must remove the corresponding label from the stack by calling poperror. This must be done
before returning from the function; otherwise, a subsequent call to error will return to an obsolete
activation record, with unpredictable but unpleasant consequences.

Error copies the given error message, which is limited to ERRMAX bytes, into the Proc.errstr
of the current process, enables interrupts by calling spllo (native only), and finally calls nexterror
to start invoking the recovery procedures currently stacked by waserror. The file
/sys/src/9/port/error.h offers a wide selection of predefined error messages, suitable
for almost any occasion. The message set by the most recent call to error can be obtained within
the kernel by examining up−>error and in an application, by using the %r directive of print(2).

A complex function can have nested error handlers. A waserror block will follow the acquisition of
a resource, releasing it on error before calling nexterror, and a poperror will precede its release in
the normal case. For example:

void
outer(Thing *t)
{

qlock(t);
if(waserror()){ /* A */

qunlock(t);
nexterror();

}
m = mallocz(READSTR, 0);
if(m == nil)

1089

ERROR(9) ERROR(9)

error(Enomem); /* returns to A */
if(waserror()){ /* B */

free(m);
nexterror(); /* invokes A */

}
inner(t);
poperror(); /* pops B */
free(m);
poperror(); /* pops A */
qunlock(t);

}

void
inner(Thing *t)
{

if(t−>bad)
error(Egreg); /* returns to B */

t−>valid++;
}

SOURCE
/sys/src/9/port/proc.c

CAVEATS
The description above has many instances of should, will, must and must not.

SEE ALSO
panic(9), kproc(9), splhi(9)

1090

EVE(9) EVE(9)

NAME
eve, iseve � privileged user

SYNOPSIS
char *eve;

int iseve(void)

DESCRIPTION
Eve is a null-terminated string containing the name of the owner of the Plan 9 system (sometimes
called the �host owner�, see cons(3)). The identity is set on a terminal to the name of the user who
logs in. It is set on a CPU server to the authid obtained either from NVRAM or by a console
prompt. The initial process created by system initialisation is given the eve identity.

Iseve returns true if the current user is eve. Several drivers use iseve to check the caller�s identity
before granting permission to perform certain actions. For example, the console driver allows only
the user eve to write a new identity into the /dev/user file. The privileges are strictly local and
do not extend into the network (in particular, to file servers�even ones running on the local
machine).

SOURCE
/sys/src/9/port/auth.c

SEE ALSO
auth(2), cap(3), cons(3), authsrv(6), auth(8)

1091

INB(9) INB(9)

NAME
inb, ins, inl, outb, outs, outl, insb, inss, insl, outsb, outss, outsl � programmed I/O

SYNOPSIS
int inb(int port)

ushort ins(int port)

ulong inl(int port)

void outb(int port, int value)

void outs(int port, ushort value)

void outl(int port, ulong value)

void insb(int port, void *address, int count)

void inss(int port, void *address, int count)

void insl(int port, void *address, int count)

void outsb(int port, void *address, int count)

void outss(int port, void *address, int count)

void outsl(int port, void *address, int count)

DESCRIPTION
The x86 implementation provides functions to allow kernel code written in C to access the I/O
address space. On several other architectures such as the PowerPC and Strongarm, the platform-
dependent code provides similar functions to access devices with an I/O space interface, even
when that is memory mapped, to encourage portability of device drivers.

Inb, ins and inl apply the corresponding hardware instruction to fetch the next byte, short or long
from the I/O port. Outb, outs and outl output a value to the I/O port.

The remaining functions transfer count bytes, shorts, or longs using programmed I/O between a
memory address and port. Functions insX copy values into memory; functions outsX copy val
ues from memory. The count is in elements, not bytes.

SOURCE
/sys/src/9/pc/l.s

SEE ALSO
dma(9)

1092

INTRENABLE(9) INTRENABLE(9)

NAME
intrenable, intrdisable � enable (disable) an interrupt handler

SYNOPSIS
void intrenable(int v, void (*f)(Ureg*, void*), void* a, int tbdf,
char *name)

void intrdisable(int v, void (*f)(Ureg*, void*), void* a, int tbdf,
char *name)

DESCRIPTION
Intrenable registers f to be called by the kernel�s interrupt controller driver each time an interrupt
denoted by v occurs, and unmasks the corresponding interrupt in the interrupt controller. The
encoding of v is platform-dependent; it is often an interrupt vector number, but can be more com
plex. Tbdf is a platform-dependent value that might further qualify v. It might for instance denote
the type of bus, bus instance, device number and function (following the PCI device indexing
scheme), hence its name, but can have platform-dependent meaning. Name is a string that
should uniquely identify the corresponding device (eg, "uart0"); again it is usually platform-
dependent. Intrenable supports sharing of interrupt levels when the hardware does.

Almost invariably f is a function defined in a device driver to carry out the device-specific work
associated with a given interrupt. The pointer a is passed to f; typically it points to the driver�s
data for a given device or controller. It also passes f a Ureg* value that contains the registers
saved by the interrupt handler (the contents are platform specific; see the platform�s include file
ureg.h).

F is invoked by underlying code in the kernel that is invoked directly from the hardware vectors. It
is therefore not running in any process (see kproc(9); indeed, on many platforms the current pro
cess pointer (up) will be nil. There are many restrictions on kernel functions running outside a
process, but a fundamental one is that they must not sleep(9), although they often call wakeup to
signal the occurrence of an event associated with the interrupt. Qio(9) and other manual pages
note which functions are safe for f to call.

The interrupt controller driver does whatever is required to acknowledge or dismiss the interrupt
signal in the interrupt controller, before calling f, for edge-triggered interrupts, and after calling f
for level-triggered ones. F is responsible for dealing with the cause of the interrupt in the device,
including any acknowledgement required in the device, before it returns.

Intrdisable removes any registration previously made by intrenable with matching parameters, and
if no other interrupt is active on v, it masks the interrupt in the controller. Device drivers that are
not dynamically configured tend to call intrenable during reset or initialisation (see dev(9)), but can
call it at any appropriate time, and instead of calling intrdisable they can simply enable or disable
interrupts in the device as required.

SOURCE
/sys/src/9/*/trap.c

SEE ALSO
malloc(9), qio(9), sleep(9), splhi(9)

1093

KPROC(9) KPROC(9)

NAME
kproc, pexit, postnote � kernel process creation, termination and interruption

SYNOPSIS
void kproc(char *name, void (*func)(void*), void *arg)

void pexit(char *note, int freemem)

int postnote(Proc *p, int dolock, char *n, int flag)

DESCRIPTION
Kproc creates a new kernel process to run the function func, which is invoked as
(*func)(arg). The string name is copied into the text field of the Proc structure of the
new process; this value is the name of the kproc in the output of ps(1). The process is made runn
able; it will run when selected by the scheduler sched(9). The process is created with base and cur
rent priorities set to PriKproc. It shares the kernel process group and thus name space.

A kernel process terminates only when it calls pexit, thereby terminating itself. There is no mecha
nism for one process to force the termination of another, although it can send a software interrupt
using postnote. Note is a null string on normal termination, or the cause of If freemem is non-
zero, any memory allocated by the process is discarded; it should normally be non-zero for any
process created by kproc. Use the following to terminate a kernel process normally:

pexit("", 1);

Postnote sends a software interrupt to process p, causing it, if necessary, to wake from sleep(9) or
break out of a rendezvous (2) or an eqlock(9), with an error(9) �interrupted�. Up to NNOTE notes
can be pending at once (currently 5); if more than that arrive, the process is forced out of sleep,
rendezvous and eqlock, but the message itself is discarded. Postnote returns non-zero iff the note
has been delivered successfully. If dolock is non-zero, postnote synchronises delivery of the note
with the debugger and other operations of proc(3). Flag is zero, or one of the following

NDebug
Print the note message on the user�s standard error. Furthermore, suspend the process in
a Broken state, preserving its memory, for later debugging.

NExit
Deliver the note quietly.

NUser
The note comes from another process, not the system.

The kernel uses postnote to signal processes that commit grave faults, and to implement the note
and kill functions of proc(3). A device driver should use postnote only to tell a service process, pre
viously started by the driver using kproc , that it should stop; the note will cause that process to
raise an error(9). For example, a process started to read packets from a network device could be
stopped as follows when the interface is unbound:

postnote(readp, 1, "unbind", 0);

where readp points to the appropriate Proc. The text of the message is typically irrelevant.

SOURCE
/sys/src/9/port/proc.c

1094

MALLOC(9) MALLOC(9)

NAME
malloc, mallocz, smalloc, realloc, free, msize, secalloc, secfree, setmalloctag, setrealloctag, getmal
loctag, getrealloctag � kernel memory allocator

SYNOPSIS
void* malloc(ulong size)

void* mallocalign(ulong size, ulong align, long offset, ulong span)

void* mallocz(ulong size, int clr)

void* smalloc(ulong size)

void* realloc(void *p, ulong size)

void free(void *ptr)

ulong msize(void *ptr)

void* secalloc(ulong size)

void secfree(void *ptr)

void setmalloctag(void *ptr, ulong tag)

ulong getmalloctag(void *ptr)

void setrealloctag(void *ptr, ulong tag)

ulong getrealloctag(void *ptr)

DESCRIPTION
These are kernel versions of the functions in malloc(2). They allocate memory from the mainmem
memory pool, which is managed by the allocator pool(2), which in turn replenishes the pool as
required by calling xalloc(9). All but smalloc (which calls sleep(9)) may safely be called by interrupt
handlers.

Malloc returns a pointer to a block of at least size bytes, initialised to zero. The block is suitably
aligned for storage of any type of object. The call malloc(0) returns a valid pointer rather than
null. Mallocz is similar, but only clears the memory if clr is non-zero.

Smalloc returns a pointer to a block of size bytes, initialised to zero. If the memory is not immedi
ately available, smalloc retries every 100 milliseconds until the memory is acquired.

Mallocalign allocates a block of at least n bytes of memory respecting alignment contraints. If
align is non-zero, the returned pointer is aligned to be equal to offset modulo align. If span is
non-zero, the n byte block allocated will not span a span-byte boundary.

Realloc changes the size of the block pointed to by p to size bytes, if possible without moving the
data, and returns a pointer to the block. The contents are unchanged up to the lesser of old and
new sizes, and any new space allocated is initialised to zero. Realloc takes on special meanings
when one or both arguments are zero:

realloc(0, size)
means malloc(size); returns a pointer to the newly-allocated memory

realloc(ptr, 0)
means free(ptr); returns null

realloc(0, 0)
no-op; returns null

The argument to free is a pointer to a block of memory allocated by one of the routines above,
which is returned to the allocation pool, or a null pointer, which is ignored.

When a block is allocated, sometimes there is some extra unused space at the end. Msize grows
the block to encompass this unused space and returns the new number of bytes that may be used.

Secalloc and secfree are security-aware functions that use a pool flagged by POOL_ANTAGONISM
(see pool(2)), which fills every allocated block with garbage before and after its use, to prevent
leakage.

1095

MALLOC(9) MALLOC(9)

The memory allocator maintains two word-sized fields associated with each block, the ��malloc
tag�� and the ��realloc tag��. By convention, the malloc tag is the PC that allocated the block, and
the realloc tag the PC that last reallocated the block. These may be set or examined with
setmalloctag, getmalloctag, setrealloctag, and getrealloctag. When allocating blocks directly with
malloc and realloc, these tags will be set properly. If a custom allocator wrapper is used, the allo
cator wrapper can set the tags itself (usually by passing the result of getcallerpc(2) to
setmalloctag) to provide more useful information about the source of allocation.

SOURCE
/sys/src/9/port/alloc.c

DIAGNOSTICS
All functions except smalloc return a null pointer if space is unavailable. If the allocated blocks
have no malloc or realloc tags, getmalloctag and getrealloctag return ~0.

SEE ALSO
pool(2), xalloc(9)

1096

PANIC(9) PANIC(9)

NAME
panic � abandon hope, all ye who enter here

SYNOPSIS
void panic(char *fmt, ...)

DESCRIPTION
Panic writes a message to the console and causes the system to give up the host. It enables inter
rupts, dumps the kernel stack, and halts the current processor; if more than one, others will gradu
ally come to a halt. Depending on configuration settings, the platform-dependent exit might
reboot the system. The format fmt and associated arguments are the same as those for print(9).
Panic adds a prefix panic: and a trailing newline.

1097

PARSECMD(9) PARSECMD(9)

NAME
parsecmd, cmderror, lookupcmd � parse device commands

SYNOPSIS
Cmdbuf* parsecmd(char *a, int n)

void cmderror(Cmdbuf *cb, char *s)

Cmdtab* lookupcmd(Cmdbuf *cb, Cmdtab *ctab, int nctab)

DESCRIPTION
Parsecmd is an interface to tokenize (see getfields(2)), that safely parses a command, with blank-
separated fields, as might be written to a device�s ctl file. The buffer a and count n can be those
passed to the driver�s write function. Parsecmd converts the byte array (which might not be null-
terminated) to a null-terminated string, trimming any trailing new line, before invoking tokenize to
break the string into arguments, interpreting blank and tab as field separators when they are not
quoted (in the style of rc(1)). It returns a pointer to a dynamically-allocated Cmdbuf structure,
which holds a copy of the string and the resulting fields; it is defined as follows:

typedef
struct Cmdbuf
{

char *buf;
char **f;
int nf;

} Cmdbuf;

The array f holds the field pointers; nf gives the number of fields. Cmdbuf is allocated by
smalloc (see malloc(9)), and the caller is responsible for freeing it using free. Cmderror prepends
the given format with the original command, then calls error(9).

Command strings may be turned into a (typically enumerated) integer with lookupcmd. The
catchall * matches any text. Unrecognized commands, or commands given an unacceptable num
ber of arguments generate a call to error. The definition is as follows

typedef
struct Cmdtab
{

int index; /* used by client to switch on result */
char *cmd; /* command name */
int narg; /* expected #args; 0 ==> variadic */

} Cmdtab;

The integer index is the number returned on command match. The string cmd is the command
name, and narg is 0 (indicating a variadic function) or the number of arguments.

SOURCE
/sys/src/9/port/parse.c

1098

QLOCK(9) QLOCK(9)

NAME
qlock, qunlock, canqlock, rlock, runlock, wlock, wunlock � serial synchronisation

SYNOPSIS
typedef struct
{

Lock use; /* to access Qlock structure */
Proc *head; /* next process waiting for object */
Proc *tail; /* last process waiting for object */
int locked; /* flag */

} QLock;

typedef struct
{

Lock use;
Proc *head; /* list of waiting processes */
Proc *tail;
uintptr wpc; /* pc of writer */
Proc *wproc; /* writing proc */
int readers; /* number of readers */
int writer; /* number of writers */

} RWlock;

void eqlock(QLock *l)

void qlock(QLock *l)

void qunlock(QLock *l)

int canqlock(QLock *l)

void rlock(RWlock *l)

void runlock(RWlock *l)

int canrlock(RWlock *l)

void wlock(RWlock *l)

void wunlock(RWlock *l)

DESCRIPTION
The primitive locking functions described in lock(9) guarantee mutual exclusion, but they imple
ment spin locks, and should not be used if the process might sleep(9) within a critical section. The
following functions serialise access to a resource by forming an orderly queue of processes.

Each resource to be controlled is given an associated QLock structure; it is usually most straight
forward to put the QLock in the structure that represents the resource. It must be initialised to
zero before use (as guaranteed for global variables and for structures allocated by malloc).

On return from qlock, the process has acquired the lock l, and can assume exclusive access to the
associated resource. If the lock is not immediately available, the requesting process is placed on a
FIFO queue of processes that have requested the lock. Processes on this list are blocked in the
Queueing state.

Eqlock is an interruptible form of qlock.

Qunlock unlocks l and schedules the first process queued for it (if any).

Canqlock is a non-blocking form of qlock. It tries to obtain the lock l and returns true if successful,
and 0 otherwise; it always returns immediately.

RWlock is a form of lock for resources that have distinct readers and writers. It allows concurrent
readers but gives each writer exclusive access. A caller announces its read or write intentions by
choice of lock (and unlock) function; the system assumes the caller will not modify a structure
accessed under read lock.

Rlock acquires l for reading. The holder can read but agrees not to modify the resource. There
may be several concurrent readers. Canrlock is non-blocking: it returns non-zero if it successfully

1099

QLOCK(9) QLOCK(9)

acquired the lock immediately, and 0 if the resource was unavailable.

Runlock returns a read lock; the last reader out enables the first writer waiting (if any).

Wlock acquires a write lock. The holder of such a lock may assume exclusive access to the
resource, and is allowed to modify it.

Wunlock returns a write lock. The next pending process, whether reader or writer, is scheduled.

SOURCE
/sys/src/9/port/qlock.c

SEE ALSO
lock(9), malloc(9), splhi(9)

1100

READNUM(9) READNUM(9)

NAME
readnum, readstr � device read routines

SYNOPSIS
int readstr(ulong off, char *buf, ulong n, char *str)

int readnum(ulong off, char *buf, ulong n, ulong val, int size)

DESCRIPTION
Readstr and readnum simplify the return of strings and numbers from device read routines,
because they deal with any buffering and boundary cases. Several parameters to the read call are
often handed on directly to these functions: the file offset, as off; the address of the user�s buffer,
as buf; and the number of bytes requested, as n. Both functions return the number of bytes they
have stored in buf, and which can often be returned directly from the device read routine.

Readstr satisfies a read by copying data into buf from the NUL-terminated string in str. The data
transferred is selected and limited by off, n and the length of str.

Readnum converts the unsigned integer val to a decimal representation in buf. The value is right-
justified in a field of size-1 places and is followed by a blank. Size can be the global constant
NUMSIZE for 32-bit integers; the largest size allowed is 64 bytes.

SOURCE
/sys/src/9/port/devcons.c

1101

SCHED(9) SCHED(9)

NAME
anyhigher, anyready, hzsched, procpriority, procrestore, procsave, scheddump, schedinit, sched,
yield � scheduler interactions

SYNOPSIS
int anyhigher(void)
int anyready(void)
void hzsched(void)
void procpriority(Proc *p, int priority, int fixed)
void procrestore(Proc *p)
void procsave(Proc *p)
void procwired(Proc *p, int machno)
void scheddump(void)
void schedinit(void)
void sched(void)
void yield(void)

enum {
Npriq = 20, /* scheduler priority levels */
PriNormal = 10, /* base for normal processes */
PriKproc = 13, /* base for kernel processes */
PriRoot = 13, /* base for root processes */

};

DESCRIPTION
These functions define the priority process scheduler�s interface. Processes are scheduled strictly
by priority, and processor affinity. When possible, processes with no affinity will be rescheduled
on the same processor. Within a priority, scheduling is round�robin. Long�running processes of
the same priority are preempted and rescheduled. But cpu use (or lack thereof) may adjust the pri
ority up or down, unless it has been explicitly fixed. Kernel processes are started with PriKproc
while user processes start with PriNormal.

Anyhigher returns true if any higher priority processes are runnable, while anyready returns true if
any processes are runnable at all. Yield gives up the processor and pretends to consume ½ clock
tick, while sched invokes the scheduler, potentially recursively. Sched may be called outside pro
cess context. Either may return immediately. Schedinit initializes scheduling on the running pro
cessor.

Procpriority sets a process� priority directly. Fixed�priority processes are not reprioritized based
on cpu use. Procwired makes a process runnable only on a single processor.

Hzsched is called by the clock routine on every tick to collect statistics. Periodically (typically once
a second) hzsched reprioritizes based on cpu use.

Procsave and procrestore are architecture�dependent routines used by the scheduler to save and
restore processes. Scheddump prints scheduler statistics.

SOURCE
/sys/src/9/port/proc.c

Procsave and procrestore can be found at
/sys/src/9/*/main.c
/sys/src/9/*/arch.c
/sys/src/9/*/trap.c

SEE ALSO
edf(9), sleep(9)

1102

SECONDS(9) SECONDS(9)

NAME
seconds, ticks, fastticks, HZ, MS2HZ, MS2TK, TK2MS, TK2SEC � kernel times and time conversions

SYNOPSIS
long seconds(void)

vlong fastticks(uvlong *hz)

#define HZ ...
#define MS2HZ (1000/HZ)
#define TK2SEC(t) ((t)/HZ)
#define TK2MS(t) ((t)*(1000/HZ))

DESCRIPTION
Seconds returns the system�s idea of the current time as the number of seconds since the start of
the epoch (00:00:00 GMT, January 1, 1970).

The ticks field of the Mach structure returns the number of system-dependent clock ticks on
the given processor since system boot. On a multiprocessor, MACHP(0) is sometimes used to
provide a reference time, since the tick value might vary slightly across processors.

Fastticks returns the number of ticks since boot as measured by the fastest clock provided by the
platform. The frequency of the clock, in ticks per second, is returned through hz, unless it is nil.

The system clock frequencies are platform-dependent. Several symbolic constants and macro
functions are defined by the file mem.h to convert between different time units:

HZ The number of clock ticks per second.

MS2HZ Milliseconds per clock tick.

TK2SEC(t) Convert t clock ticks to seconds (truncating not rounding).

TK2MS(t) Convert t clock ticks to milliseconds.

SOURCE
/sys/src/9/*/mem.h
/sys/src/9/*/clock.c
/sys/src/9/*/devarch.c
/sys/src/9/*/timer.c
/sys/src/9/port/tod.c

1103

SLEEP(9) SLEEP(9)

NAME
sleep, wakeup, tsleep, return0 � process synchronisation

SYNOPSIS
void sleep(Rendez *r, int (*f)(void*), void *arg)

void wakeup(Rendez *r)

void tsleep(Rendez *r, int (*f)(void*), void *arg, ulong ms)

int return0(void *arg)

DESCRIPTION
A process running in the kernel can use these functions to synchronise with an interrupt handler or
another kernel process. In particular, they are used by device drivers to wait for an event to be sig
nalled on receipt of an interrupt. (In practice, they are most often used indirectly, through qio(9)
for instance.)

The caller of sleep and a caller of wakeup share a Rendez structure, to provide a rendezvous
point between them to synchronise on an event. Sleep uses a condition function f that returns true
if the event has occurred.

Sleep evaluates f(arg). If true, the event has happened and sleep returns immediately. Other
wise, sleep blocks on the event variable r, awaiting wakeup.

Wakeup is called by either a process or an interrupt handler to wake any process sleeping at r, sig
nifying that the corresponding condition is true (the event has occurred). It has no effect if there is
no sleeping process.

Tsleep is similar to sleep, except that if the condition f(arg) is false and the caller does sleep,
and nothing else wakes it within ms millliseconds, the system will wake it. Tsleep�s caller must
check its environment to decide whether timeout or the event occurred. The timing provided by
tsleep is imprecise, but adequate in practice for the normal use of protecting against lost inter
rupts and otherwise unresponsive devices or software.

Return0 ignores its arguments and returns zero. It is commonly used as the predicate f in a call to
tsleep to obtain a time delay, using the Rendez variable sleep in the Proc structure, for exam
ple:

tsleep(&up−>sleep, return0, nil, 10);

Both sleep and tsleep can be interrupted by postnote (see kproc(9)).

SOURCE
/sys/src/9/port/proc.c
/sys/src/9/port/sysproc.c

DIAGNOSTICS
There can be at most one process waiting on a Rendez, and if two processes collide, the system
will panic(9) (��double sleep��). Access to a Rendez must therefore be serialised by some
other mechanism, usually qlock(9).

SEE ALSO
lock(9), qlock(9), delay(9)
��Process Sleep and Wakeup on a Shared-memory Multiprocessor��, in Plan 9 Programmer’s
Manual: Volume 2 .

1104

SPLHI(9) SPLHI(9)

NAME
splhi, spllo, splx, islo � enable and disable interrupts

SYNOPSIS
int spllo(void)

int splhi(void)

void splx(int x)

int islo(void)

DESCRIPTION
These primitives enable and disable maskable interrupts on the current processor. Generally,
device drivers should use ilock (see lock(9)), sleep(9), or the functions in qio(9) to control interac
tion between processes and interrupt handlers. Those routines (but not these) provide correct syn
chronisation on multiprocessors.

Spllo enables interrupts and returns a flag representing the previous interrupt enable state. It
must not normally be called from interrupt level.

Splhi disables all maskable interrupts and returns the previous interrupt enable state. The period
during which interrupts are disabled had best be short, or real-time applications will suffer.

Splx restores the interrupt enable state to x, which must be a value returned by a previous call to
splhi or spllo.

Islo returns true (non-zero) if interrupts are currently enabled, and 0 otherwise.

SOURCE
/sys/src/9/*/l.s

SEE ALSO
lock(9), qio(9), sleep(9), intrenable(9)

1105

XALLOC(9) XALLOC(9)

NAME
xalloc, xallocz, xspanalloc, xfree, xsummary � basic memory management

SYNOPSIS
void* xalloc(ulong size)

void* xallocz(ulong size, int clr)

void* xspanalloc(ulong size, int align, ulong span)

void xfree(void *p)

void xsummary(void)

DESCRIPTION
These are primitives used by higher-level memory allocators in the kernel, such as malloc(9). They
are not intended for use directly by most kernel routines. The main exceptions are routines that
permanently allocate large structures, or need the special alignment properties guaranteed by
xspanalloc.

Xalloc returns a pointer to a range of size bytes of memory. The memory will be zero filled and
aligned on a 8 byte (BY2V) address. If the memory is not available, xalloc returns a null pointer.

Xmallocz will clear the memory after allocation if clr is set to a value other than zero. Since it is
used by xmalloc, the same diagnostics apply.

Xspanalloc allocates memory given alignment and spanning constraints. The block returned will
contain size bytes, aligned on a boundary that is 0 mod align, in such a way that the memory in
the block does not span an address that is 0 mod span. Xspanalloc is intended for use allocating
hardware data structures (eg, page tables) or I/O buffers that must satisfy specific alignment
restrictions. If xspanalloc cannot allocate memory to satisfy the given constraints, it will panic(9).
The technique it uses can sometimes cause memory to be wasted. Consequently, xspanalloc
should be used sparingly.

Xfree frees the block of memory at p, which must be an address previously returned by xalloc (not
xspanalloc).

Xsummary dumps memory allocation statistics to the console. The output includes the total free
space, the number of free holes, and a summary of active holes. Each line shows �address top
size�.

SOURCE
/sys/src/9/port/xalloc.c

SEE ALSO
malloc(9)

1106

PERMUTED INDEX

Manual pages for all sections are accessible on line through man(1).

To save space, neighboring references to the same page have been collapsed into a single ref
erence. This should cause no difficulty in cases like �atan� and �atan2�, but is somewhat
obscure in the case of �strcat� and �strchr�.

exec, exit, flag, rfork, shift, wait, whatis, ., ~ � command language rc, cd, eval, rc(1) 239
procsave, scheddump, schedinit, sched, yield � scheduler interactions /procrestore, sched(9) 1102

0a, 1a, 2a, 5a, 6a, 8a, ka, qa, va � assemblers . 2a(1) 4
compilers . 0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C 2c(1) 5

0l, 1l, 2l, 5l, 6l, 8l, kl, ql, vl � loaders 2l(1) 8
vt � emulate a 100 or VT-220 terminal vt(1) 333

apm � Advanced Power Management 1.2 BIOS interface . apm(3) 674
apm � Advanced Power Management 1.2 BIOS interface . apm(8) 927

0a, 1a, 2a, 5a, 6a, 8a, ka, qa, va � assemblers 2a(1) 4
0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C compilers . 2c(1) 5
0l, 1l, 2l, 5l, 6l, 8l, kl, ql, vl � loaders 2l(1) 8

pushssl � attach SSL version 2 encryption to a communication channel pushssl(2) 582
vt � emulate a VT-100 or 220 terminal . vt(1) 333

2600 � emulator . atari(1) 25
0a, 1a, 2a, 5a, 6a, 8a, ka, qa, va � assemblers 2a(1) 4
0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C compilers 2c(1) 5
0l, 1l, 2l, 5l, 6l, 8l, kl, ql, vl � loaders 2l(1) 8

zipfs � mount archival file systems 32vfs, cpiofs, tapfs, tarfs, tpfs, v6fs, v10fs, . . . tapefs(4) 814
fff2p3, pdiv4, add4, sub4 � operations on 3-d points and planes /pn2f3, ppp2f3, arith3(2) 375

qball � 3-d rotation controller qball(2) 586
ptrap � plumber 4) filter . ptrap(4) 802

geigerstats, glendy, juggle, life, mandel,/ 4s, 5s, blabs, catclock, doom, festoon, games(1) 109
0a, 1a, 2a, 5a, 6a, 8a, ka, qa, va � assemblers 2a(1) 4
0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C compilers 2c(1) 5

5e � user-mode ARM emulation 5e(1) 10
5i, ki, vi, qi � instruction simulators vi(1) 327

0l, 1l, 2l, 5l, 6l, 8l, kl, ql, vl � loaders 2l(1) 8
geigerstats, glendy, juggle, life, mandel,/ . 4s, 5s, blabs, catclock, doom, festoon, games(1) 109

0a, 1a, 2a, 5a, 6a, 8a, ka, qa, va � assemblers 2a(1) 4
0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C compilers 2c(1) 5

manual tunnel of IPv6 through IPv4 6in4, ayiya - configure and run automatic or . . 6in4(8) 919
0l, 1l, 2l, 5l, 6l, 8l, kl, ql, vl � loaders 2l(1) 8

0a, 1a, 2a, 5a, 6a, 8a, ka, qa, va � assemblers 2a(1) 4
0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C compilers 2c(1) 5

0l, 1l, 2l, 5l, 6l, 8l, kl, ql, vl � loaders 2l(1) 8
dump9660, mk9660 � create an 9660 CD image . mk9660(8) 992

file systems dossrv, 9660srv, dosmnt, eject � DOS and ISO9660 . . . dossrv(4) 765
bootx64.efi, efiboot.fat �/ 9bootfat, 9bootiso, 9boothyb, 9bootpxe, bootia32.efi, 9boot(8) 921

srv, srvtls, 9fs � start network file service srv(4) 811
intro � introduction to the Plan 9 File Protocol, 9P . intro(5) 830

fversion � initialize 9P connection and negotiate version fversion(2) 484
allocreq, closereq, lookupreq, removereq � 9P fid, request tracking /freereqpool, 9pfid(2) 355

threadpostmountsrv, threadpostsharesrv, srv � 9P file service . . . /srvrelease, threadlistensrv, 9p(2) 349
reqqueueflush � deferred processing of 9P requests . /reqqueuecreate, reqqueuepush, 9pqueue(2) 359

mnt � attach to 9P servers . mnt(3) 711
9pcon � 9P to text translator 9pcon(8) 923

aan, aanuke � always available network aan(8) 924
abaco � browse the World-Wide Web abaco(1) 11

panic � abandon hope, all ye who enter here panic(9) 1097
abort � generate a fault abort(2) 360

flush � abort a message . flush(5) 837
abs, labs � integer absolute values abs(2) 361

functions fabs, fmod, floor, ceil � absolute value, remainder, floor, ceiling floor(2) 465
consolefs, C, clog � file system for console access . consolefs(4) 760

1-i

Permuted Index

access � determine accessibility of file access(2) 362
seg � access a named segment seg(1) 270

ftpd, socksd, hproxy � Internet remote access daemons . . . telnetd, rlogind, rexexec, ipserv(8) 984
RGB, readcolmap, writecolmap � access display color map readcolmap(2) 595

getenv, putenv � access environment variables getenv(2) 486
filesym, fileline, fnbound � symbol table access functions . /textsym, file2pc, fileelem, symbol(2) 635

io � access PC I/O registers io(1) 152
wpa � Wi-Fi Protected Access setup . wpa(8) 1082

screenlock � disable access to a terminal . screenlock(8) 1046
leswab, leswal, leswav � machine-independent access to executable files . . /beswal, beswav, mach(2) 529

access � determine accessibility of file . access(2) 362
test � set status according to condition test(1) 301

aux/mouse, accupoint � configure a mouse to a port mouse(8) 998
acid, truss, trump � debugger acid(1) 12
acme � control files for text windows acme(4) 750
acme, win � interactive text windows acme(1) 16

sin, cos, tan, asin, acos, atan, atan2 � trigonometric functions . . . sin(2) 623
Interface . acpi � Advanced Configuration and Power acpi(8) 925

amleval, amlenum, amltake, amldrop - ACPI machine language interpreter . /amlwalk, aml(2) 370
controlcalled,/ Control, Controlset, activate, closecontrol, closecontrolset, control(2) 403
closept3, dot3, cross3, len3, dist3, unit3,/ . . . add3, sub3, neg3, div3, mul3, eqpt3, arith3(2) 375

/vdiv3, vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, add4, sub4 � operations on 3-d points and/ . . arith3(2) 375
delay, microdelay, addclock0link � small delays, clock interrupts . delay(9) 1088

newuser � adding a new user . newuser(8) 1006
auth_proxy, fauth_proxy,/ . . amount, newns, addns, login, noworld, procsetuser, auth(2) 379
rectsubpt, insetrect, canonrect, eqpt, eqrect,/ . addpt, subpt, mulpt, divpt, rectaddpt, addpt(2) 363
trampoline � forward incoming calls to another address . trampoline(8) 1068

ratfs � mail address ratification file system ratfs(4) 804
hnputs, ptclbsum, readipifc � Internet Protocol addressing . /nhgetl, nhgets, hnputv, hnputl, ip(2) 519

ident, matmul, matmulr, determinant, adjoint, invertmat, xformpoint, xformpointd,/ . matrix(2) 534
/packblock, padblock, pullblock, pullupblock, adjustblock, checkb � data block management allocb(9) 1085
inflatezlibblock, flateerr, mkcrctab, blockcrc, adler32 � deflate compression . /inflateblock, flate(2) 463

intro � introduction to system administration . intro(8) 918
acpi � Advanced Configuration and Power Interface . . acpi(8) 925

/ advanced encryption standard (rijndael) aes(2) 365
(Serial AT) storage device/ sdahci � AHCI Advanced Host Controller Interface) SATA sdahci(3) 725
interface . apm � Advanced Power Management 1.2 BIOS apm(3) 674
interface . apm � Advanced Power Management 1.2 BIOS apm(8) 927

aescbc, ipso, secstore � secstore commands . . secstore(1) 265
setupAESstate, aesCBCencrypt, .

setupAESstate, .
aesCBCdecrypt, aesCFBencrypt, .

/setupAESGCMstate, aesgcm_setiv, aesgcm_encrypt, aesgcm_decrypt - advanced encryption/ aes(2) 365
aes_xts_decrypt, / / aesCFBdecrypt, .
font utilities cachechars, agefont, loadchar, Subfont, Fontchar, Font � . . cachechars(2) 395

factotum, fgui, userpasswd � authentication agent . factotum(4) 770
SATA (Serial AT) storage device/ sdahci � AHCI (Advanced Host Controller Interface) . . . sdahci(3) 725
language interpreter) gs � Aladdin Ghostscript (PostScript and PDF gs(1) 116

alarm � ask for delayed note alarm(1) 21
sleep, alarm � delay, ask for delayed note sleep(2) 625

dsasigfree, dsaprivtopub - digital signature algorithm /dsaprivfree, dsasigalloc, dsa(2) 438
X509rsaverifydigest � RSA encryption algorithm /X509rsareq, X509rsaverify, rsa(2) 601

aliasmail � expand system wide mail aliases . . aliasmail(8) 926
col � column alignment . col(1) 50

setupRC4state, rc4, rc4skip, rc4back - alleged rc4 encryption rc4(2) 593
/writeimage, bytesperline, wordsperline � allocating, freeing, reading, writing images . . . allocimage(2) 367

binalloc, bingrow, binfree � grouped memory allocation . bin(2) 387
brk, sbrk � change memory allocation . brk(2) 394

segbrk � change memory allocation . segbrk(2) 619
getrealloctag, malloctopoolblock � memory allocator /setrealloctag, getmalloctag, malloc(2) 532

getmalloctag, getrealloctag � kernel memory allocator /setmalloctag, setrealloctag, malloc(9) 1095
vtstrdup, vtfree � error-checking memory allocators /vtmalloc, vtmallocz, vtrealloc, venti-mem(2) 662

blocklen, blockalloclen, readblist,/ allocb, iallocb, freeb, freeblist, BLEN, BALLOC, . allocb(9) 1085
lookupfid, removefid, Req,/ Fid, Fidpool, allocfidpool, freefidpool, allocfid, closefid, . . . 9pfid(2) 355
namedimage, setalpha,/ allocimage, allocimagemix, freeimage, nameimage, allocimage(2) 367
lookupkey, deletekey � integer to/ . . Intmap, allocmap, freemap, insertkey, caninsertkey, . . intmap(2) 515

/wordaddr, byteaddr, memimagemove, allocmemimage, allocmemimaged,/ memdraw(2) 536
/byteaddr, memimagemove, allocmemimage, allocmemimaged, readmemimage,/ memdraw(2) 536

/memlinebbox, memlineendsize, allocmemsubfont, openmemsubfont,/ memdraw(2) 536
/closefid, lookupfid, removefid, Req, Reqpool, allocreqpool, freereqpool, allocreq, closereq,/ . 9pfid(2) 355

allocwindow, bottomwindow,/ Screen, allocscreen, publicscreen, freescreen, window(2) 668
lookupsubfont, uninstallsubfont,/ allocsubfont, freesubfont, installsubfont, subfont(2) 633
removefile, walkfile, opendirfile,/ Tree, alloctree, freetree, File, createfile, closefile, . . . 9pfile(2) 357

Screen, allocscreen, publicscreen, freescreen, allocwindow, bottomwindow,/ window(2) 668

2-i

Permuted Index

chanclosing, chanprint, mainstacksize,/ alt, chanclose, chancreate, chanfree, thread(2) 638
aan, aanuke � always available network aan(8) 924

/amlload, amlwalk, amleval, amlenum, amltake, amldrop - ACPI machine language interpreter . aml(2) 370
/amlinit, amlexit, amlload, amlwalk, amleval, amlenum, amltake, amldrop - ACPI machine/ . aml(2) 370

amlload, amlwalk, amleval,/ . . amltag, amlval, amlint, amllen, amlnew, amlinit, amlexit, aml(2) 370
/amlexit, amlload, amlwalk, amleval, amlenum, amltake, amldrop - ACPI machine language/ . . aml(2) 370

amlexit, amlload, amlwalk, amleval,/ . amltag, amlval, amlint, amllen, amlnew, amlinit, aml(2) 370
/auth_freerpc, auth_rpc, auth_getkey, amount_getkey, auth_freeAI, auth_chuid,/ . . . auth(2) 379

lex � generator of lexical analysis programs . lex(1) 165
setnetmtpt, getnetconninfo,/ . . dial, hangup, announce, listen, accept, reject, netmkaddr, . . dial(2) 427
procsave, scheddump, schedinit,/ . anyhigher, anyready, hzsched, procpriority, procrestore, . sched(9) 1102

sdaoe � ATA-over-Ethernet Ao) storage device interface sdaoe(3) 727
aoe � ATA-over-Ethernet (Ao) interface aoe(3) 671

vblade � virtual AoE target . vblade(8) 1070
a.out � object file format a.out(6) 847
ap � fetch Associated Press news articles ap(1) 22

pcc � APE C compiler driver pcc(1) 216
interface . apm � Advanced Power Management 1.2 BIOS . apm(3) 674
interface . apm � Advanced Power Management 1.2 BIOS . apm(8) 927
client-server replica/ applychanges, applylog, compactdb, updatedb � simple replica(8) 1039

ar � archive and library maintainer ar(1) 23
ar � archive (library) file format ar(6) 850

/fillbezier, fillbezspline, ellipse, fillellipse, arc, fillarc, icossin, icossin2, border, string,/ . . draw(2) 432
archfs � mount mkfs-style archive archfs(4) 753

arch � architecture-specific information and control . arch(3) 675
tapfs, tarfs, tpfs, v6fs, v10fs, zipfs � mount archival file systems 32vfs, cpiofs, tapefs(4) 814

venti � archival storage server venti(2) 650
venti � archival storage server venti(6) 897
venti � archival storage server venti(8) 1071

archfs � mount mkfs-style archive . archfs(4) 753
ar � archive and library maintainer ar(1) 23
ar � archive (library) file format ar(6) 850

vac, unvac � create, extract a vac archive on Venti . vac(1) 324
mkfs, mkext � archive or update a file system mkfs(8) 995

tar, dircp � archiver . tar(1) 293
rdarena, wrarena � copy arenas between venti serversventi-backup(8) 1075

/tobackup, dumparenas, restore � backup venti arenas to blu-ray discs or restore from them . backup(8) 932
from argv ARGBEGIN, ARGEND, ARGC, ARGF, EARGF � process option letters . . arg(2) 373

xargs � construct argument list and execute xargs(1) 340
echo � print arguments . echo(1) 83

procsetname � set process arguments . procsetname(2) 580
ARGF, EARGF � process option letters from argv ARGBEGIN, ARGEND, ARGC, arg(2) 373
crtprefree, crtresfree � extended precision arithmetic . /mpmagsub, crtpre, crtin, crtout, mp(2) 547
qinv, qlen, slerp, qmid, qsqrt � Quaternion arithmetic . . . /qsub, qneg, qmul, qdiv, qunit, quaternion(2) 588

mpc � extended precision arithmetic code generator mpc(1) 188
bc � arbitrary-precision arithmetic language . bc(1) 34

combinerect, badrect, Dx, Dy, Pt, Rect, Rpt � arithmetic on points and rectangles . /rectclip, addpt(2) 363
5e � user-mode ARM emulation . 5e(1) 10

enc16chr, encodefmt � encoding byte arrays as strings /enc32chr, dec16chr, encode(2) 445
PB L . . /runestringbg, runestringnbg, _string, ARROW, drawsetdebug � graphics functions . . draw(2) 432

ap � fetch Associated Press news articles . ap(1) 22
toascii, _toupper, _tolower, toupper, tolower � ASCII character classification . /iscntrl, isascii, ctype(2) 421

xd � hex, octal, decimal, or ASCII dump . xd(1) 341
UTF, Unicode, ASCII, rune � character set and format utf(6) 896

ascii, unicode � interpret ASCII, Unicode characters ascii(1) 24
time ctime, localtime, gmtime, asctime, tm2sec, timezone � convert date and . ctime(2) 419

/convM2PR, _asgetticket, _asrequest, _asgetresp, _asrdresp, _asgetpakkey,/ authsrv(2) 382
functions sin, cos, tan, asin, acos, atan, atan2 � trigonometric sin(2) 623
rsa2x509, rsa2csr � generate/ . rsagen, rsafill, asn12rsa, rsa2asn1, rsa2pub, rsa2ssh, rsa(8) 1041
decodePEM,/ asn1dump, asn1toRSApriv, asn1encodeRSApriv, asn1encodeRSApub, rsa(2) 601
/convM2A, convPR2M, convM2PR, _asgetticket, _asrequest, _asgetresp, _asrdresp,/ authsrv(2) 382

file . bullshit � assemble a stream of bullshit from words in a . bullshit(1) 40
mix � MIX assembler and emulator mix(1) 178

Processors . na � assembler for the Symbios Logic PCI-SCSI I/O . na(8) 999
0a, 1a, 2a, 5a, 6a, 8a, ka, qa, va � assemblers . 2a(1) 4

assert � check program invariants assert(2) 377
ap � fetch Associated Press news articles ap(1) 22

fd2path � return file name associated with file descriptor fd2path(2) 460
� Personal Computer Memory Card Interface Association (PCMCI) device i82365 i82365(3) 697

astro � print astronomical information astro(7) 905
notify, noted, atnotify � handle asynchronous process notification notify(2) 558

pump � copy asynchronously via a large circular buffer pump(1) 231
at, drain, expect, pass � dialer scripting tools . expect(1) 92

Host Controller Interface) SATA (Serial AT) storage device drivers /� AHCI (Advanced sdahci(3) 725

3-i

Permuted Index

atazz � ATA target control . atazz(8) 928
sin, cos, tan, asin, acos, atan, atan2 � trigonometric functions sin(2) 623

aoe � ATA-over-Ethernet (Ao) interface aoe(3) 671
interface . sdaoe � ATA-over-Ethernet (Ao) storage device sdaoe(3) 727

atazz � ATA target control atazz(8) 928
process cleanup exits, _exits, atexit, atexitdont, terminate � terminate process, . . . exits(2) 454
notification notify, noted, atnotify � handle asynchronous process notify(2) 558
strtoll, strtoul, strtoull � convert text to/ atof, atoi, atol, atoll, charstod, strtod, strtol, atof(2) 378

iounit � return size of atomic I/O unit for file descriptor iounit(2) 518
connection . attach, auth � messages to establish a attach(5) 834

pipefile � attach filter to file in name space pipefile(1) 221
communication channel pushssl � attach SSL version 2 encryption to a pushssl(2) 582

/okCertificate, readcert, readcertchain � attach TLS1 or SSL3 encryption to a/ pushtls(2) 583
mnt � attach to 9P servers . mnt(3) 711

put2,/ /setmap, findseg, unusemap, loadmap, attachproc, get1, get2, get4, get8, geta, put1, mach(2) 529
stat, wstat � inquire or change file attributes . stat(5) 842

audio � audio device audio(3) 677
Universal Serial Bus drivers audio, disk, ether, kb, serial, ptp, usbd - nusb(4) 797

wavdec, pcmconv, mixfs � decode and encode audio files . /oggenc, flacdec, flacenc, sundec, audio(1) 26
play � simple audio player . play(1) 222

attach, auth � messages to establish a connection . . . attach(5) 834
/procsetuser, auth_proxy, fauth_proxy, auth_allocrpc, auth_freerpc, auth_rpc,/ auth(2) 379

/amount_getkey, auth_freeAI, auth_chuid, auth_challenge, auth_response,/ auth(2) 379
convT2M, convM2T, convTR2M, convM2TR,/ . . authdial, passtokey, nvcsum, readnvram, authsrv(2) 382

factotum, fgui, userpasswd � authentication agent factotum(4) 770
� Digital Pathways SecureNet Key remote authentication box securenet securenet(8) 1051

keyfs, warning � authentication database files keyfs(4) 787
login, newns, none, as � maintain or query authentication databases /debug, wrkey, auth(8) 930

server fauth � set up authentication on a file descriptor to a file . . . fauth(2) 456
authsrv, p9any, p9sk1, dp9ik � authentication protocols authsrv(6) 851

� routines for communicating with authentication servers /authpak_finish authsrv(2) 382
/auth_rpc, auth_getkey, amount_getkey, auth_freeAI, auth_chuid, auth_challenge,/ auth(2) 379

/auth_chuid, auth_challenge, auth_response, auth_freechal, auth_respond, auth_respondAI,/ auth(2) 379
/auth_proxy, fauth_proxy, auth_allocrpc, auth_freerpc, auth_rpc, auth_getkey,/ auth(2) 379
/auth_userpasswd, auth_getuserpasswd, auth_getinfo � routines for authenticating/ . . . auth(2) 379

/auth_allocrpc, auth_freerpc, auth_rpc, auth_getkey, amount_getkey, auth_freeAI,/ . . . auth(2) 379
for/ /auth_respondAI, auth_userpasswd, auth_getuserpasswd, auth_getinfo � routines . auth(2) 379

/_asgetresp, _asrdresp, _asgetpakkey, authpak_hash, authpak_new, authpak_finish �/ authsrv(2) 382
auth_challenge, auth_response, auth_freechal, auth_respond, auth_respondAI,/ /auth_chuid, auth(2) 379

/fauth_proxy, auth_allocrpc, auth_freerpc, auth_rpc, auth_getkey, amount_getkey,/ auth(2) 379
/convkeys, printnetkey, status, enable, disable, authsrv, guard.srv, debug, wrkey, login,/ auth(8) 930

protocols . authsrv, p9any, p9sk1, dp9ik � authentication . authsrv(6) 851
/auth_freechal, auth_respond, auth_respondAI, auth_userpasswd, auth_getuserpasswd,/ auth(2) 379

IPv4 6in4, ayiya - configure and run automatic or manual tunnel of IPv6 through . . 6in4(8) 919
systems . mntgen � automatically generate mount points for file . . mntgen(4) 790
mouse to a port . aux/mouse, aux/accupoint � configure a mouse(8) 998
them. kbmap � show a list of available keyboard maps and switch between . kbmap(1) 159

aan, aanuke � always available network . aan(8) 924
Balanced binary search/ . avlcreate, avlinsert, avldelete, avllookup, avlnext, avlprev � avl(2) 385
exit . await, wait, waitpid � wait for a process to . . . wait(2) 667
processing language awk � pattern-directed scanning and awk(1) 29
manual tunnel of IPv6 through IPv4 6in4, ayiya - configure and run automatic or 6in4(8) 919
structural regular expressions sam, B, sam.save, samterm � screen editor with . . . sam(1) 258

cdfs, cddb � optical disc (CD, DVD, B) track reader and writer file system cdfs(4) 755
backup, tobackup, dumparenas, restore � backup venti arenas to blu-ray discs or/ backup(8) 932

/rectinrect, rectXrect, rectclip, combinerect, badrect, Dx, Dy, Pt, Rect, Rpt � arithmetic on/ . addpt(2) 363
/avldelete, avllookup, avlnext, avlprev � Balanced binary search tree routines avl(2) 385

allocb, iallocb, freeb, freeblist, BLEN, BALLOC, blocklen, blockalloclen, readblist,/ . . allocb(9) 1085
converter using GENMIDI-type instrument banks dmid � MIDI to OPL3 dmid(1) 76

statusbar, statusmsg � display a bar graph or status message window statusbar(8) 1061
vacfs � a based file system . vacfs(4) 822

basename � strip file name affixes basename(1) 33
xalloc, xallocz, xspanalloc, xfree, xsummary � basic memory management xalloc(9) 1106

/Bprint, Bvprint, Bwrite, Bflush, Bterm, Bbuffered, Blethal, Biofn � buffered/ bio(2) 390
bc � arbitrary-precision arithmetic language . . bc(1) 34

cb � C program beautifier . cb(1) 45
uptime � show how long the system has been running . uptime(1) 323

trace � show (real-time) process behavior . trace(1) 313
/symoff, fpformat, beieee80ftos, beieeesftos, beieeedftos, leieee80ftos, leieeesftos,/ debugger(2) 422

/geta, put1, put2, put4, put8, puta beswab, beswal, beswav, leswab, leswal, leswav �/ mach(2) 529
/mprand, mpnrand, strtomp, mpfmt, mptoa, betomp, mptobe, mptober, letomp, mptole,/ . mp(2) 547

/drawrepl, replclipr, line, poly, fillpoly, bezier, bezspline, fillbezier, fillbezspline, ellipse,/ . . . draw(2) 432
bfECBdecrypt - blowfish/ setupBFstate, bfCBCencrypt, bfCBCdecrypt, bfECBencrypt, . . blowfish(2) 393
Bgetrune, Bgetd, Bungetc,/ Bopen, Bfdopen, Binit, Binits, Brdline, Brdstr, Bgetc, . . bio(2) 390

4-i

Permuted Index

/Bungetc, Bungetrune, Bread, Bseek, Boffset, Bfildes, Blinelen, Bputc, Bputrune, Bprint,/ . . . bio(2) 390
/Bputc, Bputrune, Bprint, Bvprint, Bwrite, Bflush, Bterm, Bbuffered, Blethal, Biofn �/ bio(2) 390

src, Bfn � find source code for executable src(1) 282
allocation . binalloc, bingrow, binfree � grouped memory . bin(2) 387

strip � remove symbols from binary files . strip(1) 287
avllookup, avlnext, avlprev � Balanced binary search tree routines /avldelete, avl(2) 385

bind, mount, unmount � change name space . bind(1) 36
bind, mount, unmount � change name space . bind(2) 388

allocation . binalloc, bingrow, binfree � grouped memory bin(2) 387
Bgetd, Bungetc, Bungetrune,/ Bopen, Bfdopen, Binit, Binits, Brdline, Brdstr, Bgetc, Bgetrune, . . bio(2) 390
Bungetc, Bungetrune,/ Bopen, Bfdopen, Binit, Binits, Brdline, Brdstr, Bgetc, Bgetrune, Bgetd, . bio(2) 390

Bwrite, Bflush, Bterm, Bbuffered, Blethal, Biofn � buffered input/output /Bvprint, bio(2) 390
keys.who � biographic information for key holders keys.who(6) 868

apm � Advanced Power Management 1.2 BIOS interface . apm(3) 674
apm � Advanced Power Management 1.2 BIOS interface . apm(8) 927

light, pencal, keyboard, params, prompter � bitsy-specific utilities bitsyload, bitsyload(1) 38
torrent � bittorrent client . torrent(1) 308

glendy, juggle, life, mandel,/ 4s, 5s, blabs, catclock, doom, festoon, geigerstats, . . games(1) 109
readblist,/ . . . allocb, iallocb, freeb, freeblist, BLEN, BALLOC, blocklen, blockalloclen, allocb(9) 1085

/Bvprint, Bwrite, Bflush, Bterm, Bbuffered, Blethal, Biofn � buffered input/output bio(2) 390
/Bungetrune, Bread, Bseek, Boffset, Bfildes, Blinelen, Bputc, Bputrune, Bprint, Bvprint,/ . . . bio(2) 390

blit � Blit emulator . blit(1) 39
vtglobaltolocal, vtlocaltoglobal � Venti block cache . . /vtcachelocal, vtcachesetwrite, venti-cache(2) 651

vtzeroextend, vtzeroscore � Venti block truncation vtzerotruncate, venti-zero(2) 666
/freeb, freeblist, BLEN, BALLOC, blocklen, blockalloclen, readblist, concatblock,/ allocb(9) 1085

setupDESstate, des_key_setup, block_cipher, desCBCencrypt, desCBCdecrypt,/ des(2) 425
/inflatezlibblock, flateerr, mkcrctab, blockcrc, adler32 � deflate compression flate(2) 463

allocb, iallocb, freeb, freeblist, BLEN, BALLOC, blocklen, blockalloclen, readblist,/ allocb(9) 1085
sum, md5sum, sha1sum � sum and count blocks in a file . sum(1) 288

bfCBCdecrypt, bfECBencrypt, bfECBdecrypt - blowfish encryption /bfCBCencrypt, blowfish(2) 393
/dumparenas, restore � backup venti arenas to blu-ray discs or restore from them backup(8) 932

togif, toppm, topng,/ . jpg, gif, png, tif, ppm, bmp, v210, yuv, ico, tga, tojpg, togeordi, jpg(1) 156
galaxy � representations of body simulations . galaxy(6) 860
galaxy, mkgalaxy � galactic body simulator . galaxy(1) 107

/Bgetd, Bungetc, Bungetrune, Bread, Bseek, Boffset, Bfildes, Blinelen, Bputc, Bputrune,/ . . . bio(2) 390
tel, iwhois � look in phone book . tel(1) 300

satsolve, satmore, satval, satreset, satfree � boolean satisfiability (SA) solver . . /satrangev, sat(2) 607
boot, bootrc � connect to the root file server . . boot(8) 933

cpurc, cpurc.local, termrc, termrc.local � boot scripts . cpurc(8) 940
9bootfat, 9bootiso, 9boothyb, 9bootpxe, bootia32.efi, bootx64.efi, efiboot.fat � PC/ . . . 9boot(8) 921

� PC bootloader for FAT, ISO and PXE network booting /bootx64.efi, efiboot.fat 9boot(8) 921
dhcp6d, dhcpleases, rarpd, tftpd � Internet booting . dhcpd, dhcpd(8) 943

init � initialize machine upon booting . init(8) 980
booting � bootstrapping procedures booting(8) 935

/bootia32.efi, bootx64.efi, efiboot.fat � PC bootloader for FAT, ISO and PXE network/ 9boot(8) 921
boot, bootrc � connect to the root file server boot(8) 933

booting � bootstrapping procedures booting(8) 935
/9bootiso, 9boothyb, 9bootpxe, bootia32.efi, bootx64.efi, efiboot.fat � PC bootloader for/ . . 9boot(8) 921

Bgetc, Bgetrune, Bgetd, Bungetc, Bungetrune,/ Bopen, Bfdopen, Binit, Binits, Brdline, Brdstr, . . bio(2) 390
/ellipse, fillellipse, arc, fillarc, icossin, icossin2, border, string, stringn, runestring,/ draw(2) 432

/publicscreen, freescreen, allocwindow, bottomwindow, bottomnwindows, topwindow,/ window(2) 668
Pathways SecureNet Key remote authentication box securenet � Digital securenet(8) 1051

Boffset, Bfildes, Blinelen, Bputc, Bputrune, Bprint, Bvprint, Bwrite, Bflush, Bterm,/ /Bseek, bio(2) 390
/Bread, Bseek, Boffset, Bfildes, Blinelen, Bputc, Bputrune, Bprint, Bvprint, Bwrite,/ bio(2) 390

Bungetc,/ Bopen, Bfdopen, Binit, Binits, Brdline, Brdstr, Bgetc, Bgetrune, Bgetd, bio(2) 390
/Bgetc, Bgetrune, Bgetd, Bungetc, Bungetrune, Bread, Bseek, Boffset, Bfildes, Blinelen, Bputc,/ bio(2) 390

getfields, gettokens, tokenize � break a string into fields getfields(2) 488
getnetconninfo, freenetconninfo � make and break network connections /setnetmtpt, dial(2) 427

bridge � IP Ethernet bridge bridge(3) 678
brk, sbrk � change memory allocation brk(2) 394

processes . kill, slay, broke, dontkill � print commands to kill kill(1) 160
abaco � browse the World-Wide Web abaco(1) 11

dict � dictionary browser . dict(7) 906
/Bgetrune, Bgetd, Bungetc, Bungetrune, Bread, Bseek, Boffset, Bfildes, Blinelen, Bputc,/ bio(2) 390

/Bputc, Bputrune, Bprint, Bvprint, Bwrite, Bflush, Bterm, Bbuffered, Blethal, Biofn � buffered/ . . bio(2) 390
� copy asynchronously via a large circular buffer . pump pump(1) 231

Computing (VN) . . vncs, vncv � remote frame buffer server and viewer for Virtual Network . . vnc(1) 331
Bflush, Bterm, Bbuffered, Blethal, Biofn � buffered input/output /Bvprint, Bwrite, bio(2) 390

fseek, rewind, feof, ferror, clearerr � standard buffered input/output package /fsetpos, fopen(2) 469
packettrailer, packettrim � zero-copy network buffers . /packetsize, packetsplit, packetstats, venti-packet(2) 663

/getwindow, gengetwindow, flushimage, bufimage, lockdisplay, unlockdisplay,/ graphics(2) 492
/lockdisplay, unlockdisplay, openfont, buildfont, freefont, Pfmt, Rfmt, strtochan,/ . . . graphics(2) 492

fmtarenas, fmtbloom, fmtindex, fmtisect,/ . . . buildindex, checkarenas, checkindex, conf, . . . venti-fmt(8) 1076
words in a file . bullshit � assemble a stream of bullshit from . bullshit(1) 40

5-i

Permuted Index

bundle � collect files for distribution bundle(1) 41
/Brdstr, Bgetc, Bgetrune, Bgetd, Bungetc, Bungetrune, Bread, Bseek, Boffset, Bfildes,/ . . bio(2) 390

compress and expand/ . . gzip, gunzip, bzip2, bunzip2, compress, uncompress, zip, unzip � . gzip(1) 121
pci � print PCI bus configuration . pci(8) 1012

ether, kb, serial, ptp, usbd - Universal Serial Bus drivers audio, disk, nusb(4) 797
nusbrc - Universal Serial Bus startup script . nusbrc(8) 1010

/Blinelen, Bputc, Bputrune, Bprint, Bvprint, Bwrite, Bflush, Bterm, Bbuffered, Blethal,/ bio(2) 390
zerotrunc � truncate input on zero byte . zerotrunc(8) 1083
enc16chr, encodefmt � encoding byte arrays as strings . . /enc32chr, dec16chr, encode(2) 445

/Memdrawparam, memimageinit, wordaddr, byteaddr, memimagemove, allocmemimage,/ . memdraw(2) 536
/unloadimage, readimage, writeimage, bytesperline, wordsperline � allocating,/ allocimage(2) 367

bzfs � compressed read-write ram filesystem . bzfs(4) 754
unzip � compress and expand/ . gzip, gunzip, bzip2, bunzip2, compress, uncompress, zip, . . gzip(1) 121

style � Plan 9 coding conventions for C . style(6) 893
consolefs, C, clog � file system for console access consolefs(4) 760
pcc � APE C compiler driver . pcc(1) 216

0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C compilers . 2c(1) 5
cpp � C language preprocessor cpp(1) 56
cb � C program beautifier cb(1) 45

vtglobaltolocal, vtlocaltoglobal � Venti block cache /vtcachelocal, vtcachesetwrite, venti-cache(2) 651
cfs � cache file system . cfs(4) 757

Fontchar, Font � font utilities cachechars, agefont, loadchar, Subfont, cachechars(2) 395
cwfs64, cwfs64x, fs64 - cached-worm file server, dump cwfs, cwfs(4) 762

segflush � flush instruction and data caches . segflush(2) 620
cal � print calendar . cal(1) 42

dc � desk calculator . dc(1) 67
pc � programmer�s calculator . pc(1) 214

cal � print calendar . cal(1) 42
calendar � print upcoming events calendar(1) 43

malloc, mallocalign, mallocz, free, realloc, calloc, msize, setmalloctag, setrealloctag,/ . . . malloc(2) 532
ratrace � trace process system calls . ratrace(1) 238

tcp17013, tcp17019, tcp17020 � listen for calls on a network device /tcp17010, listen(8) 988
trampoline � forward incoming calls to another address trampoline(8) 1068

to data/ Intmap, allocmap, freemap, insertkey, caninsertkey, lookupkey, deletekey � integer . . intmap(2) 515
/mulpt, divpt, rectaddpt, rectsubpt, insetrect, canonrect, eqpt, eqrect, ptinrect, rectinrect,/ . addpt(2) 363

wlock,/ lock, canlock, unlock, qlock, canqlock, qunlock, rlock, canrlock, runlock, . . lock(2) 526
serial synchronisation qlock, qunlock, canqlock, rlock, runlock, wlock, wunlock � . . . qlock(9) 1099

/qunlock, rlock, canrlock, runlock, wlock, canwlock, wunlock, rsleep, rwakeup,/ lock(2) 526
processes . cap � capabilities for setting the user id of . . . cap(3) 680

pcmcia � identify a PCMCIA card . pcmcia(8) 1013
vga � configure a VGA card . vga(8) 1079

i82365 � Personal Computer Memory Card Interface Association (PCMCI) device i82365(3) 697
toupperrune � Unicode character classes and cases . . /isdigitrune, tolowerrune, totitlerune, isalpharune(2) 522

cat, read � catenate files cat(1) 44
scat � sky catalogue and Digitized Sky Survey scat(7) 915

juggle, life, mandel, mahjongg,/ 4s, 5s, blabs, catclock, doom, festoon, geigerstats, glendy, . games(1) 109
cat, read � catenate files . cat(1) 44

cb � C program beautifier cb(1) 45
/chacha_encrypt, chacha_encrypt2, hchacha, ccpoly_encrypt, ccpoly_decrypt � chacha/ chacha(2) 398

system cdfs, cddb � optical disc CD, DVD, B) track reader and writer file cdfs(4) 755
whatis, ., ~ � command language rc, cd, eval, exec, exit, flag, rfork, shift, wait, rc(1) 239

dump9660, mk9660 � create an ISO-9660 CD image . mk9660(8) 992
reader and writer file system cdfs, cddb � optical disc (CD, DVD, B) track . . . cdfs(4) 755

cec � Coraid Ethernet Console cec(8) 937
functions fabs, fmod, floor, ceil � absolute value, remainder, floor, ceiling . floor(2) 465

cfs � cache file system cfs(4) 757
/chacha_setblock, chacha_setiv, chacha_encrypt, chacha_encrypt2, hchacha,/ . chacha(2) 398

alt, chanclose, chancreate, chanfree, chanclosing, chanprint, mainstacksize,/ thread(2) 638
stat, wstat � inquire or change file attributes stat(5) 842

chgrp � change file group . chgrp(1) 46
seek � change file offset . seek(2) 616

brk, sbrk � change memory allocation brk(2) 394
segbrk � change memory allocation segbrk(2) 619
chmod � change mode . chmod(1) 47

bind, mount, unmount � change name space . bind(1) 36
bind, mount, unmount � change name space . bind(2) 388

passwd, netkey � change or verify user password passwd(1) 211
chdir � change working directory chdir(2) 399

replica management changes, pull, push, scan � client-server replica(1) 246
enable, disable, authsrv, guard.srv, debug,/ . . changeuser, convkeys, printnetkey, status, . . . auth(8) 930

pipe � create an interprocess channel . pipe(2) 568
SSL version 2 encryption to a communication channel pushssl � attach pushssl(2) 582
TLS1 or SSL3 encryption to a communication channel /readcert, readcertchain � attach pushtls(2) 583

chanclose, chancreate, chanfree, chanclosing, chanprint, mainstacksize, proccreate,/ . . . alt, thread(2) 638

6-i

Permuted Index

/buildfont, freefont, Pfmt, Rfmt, strtochan, chantostr, chantodepth � interactive graphics . graphics(2) 492
totitlerune, toupperrune � Unicode character classes and cases . . . /tolowerrune, isalpharune(2) 522

_toupper, _tolower, toupper, tolower � ASCII character classification /isascii, toascii, ctype(2) 421
freq � print histogram of character frequencies freq(1) 105
scribblealloc, recognize � character recognition scribble(2) 610

UTF, Unicode, ASCII, rune � character set and format utf(6) 896
uhtml � convert foreign character set HTML file to unicode uhtml(1) 320

tcs � translate character sets . tcs(1) 297
doquote, needsrcquote � quoted character strings /quotefmtinstall, quote(2) 590

ascii, unicode � interpret ASCII, Unicode characters . ascii(1) 24
keyboard � how to type characters . keyboard(6) 866

tr � translate characters . tr(1) 312
� convert text to/ atof, atoi, atol, atoll, charstod, strtod, strtol, strtoll, strtoul, strtoull atof(2) 378
utfecpy, utflen, utfnlen, utfrune,/ runetochar, chartorune, runelen, runenlen, fullrune, rune(2) 603

ircrc � internet relay chat client . ircrc(1) 153
estrdup9p, listensrv, postmountsrv,/ . . . Srv, chatty9p, dirread9p, emalloc9p, erealloc9p, . . 9p(2) 349

chdir � change working directory chdir(2) 399
assert � check program invariants assert(2) 377

fmtbloom, fmtindex, fmtisect,/ . . buildindex, checkarenas, checkindex, conf, fmtarenas, . . . venti-fmt(8) 1076
/padblock, pullblock, pullupblock, adjustblock, checkb � data block management allocb(9) 1085

netaudit - network configuration checker . netaudit(8) 1005
fmtindex, fmtisect,/ buildindex, checkarenas, checkindex, conf, fmtarenas, fmtbloom, venti-fmt(8) 1076

vtmallocz, vtrealloc, vtstrdup, vtfree � checking memory allocators . vtbrk, vtmalloc, venti-mem(2) 662
chgrp � change file group chgrp(1) 46

times, cycles � cpu time in this process and children . cputime, cputime(2) 418
opl3 � OPL3 chip emulator . opl3(1) 205

chmod � change mode chmod(1) 47
client . cifs - Microsoft" Windows network filesystem cifs(4) 758

cifsd � CIFS/SMB network daemon cifsd(8) 938
serial interface (TWS) and inter-integrated circuit (I²C) interface twsi - two-wire twsi(3) 739

pump � copy asynchronously via a large circular buffer . pump(1) 231
localaddr, symoff, fpformat, beieee80ftos,/ . . cisctrace, risctrace, ciscframe, riscframe, debugger(2) 422
strlen,/ strcat, strncat, strcmp, strncmp, cistrcmp, cistrncmp, strcpy, strncpy, strecpy, . strcat(2) 628

strcat, strncat, strcmp, strncmp, cistrcmp, cistrncmp, strcpy, strncpy, strecpy, strlen,/ . . . strcat(2) 628
strpbrk, strspn, strcspn, strtok, strdup, strstr, cistrstr � string operations . . /strchr, strrchr, strcat(2) 628

totitlerune, toupperrune � Unicode character classes and cases . /isdigitrune, tolowerrune, isalpharune(2) 522
_tolower, toupper, tolower � ASCII character classification /isascii, toascii, _toupper, ctype(2) 421

getdev, loaddevstr, opendev,/ usbcmd, classname, closedev, configdev, devctl, nusb(2) 560
cleanname � clean a path name cleanname(1) 48
cleanname � clean a path name cleanname(2) 400

terminate � terminate process, process cleanup exits, _exits, atexit, atexitdont, exits(2) 454
/ftell, fsetpos, fseek, rewind, feof, ferror, clearerr � standard buffered input/output/ . . . fopen(2) 469

cifs - Microsoft" Windows network filesystem client . cifs(4) 758
ircrc � internet relay chat client . ircrc(1) 153

newt � network news transport protocol (NNT) client . newt(1) 198
nfs � Sun network file system client . nfs(4) 794

ssh - secure shell remote login client . ssh(1) 284
sshfs - secure file transfer protocol client . sshfs(4) 812

sshnet - secure file transfer protocol client . sshnet(4) 813
tlssrvtunnel, tlsclienttunnel � TLS server and client tlssrv, tlsclient, tlssrv(8) 1066

torrent � bittorrent client . torrent(1) 308
vtping, vtrpc, ventidoublechecksha1 � Venti client . . /vtreadpacket, vtwritepacket, vtsync, venti-client(2) 653

read, write, copy � simple Venti clients . venti(1) 326
changes, pull, push, scan � client-server replica management replica(1) 246

/applylog, compactdb, updatedb � simple client-server replica management replica(8) 1039
/namedimage, setalpha, loadimage, cloadimage, unloadimage, readimage,/ allocimage(2) 367

/freememimage, memsetchan, loadmemimage, cloadmemimage, unloadmemimage,/ memdraw(2) 536
date, clock � date and time date(1) 60

rtc � real-time clock and non-volatile RAM rtc(3) 722
cron � clock daemon . cron(8) 941

microdelay, addclock0link � small delays, clock interrupts delay, delay(9) 1088
timesync � synchronize the system clock to a time source timesync(8) 1064

reboot, etc. cons � console, clocks, process/process group ids, user, null, . cons(3) 683
consolefs, C, clog � file system for console access consolefs(4) 760

create file open, create, close � open a file for reading or writing, open(2) 566
Control, Controlset, activate, closecontrol, closecontrolset, controlcalled, controlwire,/ . . control(2) 403

loaddevstr, opendev,/ . . usbcmd, classname, closedev, configdev, devctl, getdev, nusb(2) 560
/removefile, walkfile, opendirfile, readdirfile, closedirfile, hasperm � in-memory file/ 9pfile(2) 357

/newwindow, drawerror, initdisplay, closedisplay, getdefont, getwindow,/ graphics(2) 492
Fid, Fidpool, allocfidpool, freefidpool, allocfid, closefid, lookupfid, removefid, Req, Reqpool,/ 9pfid(2) 355

Tree, alloctree, freetree, File, createfile, closefile, removefile, walkfile, opendirfile,/ . . . 9pfile(2) 357
iointerrupt, iodial, ioopen, ioproc, ioread,/ . . . closeioproc, iocall, ioclose, ioflush, ioproc(2) 516

initkeyboard, ctlkeyboard, closekeyboard � keyboard control keyboard(2) 525
menuhit, setcursor,/ . initmouse, readmouse, closemouse, moveto, getrect, drawgetrect, . . . mouse(2) 545

7-i

Permuted Index

add3, sub3, neg3, div3, mul3, eqpt3, closept3, dot3, cross3, len3, dist3, unit3,/ . . . arith3(2) 375
/Reqpool, allocreqpool, freereqpool, allocreq, closereq, lookupreq, removereq � 9P fid,/ 9pfid(2) 355

SCSI device operations openscsi, closescsi, scsiready, scsi, scsicmd, scsierror � . scsi(2) 612
clunk � forget about a fid clunk(5) 835

maps . cmap2rgb, cmap2rgba, rgb2cmap � colors and color color(2) 401
commands . cmd � interface to host operating system cmd(3) 681
lookupcmd � control message parsing Cmdbuf, parsecmd, respondcmderror, 9pcmdbuf(2) 354
commands parsecmd, cmderror, lookupcmd � parse device parsecmd(9) 1098

cmp � compare two files cmp(1) 49
qr � generate QR code . qr(1) 237

src, Bfn � find source code for executable . src(1) 282
mpc � extended precision arithmetic code generator . mpc(1) 188

hg � Mercurial source code management system hg(1) 123
style � Plan 9 coding conventions for C style(6) 893

col � column alignment col(1) 50
bundle � collect files for distribution bundle(1) 41

color � representation of pixels and colors . . . color(6) 856
getmap, colors � display color map . colors(1) 51

RGB, readcolmap, writecolmap � access display color map . readcolmap(2) 595
cmap2rgb, cmap2rgba, rgb2cmap � colors and color maps . color(2) 401

color � representation of pixels and colors . color(6) 856
getmap, colors � display color map colors(1) 51

cmap2rgb, cmap2rgba, rgb2cmap � colors and color maps color(2) 401
col � column alignment . col(1) 50

/eqrect, ptinrect, rectinrect, rectXrect, rectclip, combinerect, badrect, Dx, Dy, Pt, Rect, Rpt �/ . addpt(2) 363
sorted files . comm � select or reject lines common to two . comm(1) 52

time � time a command . time(1) 304
exec, exit, flag, rfork, shift, wait, whatis, ., ~ � command language rc, cd, eval, rc(1) 239

doctype � intuit command line for formatting a document doctype(1) 78
lock � run a command under lock lock(1) 166

getflags, usage � command-line parsing for shell scripts getflags(8) 957
cmd � interface to host operating system commands . cmd(3) 681

cmderror, lookupcmd � parse device commands parsecmd, parsecmd(9) 1098
aescbc, ipso, secstore � secstore commands . secstore(1) 265

secstored, secuser � secstore commands . secstore(8) 1050
os � interface to host OS commands (drawterm only) os(1) 206

kill, slay, broke, dontkill � print commands to kill processes kill(1) 160
stop, start � print commands to stop and start processes stop(1) 285

comm � select or reject lines common to two sorted files comm(1) 52
/authpak_new, authpak_finish � routines for communicating with authentication servers . . . authsrv(2) 382

pipe � two-way interprocess communication . pipe(3) 714
pushssl � attach SSL version 2 encryption to a communication channel pushssl(2) 582

� attach TLS1 or SSL3 encryption to a communication channel /readcertchain pushtls(2) 583
uart, eia � serial communication control uart(3) 740

replica management . applychanges, applylog, compactdb, updatedb � simple client-server . . replica(8) 1039
diff � differential file comparator . diff(1) 74

derp � directory-examining recursive compare . derp(1) 73
cmp � compare two files . cmp(1) 49

pcc � APE C compiler driver . pcc(1) 216
yacc � yet another compiler-compiler . yacc(1) 342

0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C compilers . 2c(1) 5
complete � file name completion complete(2) 402

compress and/ gzip, gunzip, bzip2, bunzip2, compress, uncompress, zip, unzip � gzip(1) 121
mksacfs � make a compressed file system mksacfs(8) 997

sacfs � compressed file system sacfs(4) 809
mkpaqfs � make a compressed read-only file system mkpaqfs(8) 996

paqfs � compressed read-only file system paqfs(4) 800
bzfs � compressed read-write ram filesystem bzfs(4) 754

flateerr, mkcrctab, blockcrc, adler32 � deflate compression . . /inflateblock, inflatezlibblock, flate(2) 463
(PCMCI) device i82365 � Personal Computer Memory Card Interface Association . i82365(3) 697

buffer server and viewer for Virtual Network Computing (VN) . . vncs, vncv � remote frame vnc(1) 331
login, execution, and XMODEM file transfer . . . con, telnet, rx, hayes, xms, xmr � remote con(1) 53

/BALLOC, blocklen, blockalloclen, readblist, concatblock, copyblock, trimblock, packblock,/ allocb(9) 1085
spin - verification tool for models of concurrent systems . spin(1) 278

buildindex, checkarenas, checkindex, conf, fmtarenas, fmtbloom, fmtindex,/ venti-fmt(8) 1076
opendev,/ usbcmd, classname, closedev, configdev, devctl, getdev, loaddevstr, nusb(2) 560

icanhasmsi � print MSI configuration . icanhasmsi(8) 979
pci � print PCI bus configuration . pci(8) 1012

smtpd � SMTP listener configuration . smtpd(6) 890
acpi � Advanced Configuration and Power Interface acpi(8) 925

ipconfig, rip, linklocal � Internet configuration and routing ipconfig(8) 981
netaudit - network configuration checker netaudit(8) 1005
venti.conf � a venti configuration file . venti.conf(6) 900

plan9.ini � configuration file for PCs plan9.ini(8) 1017

8-i

Permuted Index

hgrc � configuration files for Mercurial hgrc(8) 963
aux/mouse, aux/accupoint � configure a mouse to a port mouse(8) 998

vga � configure a VGA card vga(8) 1079
tunnel of IPv6 through IPv4 6in4, ayiya - configure and run automatic or manual 6in4(8) 919

fsconfig � configuring a file server fsconfig(8) 952
boot, bootrc � connect to the root file server boot(8) 933

attach, auth � messages to establish a connection . attach(5) 834
the system upon loss of remote file server connection reboot � reboot reboot(8) 1038

fversion � initialize 9P connection and negotiate version fversion(2) 484
cpu � connection to CPU server cpu(1) 57

rcpu, rimport, rexport, rconnect � connection to CPU server rcpu(1) 245
freenetconninfo � make and break network connections . . . /setnetmtpt, getnetconninfo, dial(2) 427

netstat � summarize network connections . netstat(1) 196
vtversion, vtdebug, vthangup � Venti network connections /vtfreeconn, vtsend, vtrecv, venti-conn(2) 655

group ids, user, null, reboot, etc. cons � console, clocks, process/process cons(3) 683
cec � Coraid Ethernet Console . cec(8) 937

kbdfs, console � keyboard and console filesystem . . . kbdfs(8) 986
consolefs, C, clog � file system for console access . consolefs(4) 760

user, null, reboot, etc. cons � console, clocks, process/process group ids, . . cons(3) 683
kbdfs, console � keyboard and console filesystem . kbdfs(8) 986

access . consolefs, C, clog � file system for console . . . consolefs(4) 760
xargs � construct argument list and execute xargs(1) 340

rwd, conswdir � maintain remote working directory . rwd(1) 256
arch � architecture-specific information and control . arch(3) 675

atazz � ATA target control . atazz(8) 928
ctlkeyboard, closekeyboard � keyboard control initkeyboard, keyboard(2) 525

menuhit, setcursor, enter � mouse control /moveto, getrect, drawgetrect, mouse(2) 545
scuzz � SCSI target control . scuzz(8) 1047

swap � memory usage statistics and swap file control . swap(3) 736
uart, eia � serial communication control . uart(3) 740

closecontrolset, controlcalled, controlwire,/ . . Control, Controlset, activate, closecontrol, . . . control(2) 403
acme � control files for text windows acme(4) 750

getfcr, setfcr, getfsr, setfsr � control floating point getfcr(2) 487
parsecmd, respondcmderror, lookupcmd � control message parsing Cmdbuf, 9pcmdbuf(2) 354

/activate, closecontrol, closecontrolset, controlcalled, controlwire, createbox,/ control(2) 403
qball � 3-d rotation controller . qball(2) 586

vgadb � VGA controller and monitor database vgadb(6) 901
vga � VGA controller device . vga(3) 745

usb � USB Host Controller Interface . usb(3) 741
device drivers . sdahci � AHCI (Advanced Host Controller Interface) SATA (Serial AT) storage . sdahci(3) 725
closecontrolset, controlcalled,/ Control, Controlset, activate, closecontrol, control(2) 403

/closecontrol, closecontrolset, controlcalled, controlwire, createbox, createboxbox,/ control(2) 403
/convT2M, convM2T, convTR2M, convM2TR, convA2M, convM2A, convPR2M, convM2PR,/ . . authsrv(2) 382

dirfmt, dirmodefmt,/ Fcall, convS2M, convD2M, convM2S, convM2D, fcallfmt, fcall(2) 457
style � Plan 9 coding conventions for C . style(6) 893

utfnlen, utfrune, utfrrune, utfutf � rune/UTF conversion /fullrune, utfecpy, utflen, rune(2) 603
units � conversion program . units(1) 322

TK2MS, TK2SEC � kernel times and time conversions . . /fastticks, HZ, MS2HZ, MS2TK, seconds(9) 1103
mug - convert an image to a face icon mug(1) 191

dd � convert and copy a file dd(1) 69
ps2pdf, pdf2ps � convert between PostScript and PDF ps2pdf(1) 230

ms2html, html2ms � convert between troff�s ms macros and html . . ms2html(1) 189
gmtime, asctime, tm2sec, timezone � convert date and time ctime, localtime, ctime(2) 419

tzload, tmtime, tmparse, tmfmt, tmnorm - convert date and time tmnow, tmdate(2) 643
unicode . uhtml � convert foreign character set HTML file to uhtml(1) 320
seconds since epoch seconds � convert human-readable date (and time) to . . . seconds(1) 264

crop, iconv � frame, crop, and convert image . crop(1) 59
and from unicode utf2idn, idn2utf � convert internationalized domain names to . . . idn(2) 514

togif, toppm, topng, totif, toico � view and convert pictures . . . /ico, tga, tojpg, togeordi, jpg(1) 156
strtod, strtol, strtoll, strtoul, strtoull � convert text to numbers /atoll, charstod, atof(2) 378

troff2html � convert troff output into HTML troff2html(1) 316
mus � MUS to MIDI converter . mus(1) 192

banks dmid � MIDI to OPL3 converter using GENMIDI-type instrument dmid(1) 76
authsrv, guard.srv, debug,/ changeuser, convkeys, printnetkey, status, enable, disable, auth(8) 930

/convM2TR, convA2M, convM2A, convPR2M, convM2PR, _asgetticket, _asrequest,/ authsrv(2) 382
/readnvram, convT2M, convM2T, convTR2M, convM2TR, convA2M, convM2A, convPR2M,/ . . authsrv(2) 382

fcallfmt, dirfmt, dirmodefmt,/ Fcall, convS2M, convD2M, convM2S, convM2D, fcall(2) 457
webcookies � HTTP cookie manager . webcookies(4) 825

read, write, copy � simple Venti clients venti(1) 326
dd � convert and copy a file . dd(1) 69

rdarena, wrarena � copy arenas between venti serversventi-backup(8) 1075
buffer . pump � copy asynchronously via a large circular pump(1) 231

ecp � fast copy, handling errors ecp(1) 84
cp, fcp, mv � copy, move files . cp(1) 55

9-i

Permuted Index

packetstats, packettrailer, packettrim � copy network buffers /packetsplit, venti-packet(2) 663
/blocklen, blockalloclen, readblist, concatblock, copyblock, trimblock, packblock, padblock,/ . . allocb(9) 1085

cec � Coraid Ethernet Console cec(8) 937
urlencode � retrieve, post to a web page corresponding to a url /hpost, webpaste, hget(1) 145

trigonometric functions sin, cos, tan, asin, acos, atan, atan2 � sin(2) 623
sinh, cosh, tanh � hyperbolic functions sinh(2) 624

wc � word count . wc(1) 336
sum, md5sum, sha1sum � sum and count blocks in a file sum(1) 288

locks, rendezvous points, and reference counts /rendezvous locks, reader-writer lock(2) 526
cp, fcp, mv � copy, move files cp(1) 55

mount archival file systems 32vfs, cpiofs, tapfs, tarfs, tpfs, v6fs, v10fs, zipfs � . . tapefs(4) 814
cpp � C language preprocessor cpp(1) 56
cpu � connection to CPU server cpu(1) 57

oexportfs � legacy exportfs for cpu and import . oexportfs(4) 799
rimport, rexport, rconnect � connection to CPU server . rcpu, rcpu(1) 245

cputime, times, cycles � cpu time in this process and children cputime(2) 418
information . cpuid, icanhasvmx � print processor cpuid(8) 939

cpurc, cpurc.local, termrc, termrc.local � boot scripts cpurc(8) 940
process and children cputime, times, cycles � cpu time in this cputime(2) 418
newmap, setmap, findseg, unusemap,/ crackhdr, machbytype, machbyname, mach(2) 529

/allocmemimaged, readmemimage, creadmemimage, writememimage,/ memdraw(2) 536
or new file . open, create � prepare a fid for I/O on an existing . . open(5) 838

pipe � create an interprocess channel pipe(2) 568
dump9660, mk9660 � create an ISO-9660 CD image mk9660(8) 992

snap, snapfs � create and mount process snapshots snap(4) 810
writing, create file open, create, close � open a file for reading or open(2) 566

vac, unvac � create, extract a vac archive on Venti vac(1) 324
other pointing device paint � create image files by drawing with a mouse or paint(1) 210

/createboxbox, createbutton, createcolumn, createentry, createkeyboard, createlabel,/ control(2) 403
opendirfile,/ . . . Tree, alloctree, freetree, File, createfile, closefile, removefile, walkfile, 9pfile(2) 357

/createentry, createkeyboard, createlabel, createmenu, createradiobutton, createrow,/ . . control(2) 403
/createmenu, createradiobutton, createrow, createscribble, createslider, createstack,/ control(2) 403

/createscribble, createslider, createstack, createtab, createtext, createtextbutton,/ control(2) 403
hvprint, hwrite, hxferenc, � routines for creating an http server . . /hurlfmt, hurlunesc, httpd(2) 508

patch � simple patch creation and tracking system patch(1) 212
kproc, pexit, postnote � kernel process creation, termination and interruption kproc(9) 1094

cron � clock daemon cron(8) 941
crop, iconv � frame, crop, and convert image . crop(1) 59

/sub3, neg3, div3, mul3, eqpt3, closept3, dot3, cross3, len3, dist3, unit3, midpt3, lerp3,/ arith3(2) 375
/mpmagadd, mpmagsub, crtpre, crtin, crtout, crtprefree, crtresfree � extended/ mp(2) 547

/hmac_sha2_384, hmac_sha2_512, poly1305 � cryptographically secure hashes sechash(2) 614
X509ecdsaverifydigest � elliptic curve cryptography /X509ecdsaverify, ec(2) 441

cryptsetup � setup encrypted partition cryptsetup(8) 942
/ndbfree, ipattr, ndbgetipaddr, ndbipinfo, csipinfo, ndbhash, ndbparse, csgetvalue,/ . . . ndb(2) 554

query, ipquery, mkhash, mkdb, mkhosts, cs, csquery, dns, dnstcp, dnsquery, dnsdebug,/ . . ndb(8) 1000
timezone � convert date and time ctime, localtime, gmtime, asctime, tm2sec, . . . ctime(2) 419
control initkeyboard, ctlkeyboard, closekeyboard � keyboard keyboard(2) 525

/createtext, createtextbutton, ctlerror, ctlmalloc, ctlrealloc, ctlstrdup, ctlprint,/ control(2) 403
getwd � get current directory . getwd(2) 491

getcallerpc � fetch return PC of current function . getcallerpc(2) 485
mouse, cursor � kernel mouse interface mouse(3) 712

drawerror,/ Display, Point, Rectangle, Cursor, initdraw, geninitdraw, newwindow, . . . graphics(2) 492
X509ecdsaverifydigest � elliptic curve cryptography /X509ecdsaverify, ec(2) 441

cached-worm file server, dump cwfs, .
cputime, times, cycles � cpu time in this process and children . cputime(2) 418

cifsd � CIFS/SMB network daemon . cifsd(8) 938
cron � clock daemon . cron(8) 941

ftpd, socksd, hproxy � Internet remote access daemons telnetd, rlogind, rexexec, ipserv(8) 984
zip, unzip � compress and expand data /bunzip2, compress, uncompress, gzip(1) 121

prof, tprof, kprof � display profiling data . prof(1) 226
pullblock, pullupblock, adjustblock, checkb � data block management /padblock, allocb(9) 1085

segflush � flush instruction and data caches . segflush(2) 620
vtrootunpack, vtparsescore, vtscorefmt � venti data formats /vtputstring, vtrootpack, venti-fcall(2) 657

read, write � transfer data from and to a file read(5) 840
caninsertkey, lookupkey, deletekey � integer to data structure maps /freemap, insertkey, intmap(2) 515

ndbsubstitute, ndbdedup � network database /ndbconcatenate, ndbreorder, ndb(2) 554
ndb � Network database . ndb(6) 879

dnsdebug, dnsgetip, inform � network database . . /csquery, dns, dnstcp, dnsquery, ndb(8) 1000
vgadb � VGA controller and monitor database . vgadb(6) 901

keyfs, warning � authentication database files . keyfs(4) 787
join � relational database operator . join(1) 155

none, as � maintain or query authentication databases /debug, wrkey, login, newns, auth(8) 930
intro � introduction to databases . intro(7) 904

sdp � secure datagram protocol . sdp(3) 729

10-i

Permuted Index

gmtime, asctime, tm2sec, timezone � convert date and time ctime, localtime, ctime(2) 419
date, clock � date and time . date(1) 60

tmtime, tmparse, tmfmt, tmnorm - convert date and time tmnow, tzload, tmdate(2) 643
seconds � convert human-readable date (and time) to seconds since epoch seconds(1) 264

date, clock � date and time date(1) 60
touch � set modification date of a file . touch(1) 310

db � debugger . db(1) 61
dc � desk calculator . dc(1) 67
dd � convert and copy a file dd(1) 69

/ctlmalloc, ctlrealloc, ctlstrdup, ctlprint, deactivate, freectlfont, freectlimage,/ control(2) 403
/status, enable, disable, authsrv, guard.srv, debug, wrkey, login, newns, none, as �/ auth(8) 930

acid, truss, trump � debugger . acid(1) 12
db � debugger . db(1) 61

ieeesftos, ieeedftos � machine-independent debugger functions . /leieeesftos, leieeedftos, debugger(2) 422
rdbfs � remote kernel debugging file system rdbfs(4) 805

encoding byte/ /dec64chr, enc64chr, dec32chr, enc32chr, dec16chr, enc16chr, encodefmt � encode(2) 445
xd � hex, octal, decimal, or ASCII dump xd(1) 341

flacenc, sundec, wavdec, pcmconv, mixfs � decode and encode audio files /flacdec, audio(1) 26
/asn1encodeRSApriv, asn1encodeRSApub, decodePEM, rsadecrypt, rsaencrypt, rsafill,/ . . rsa(2) 601

dpic, todpic � Doom picture decoder and encoder dpic(1) 79
/wunlock, rsleep, rwakeup, rwakeupall, incref, decref � spin locks, queueing rendezvous/ . . . lock(2) 526

encrypt, decrypt, netcrypt � DES encryption encrypt(2) 447
/reqqueuepush, reqqueueflush � deferred processing of 9P requests 9pqueue(2) 359

/runefmtstrflush, errfmt � support for defined print formats and output routines fmtinstall(2) 466
deflatezlibblock, inflateinit,/ deflateinit, deflate, deflatezlib, deflateblock, flate(2) 463

/myetheraddr, maskip, equivip4, equivip6, defmask, isv4, v4tov6, v6tov4, nhgetv,/ ip(2) 519
sleep, alarm � delay, ask for delayed note sleep(2) 625

delays, clock interrupts delay, microdelay, addclock0link � small delay(9) 1088
alarm � ask for delayed note . alarm(1) 21

sleep, alarm � delay, ask for delayed note . sleep(2) 625
delay, microdelay, addclock0link � small delays, clock interrupts delay(9) 1088

delkey � delete keys from factotum delkey(1) 71
/freemap, insertkey, caninsertkey, lookupkey, deletekey � integer to data structure maps . . . intmap(2) 515

tail � deliver the last part of a file tail(1) 291
filter, list, deliver, token, vf � filtering mail filter(1) 98

send � mail routing and delivery . send(8) 1052
delkey � delete keys from factotum delkey(1) 71
deroff � remove formatting requests deroff(1) 72

compare . derp � directory-examining recursive derp(1) 73
encrypt, decrypt, netcrypt � DES encryption . encrypt(2) 447

/desECBdecrypt, des3CBCencrypt, des3CBCdecrypt, des3ECBencrypt,/ des(2) 425
/desECBencrypt, desECBdecrypt, des3CBCencrypt, des3CBCdecrypt,/ des(2) 425

/des3CBCdecrypt, des3ECBencrypt, des3ECBdecrypt, key_setup, des56to64,/ des(2) 425
/des3ECBdecrypt, key_setup, des56to64, des64to56, setupDES3state,/ des(2) 425

/des_key_setup, block_cipher, desCBCencrypt, desCBCdecrypt, desECBencrypt,/ des(2) 425
walk � descend a directory hierarchy walk(5) 845

namespace � name space description file . namespace(6) 878
errstr, rerrstr, werrstr � description of last system call error errstr(2) 448

dup � duplicate an open file descriptor . dup(2) 440
fd2path � return file name associated with file descriptor . fd2path(2) 460
iounit � return size of atomic I/O unit for file descriptor . iounit(2) 518

fauth � set up authentication on a file descriptor to a file server fauth(2) 456
/block_cipher, desCBCencrypt, desCBCdecrypt, desECBencrypt, desECBdecrypt,/ des(2) 425

dc � desk calculator . dc(1) 67
desCBCdecrypt,/ setupDESstate, des_key_setup, block_cipher, desCBCencrypt, . des(2) 425
xformpointd,/ ident, matmul, matmulr, determinant, adjoint, invertmat, xformpoint, . . matrix(2) 534

usbcmd, classname, closedev, configdev, devctl, getdev, loaddevstr, opendev,/ nusb(2) 560
audio � audio device . audio(3) 677

ether � Ethernet device . ether(3) 691
Memory Card Interface Association (PCMCI) device i82365 � Personal Computer i82365(3) 697

tcp17020 � listen for calls on a network device /tcp17010, tcp17013, tcp17019, listen(8) 988
by drawing with a mouse or other pointing device paint � create image files paint(1) 210

vga � VGA controller device . vga(3) 745
parsecmd, cmderror, lookupcmd � parse device commands . parsecmd(9) 1098

opendev, opendevdata, openep, unstall - USB device driver library /getdev, loaddevstr, nusb(2) 560
Controller Interface) SATA (Serial AT) storage device drivers . sdahci � AHCI (Advanced Host sdahci(3) 725

opendisk, Disk � generic disk device interface . disk(2) 431
sd � storage device interface . sd(3) 723

sdaoe � ATA-over-Ethernet (Ao) storage device interface . sdaoe(3) 727
sdloop � loopback storage device interface . sdloop(3) 728

scsiready, scsi, scsicmd, scsierror � SCSI device operations openscsi, closescsi, scsi(2) 612
readnum, readstr � device read routines readnum(9) 1101

fs � file system devices . fs(3) 695
intro � introduction to the Plan 9 devices . intro(3) 670

11-i

Permuted Index

Internet booting . dhcpd, dhcp6d, dhcpleases, rarpd, tftpd � . . . dhcpd(8) 943
timepic � troff preprocessor for drawing timing diagrams . timepic(1) 305

netmkaddr, setnetmtpt, getnetconninfo,/ dial, hangup, announce, listen, accept, reject, . dial(2) 427
faxsend, fax, telcofax, telcodata � telephone dialer network telco, faxreceive, telco(4) 815

at, drain, expect, pass � dialer scripting tools expect(1) 92
dict � dictionary browser dict(7) 906

idiff � interactive diff . idiff(1) 151
diff � differential file comparator diff(1) 74

yesterday, diffy � print file names from the dump yesterday(1) 344
triple_block_cipher - single and triple digital encryption standard . /setupDES3state, des(2) 425

authentication box securenet � Digital Pathways SecureNet Key remote securenet(8) 1051
dsasigalloc, dsasigfree, dsaprivtopub - digital signature algorithm /dsaprivfree, dsa(2) 438

map � digitized map formats map(6) 871
scat � sky catalogue and Digitized Sky Survey scat(7) 915

/validitems, freeitems, freedocinfo, dimenkind, dimenspec, targetid, targetname, fromStr,/ . . . html(2) 496
tar, dircp � archiver . tar(1) 293

awk � directed scanning and processing language . . awk(1) 29
chdir � change working directory . chdir(2) 399

dirread, dirreadall � read directory . dirread(2) 430
getwd � get current directory . getwd(2) 491

ls, lc � list contents of directory . ls(1) 170
mkdir � make a directory . mkdir(1) 184

pwd, pbd � working directory . pwd(1) 232
rwd, conswdir � maintain remote working directory . rwd(1) 256

mdir � mail directory format . mdir(6) 872
walk � descend a directory hierarchy . walk(5) 845

derp � directory-examining recursive compare derp(1) 73
/fstat, wstat, fwstat, dirstat, dirfstat, dirwstat, dirfwstat, nulldir � get and put file status stat(2) 626

/convD2M, convM2S, convM2D, fcallfmt, dirfmt, dirmodefmt, read9pmsg, statcheck, sizeS2M,/ fcall(2) 457
listensrv, postmountsrv,/ Srv, chatty9p, dirread9p, emalloc9p, erealloc9p, estrdup9p, . 9p(2) 349

dirread, dirreadall � read directory dirread(2) 430
stat, fstat, wstat, fwstat, dirstat, dirfstat, dirwstat, dirfwstat, nulldir � get and put file/ . stat(2) 626

screenlock � disable access to a terminal screenlock(8) 1046
intrenable, intrdisable � enable disable) an interrupt handler intrenable(9) 1093

login,/ /convkeys, printnetkey, status, enable, disable, authsrv, guard.srv, debug, wrkey, . . . auth(8) 930
splhi, spllo, splx, islo � enable and disable interrupts . splhi(9) 1105

system cdfs, cddb � optical disc (CD, DVD, B) track reader and writer file . . cdfs(4) 755
restore � backup venti arenas to blu-ray discs or restore from them . . . /dumparenas, backup(8) 932

opendisk, Disk � generic disk device interface disk(2) 431
Serial Bus drivers audio, disk, ether, kb, serial, ptp, usbd - Universal . . nusb(4) 797

floppy � floppy disk interface . floppy(3) 694
disksim � disk simulator . disksim(8) 946

du � disk usage . du(1) 82
diskparts � prepare disks for use diskparts(8) 945

prep, edisk, fdisk, format, mbr � prepare disks, floppies and flashes prep(8) 1029
disksim � disk simulator disksim(8) 946
disk/smart � SMART error monitoring smart(8) 1053

window statusbar, statusmsg � display a bar graph or status message statusbar(8) 1061
getmap, colors � display color map . colors(1) 51

RGB, readcolmap, writecolmap � access display color map . readcolmap(2) 595
stats � display graphs of system activity stats(8) 1059

ns � display name space . ns(1) 204
geninitdraw, newwindow, drawerror,/ Display, Point, Rectangle, Cursor, initdraw, . . . graphics(2) 492

prof, tprof, kprof � display profiling data prof(1) 226
mothra � retrieve and display World-Wide Web files mothra(1) 186

mul3, eqpt3, closept3, dot3, cross3, len3, dist3, unit3, midpt3, lerp3, reflect3,/ . . /div3, arith3(2) 375
hypot � Euclidean distance . hypot(2) 513

bundle � collect files for distribution . bundle(1) 41
len3, dist3, unit3, midpt3,/ add3, sub3, neg3, div3, mul3, eqpt3, closept3, dot3, cross3, . . . arith3(2) 375

umuldiv � high-precision multiplication and division . muldiv, muldiv(2) 552
canonrect, eqpt, eqrect,/ addpt, subpt, mulpt, divpt, rectaddpt, rectsubpt, insetrect, addpt(2) 363
GENMIDI-type instrument banks dmid � MIDI to OPL3 converter using dmid(1) 76

/mkhosts, cs, csquery, dns, dnstcp, dnsquery, dnsdebug, dnsgetip, inform � network/ ndb(8) 1000
/ndbhash, ndbparse, csgetvalue, ndbfindattr, dnsquery, ndbdiscard, ndbconcatenate,/ ndb(2) 554

mswordstrings, msexceltables � extract/ doc2txt, doc2ps, wdoc2txt, xls2txt, olefs, . . . doc2txt(1) 77
a document . doctype � intuit command line for formatting . doctype(1) 78
fmtstrcpy, fmtrunestrcpy,/ fmtinstall, dofmt, dorfmt, fmtprint, fmtvprint, fmtrune, . . fmtinstall(2) 466

utf2idn, idn2utf � convert internationalized domain names to and from unicode idn(2) 514
kill, slay, broke, dontkill � print commands to kill processes . . . kill(1) 160

life, mandel,/ 4s, 5s, blabs, catclock, doom, festoon, geigerstats, glendy, juggle, . . . games(1) 109
dpic, todpic � Doom picture decoder and encoder dpic(1) 79

/quotestrfmt, quoterunestrfmt, quotefmtinstall, doquote, needsrcquote � quoted character/ . . quote(2) 590
fmtstrcpy, fmtrunestrcpy,/ . fmtinstall, dofmt, dorfmt, fmtprint, fmtvprint, fmtrune, fmtinstall(2) 466

dossrv, 9660srv, dosmnt, eject � DOS and ISO9660 file systems dossrv(4) 765

12-i

Permuted Index

add3, sub3, neg3, div3, mul3, eqpt3, closept3, dot3, cross3, len3, dist3, unit3, midpt3,/ arith3(2) 375
� halt any local file systems and optionally shut down or reboot the system . . . /scram, reboot fshalt(8) 956

authsrv, p9any, p9sk1, dp9ik � authentication protocols authsrv(6) 851
encoder . dpic, todpic � Doom picture decoder and dpic(1) 79

troff, nroff, dpost � text formatting and typesetting troff(1) 314
at, drain, expect, pass � dialer scripting tools . . . expect(1) 92

draw � screen graphics draw(3) 685
graph � draw a graph . graph(1) 114

histogram � draw a histogram . histogram(8) 974
replclipr, line, poly, fillpoly, bezier,/ . . Image, draw, gendraw, drawreplxy, drawrepl, draw(2) 432

map, mapdemo � draw maps on various projections map(7) 910
memimageline, memimagedraw, drawclip, drawclipnorepl, memlinebbox,/ /memfillpoly, memdraw(2) 536

/Cursor, initdraw, geninitdraw, newwindow, drawerror, initdisplay, closedisplay,/ graphics(2) 492
/readmouse, closemouse, moveto, getrect, drawgetrect, menuhit, setcursor, enter �/ mouse(2) 545

grap � pic preprocessor for drawing graphs . grap(1) 112
pic � troff preprocessor for drawing pictures . pic(1) 218

/getmemdefont, memimagestring, hwdraw � drawing routines for memory-resident/ memdraw(2) 536
timepic � troff preprocessor for drawing timing diagrams timepic(1) 305

device paint � create image files by drawing with a mouse or other pointing paint(1) 210
Image, draw, gendraw, drawreplxy, drawrepl, replclipr, line, poly, fillpoly, bezier,/ draw(2) 432

fillpoly, bezier,/ Image, draw, gendraw, drawreplxy, drawrepl, replclipr, line, poly, draw(2) 432
/runestringbg, runestringnbg, _string, ARROW, drawsetdebug � graphics functions PB L draw(2) 432

os � interface to host OS commands drawterm only) . os(1) 206
kbd � pc keyboard driver . kbd(3) 707

pcc � APE C compiler driver . pcc(1) 216
opendevdata, openep, unstall - USB device driver library . . /getdev, loaddevstr, opendev, nusb(2) 560
kb, serial, ptp, usbd - Universal Serial Bus drivers audio, disk, ether, nusb(4) 797
Interface) SATA (Serial AT) storage device drivers . . . /� AHCI (Advanced Host Controller sdahci(3) 725

genprime, gensafeprime, genstrongprime, DSAprimes, probably_prime, smallprimetest �/ prime(2) 575
/dsaprivfree, dsasigalloc, dsasigfree, dsaprivtopub - digital signature algorithm . . . dsa(2) 438

dsaprivfree,/ dsagen, dsasign, dsaverify, dsapuballoc, dsapubfree, dsaprivalloc, dsa(2) 438
/dsapubfree, dsaprivalloc, dsaprivfree, dsasigalloc, dsasigfree, dsaprivtopub - digital/ dsa(2) 438

dsaprivalloc, dsaprivfree,/ dsagen, dsasign, dsaverify, dsapuballoc, dsapubfree, . . dsa(2) 438
/itomp, uvtomp, mptouv, vtomp, mptov, mptod, dtomp, mpdigdiv, mpadd, mpsub, mpleft,/ . . . mp(2) 547

dtracy � dynamic tracing language dtracy(1) 80
du � disk usage . du(1) 82

cwfs64x, fs64 - cached-worm file server, dump cwfs, cwfs64,
fs � file server, dump . fs(4) 776

history � print file names from the dump . history(1) 147
xd � hex, octal, decimal, or ASCII dump . xd(1) 341

yesterday, diffy � print file names from the dump . yesterday(1) 344
image . dump9660, mk9660 � create an ISO-9660 CD . mk9660(8) 992
blu-ray discs or restore/ . . backup, tobackup, dumparenas, restore � backup venti arenas to . backup(8) 932

ktrace � interpret kernel stack dumps . ktrace(1) 161
dup � duplicate an open file descriptor dup(2) 440
dup � dups of open files dup(3) 689

cdfs, cddb � optical disc (CD, DVD, B) track reader and writer file system . . . cdfs(4) 755
/rectXrect, rectclip, combinerect, badrect, Dx, Dy, Pt, Rect, Rpt � arithmetic on points and/ . . addpt(2) 363

dtracy � dynamic tracing language dtracy(1) 80
ARGBEGIN, ARGEND, ARGC, ARGF, EARGF � process option letters from argv arg(2) 373

/secp384r1, ecdominit, ecdomfree, ecassign, ecadd, ecmul, strtoec, ecgen, ecverify,/ ec(2) 441
/eread, emouse, ekbd, ecanread, ecanmouse, ecankbd, ereadmouse, eatomouse, eresized,/ . event(2) 449

/secp256k1, secp384r1, ecdominit, ecdomfree, ecassign, ecadd, ecmul, strtoec, ecgen,/ ec(2) 441
/ecdsasign, ecdsaverify, ecencodepub, ecdecodepub, ecpubfree, X509toECpub,/ ec(2) 441

secp256r1, secp256k1, secp384r1, ecdominit, ecdomfree, ecassign, ecadd, ecmul, strtoec,/ . ec(2) 441
/ecmul, strtoec, ecgen, ecverify, ecpubverify, ecdsasign, ecdsaverify, ecencodepub,/ ec(2) 441

echo � print arguments echo(1) 83
udpecho � echo UDP packets . udpecho(8) 1069

ecp � fast copy, handling errors ecp(1) 84
/ecdsaverify, ecencodepub, ecdecodepub, ecpubfree, X509toECpub, X509ecdsaverify,/ . . ec(2) 441

/ecadd, ecmul, strtoec, ecgen, ecverify, ecpubverify, ecdsasign, ecdsaverify,/ ec(2) 441
ed � text editor . ed(1) 85

floppies and flashes prep, edisk, fdisk, format, mbr � prepare disks, prep(8) 1029
tweak � edit image files, subfont files, face files, etc. . . tweak(1) 318

ed � text editor . ed(1) 85
hold � simple text editor . hold(1) 149

sed � stream editor . sed(1) 267
spred � sprite editor . spred(1) 281

emacs � editor macros . emacs(1) 89
sam, B, sam.save, samterm � screen editor with structural regular expressions sam(1) 258

/9boothyb, 9bootpxe, bootia32.efi, bootx64.efi, efiboot.fat � PC bootloader for FAT, ISO and/ . 9boot(8) 921
/ecankbd, ereadmouse, eatomouse, eresized, egetrect, edrawgetrect, emenuhit, eenter,/ . . . event(2) 449
/egverify, egpuballoc, egpubfree, egprivalloc, egprivfree, egsigalloc, egsigfree, egprivtopub/ elgamal(2) 443

egprivalloc,/ . . . eggen, egencrypt, egdecrypt, egsign, egverify, egpuballoc, egpubfree, elgamal(2) 443

13-i

Permuted Index

uart, eia � serial communication control uart(3) 740
ekbd, ecanread, ecanmouse, ecankbd,/ event, einit, estart, estartfn, etimer, eread, emouse, . event(2) 449
parseipandmask, v4parseip, parseether,/ eipfmt, parseip, parseipmask, ip(2) 519

dossrv, 9660srv, dosmnt, eject � DOS and ISO9660 file systems dossrv(4) 765
/einit, estart, estartfn, etimer, eread, emouse, ekbd, ecanread, ecanmouse, ecankbd,/ event(2) 449

fplot � plot elementary function . fplot(1) 104
egsigalloc, egsigfree, egprivtopub - elgamal encryption . . /egprivalloc, egprivfree, elgamal(2) 443

/bezier, bezspline, fillbezier, fillbezspline, ellipse, fillellipse, arc, fillarc, icossin,/ draw(2) 432
X509ecdsaverify, X509ecdsaverifydigest � elliptic curve cryptography . . . /X509toECpub, ec(2) 441

emacs � editor macros emacs(1) 89
postmountsrv,/ Srv, chatty9p, dirread9p, emalloc9p, erealloc9p, estrdup9p, listensrv, . . 9p(2) 349

event, einit, estart, estartfn, etimer, eread, emouse, ekbd, ecanread, ecanmouse,/ event(2) 449
/egetrect, edrawgetrect, emenuhit, eenter, emoveto, esetcursor, Event, Mouse, Menu �/ . . event(2) 449

vt � emulate a VT-100 or VT-220 terminal vt(1) 333
5e � user-mode ARM emulation . 5e(1) 10

realemu � software emulation of /dev/realmode realemu(8) 1037
2600 � emulator . atari(1) 25

blit � Blit emulator . blit(1) 39
mix � MIX assembler and emulator . mix(1) 178

opl3 � OPL3 chip emulator . opl3(1) 205
md � emulator . sega(1) 271

gb, gba, nes, snes � emulators . nintendo(1) 201
splhi, spllo, splx, islo � enable and disable interrupts splhi(9) 1105

intrenable, intrdisable � enable (disable) an interrupt handler intrenable(9) 1093
changeuser, convkeys, printnetkey, status, enable, disable, authsrv, guard.srv, debug,/ . . auth(8) 930

arrays/ /dec64chr, enc64chr, dec32chr, enc32chr, dec16chr, enc16chr, encodefmt � encoding byte encode(2) 445
sundec, wavdec, pcmconv, mixfs � decode and encode audio files . /oggenc, flacdec, flacenc, audio(1) 26

format pemdecode, pemencode � encode files in Privacy Enhanced Mail (PE) pem(8) 1014
/enc32chr, dec16chr, enc16chr, .

dpic, todpic � Doom picture decoder and encoder . dpic(1) 79
encrypt, decrypt, netcrypt � DES encryption . . . encrypt(2) 447

cryptsetup � setup encrypted partition . cryptsetup(8) 942
bfECBencrypt, bfECBdecrypt - blowfish encryption . . . /bfCBCencrypt, bfCBCdecrypt, blowfish(2) 393

ccpoly_encrypt, ccpoly_decrypt � chacha encryption /chacha_encrypt2, hchacha, chacha(2) 398
egsigalloc, egsigfree, egprivtopub - elgamal encryption /egprivalloc, egprivfree, elgamal(2) 443

encrypt, decrypt, netcrypt � DES encryption . encrypt(2) 447
rc4, rc4skip, rc4back - alleged rc4 encryption setupRC4state, rc4(2) 593

salsa_encrypt, salsa_encrypt2, hsalsa � salsa20 encryption /salsa_setblock, salsa_setiv, salsa(2) 606
X509rsaverify, X509rsaverifydigest � RSA encryption algorithm /X509rsareq, rsa(2) 601

triple_block_cipher - single and triple digital encryption standard /setupDES3state, des(2) 425
/advanced encryption standard (rijndael) aes(2) 365

pushssl � attach SSL version 2 encryption to a communication channel pushssl(2) 582
/readcert, readcertchain � attach TLS1 or SSL3 encryption to a communication channel pushtls(2) 583

pemencode � encode files in Privacy Enhanced Mail (PE) format pemdecode, pem(8) 1014
getrect, drawgetrect, menuhit, setcursor, enter � mouse control . /closemouse, moveto, mouse(2) 545

panic � abandon hope, all ye who enter here . panic(9) 1097
env � environment variables env(3) 690

getenv, putenv � access environment variables getenv(2) 486
plumbsendtext, plumblookup, plumbpack,/ . . eplumb, plumbfree, plumbopen, plumbsend, . plumb(2) 569

date (and time) to seconds since epoch . . . seconds � convert human-readable seconds(1) 264
nsec � time in seconds and nanoseconds since epoch . time, time(2) 642

eqn � typeset mathematics eqn(1) 90
unit3, midpt3,/ add3, sub3, neg3, div3, mul3, eqpt3, closept3, dot3, cross3, len3, dist3, . . . arith3(2) 375

/rectsubpt, insetrect, canonrect, eqpt, eqrect, ptinrect, rectinrect, rectXrect, rectclip,/ addpt(2) 363
/myipaddr, myetheraddr, maskip, equivip4, equivip6, defmask, isv4, v4tov6, v6tov4,/ ip(2) 519

/ekbd, ecanread, ecanmouse, ecankbd, ereadmouse, eatomouse, eresized, egetrect,/ . event(2) 449
Srv, chatty9p, dirread9p, emalloc9p, erealloc9p, estrdup9p, listensrv,/ 9p(2) 349

/fmtstrflush, runefmtstrinit, runefmtstrflush, errfmt � support for user-defined print/ fmtinstall(2) 466
rerrstr, werrstr � description of last system call error . errstr, errstr(2) 448

error � return an error error(5) 836
error, nexterror, poperror, waserror � error handling functions error(9) 1089

perror, syslog, sysfatal � system error messages . perror(2) 567
disk/smart � SMART error monitoring . smart(8) 1053

handling functions . error, nexterror, poperror, waserror � error . . . error(9) 1089
vtmallocz, vtrealloc, vtstrdup, vtfree � error-checking memory allocators . /vtmalloc, venti-mem(2) 662

ecp � fast copy, handling errors . ecp(1) 84
spell, sprog � find spelling errors . spell(1) 277

system call error . errstr, rerrstr, werrstr � description of last . . . errstr(2) 448
/edrawgetrect, emenuhit, eenter, emoveto, esetcursor, Event, Mouse, Menu � graphics/ . . event(2) 449

udp, il � network protocols over IP ip, esp, gre, icmp, icmpv6, ipmux, rudp, tcp, ip(3) 698
attach, auth � messages to establish a connection attach(5) 834

swap � establish a swap file swap(8) 1063
ecanread, ecanmouse,/ . . event, einit, estart, estartfn, etimer, eread, emouse, ekbd, event(2) 449

chatty9p, dirread9p, emalloc9p, erealloc9p, estrdup9p, listensrv, postmountsrv,/ . . . Srv, 9p(2) 349

14-i

Permuted Index

ether � Ethernet device ether(3) 691
Bus drivers audio, disk, ether, kb, serial, ptp, usbd - Universal Serial . . nusb(4) 797

aoe � Ethernet (Ao) interface aoe(3) 671
sdaoe � Ethernet (Ao) storage device interface sdaoe(3) 727

bridge � IP Ethernet bridge . bridge(3) 678
cec � Coraid Ethernet Console . cec(8) 937

ether � Ethernet device . ether(3) 691
wol � send wake-on-lan Ethernet packet . wol(8) 1081

ecanmouse,/ . . . event, einit, estart, estartfn, etimer, eread, emouse, ekbd, ecanread, event(2) 449
hypot � Euclidean distance . hypot(2) 513

,.el., ~ � command language rc, cd, eval, exec, exit, flag, rfork, shift, wait, whatis, . rc(1) 239
eve, iseve � privileged user eve(9) 1091

/emenuhit, eenter, emoveto, esetcursor, Event, Mouse, Menu � graphics events event(2) 449
calendar � print upcoming events . calendar(1) 43

derp � examining recursive compare derp(1) 73
� command language rc, cd, eval, exec, exit, flag, rfork, shift, wait, whatis, ., ~ . . rc(1) 239
file . exec, execl, _privates, _nprivates, _tos � execute a . . exec(2) 452
execution . execnet � network interface to program execnet(4) 766

src, Bfn � find source code for executable . src(1) 282
leswav � machine-independent access to executable files /beswav, leswab, leswal, mach(2) 529

size � print size of executable files . size(1) 273
xargs � construct argument list and execute . xargs(1) 340

exec, execl, _privates, _nprivates, _tos � execute a file . exec(2) 452
open, create � prepare a fid for I/O on an existing or new file . open(5) 838

await, wait, waitpid � wait for a process to exit . wait(2) 667
command language rc, cd, eval, exec, exit, flag, rfork, shift, wait, whatis, ., ~ � rc(1) 239
terminate process, process cleanup exits, _exits, atexit, atexitdont, terminate � . . . exits(2) 454
exponential, logarithm, power, square root . . . exp, log, log10, pow, pow10, sqrt � exp(2) 455

uncompress, zip, unzip � compress and expand data /bzip2, bunzip2, compress, gzip(1) 121
aliasmail � expand system wide mail aliases aliasmail(8) 926

at, drain, expect, pass � dialer scripting tools expect(1) 92
frexp, ldexp, modf � split into mantissa and exponent . frexp(2) 480

exp, log, log10, pow, pow10, sqrt � exponential, logarithm, power, square root . . . exp(2) 455
oexportfs � legacy exportfs for cpu and import oexportfs(4) 799

exportfs, srvfs � file server plumbing exportfs(4) 767
regsub, rregexec, rregsub, regerror � regular expression . /regcomplit, regcompnl, regexec, regexp(2) 597

regexp � regular expression notation . regexp(6) 888
samterm � screen editor with structural regular expressions sam, B, sam.save, sam(1) 258

fs, exsort � file server maintenance fs(8) 947
ext2srv � ext2 file system ext2srv(4) 769

crtpre, crtin, crtout, crtprefree, crtresfree � extended precision arithmetic . . /mpmagsub, mp(2) 547
mpc � extended precision arithmetic code generator . mpc(1) 188

s_grow, s_read, s_read_line, s_getline � extensible strings /s_putc, s_unique, string(2) 630
font, subfont � external format for fonts and subfonts font(6) 859

image � external format for images image(6) 864
vac, unvac � create, extract a vac archive on Venti vac(1) 324

strings � extract printable strings strings(1) 286
/xls2txt, olefs, mswordstrings, msexceltables � extract printable text from Microsoft/ doc2txt(1) 77
remainder, floor, ceiling functions fabs, fmod, floor, ceil � absolute value, floor(2) 465

face � face files . face(6) 858
tweak � edit image files, subfont files, face files, etc. tweak(1) 318

mug - convert an image to a face icon . mug(1) 191
faces, seemail, vwhois � mailbox interface . . . faces(1) 94

large primes . factor, primes � factor a number, generate . . . factor(1) 95
delkey � delete keys from factotum . delkey(1) 71

agent . factotum, fgui, userpasswd � authentication . . factotum(4) 770
ecp � fast copy, handling errors ecp(1) 84

/srand, truerand, ntruerand, genrandom, prng, fastrand, nfastrand � random number/ rand(2) 591
� kernel times and time/ seconds, ticks, fastticks, HZ, MS2HZ, MS2TK, TK2MS, TK2SEC . seconds(9) 1103

/bootx64.efi, efiboot.fat � PC bootloader for FAT, ISO and PXE network booting 9boot(8) 921
abort � generate a fault . abort(2) 360

descriptor to a file server fauth � set up authentication on a file fauth(2) 456
/login, noworld, procsetuser, auth_proxy, fauth_proxy, auth_allocrpc, auth_freerpc,/ . . . auth(2) 379

typesetter output files page � view FAX, image, graphic, PostScript, PDF, and page(1) 208
telephone dialer network telco, faxreceive, faxsend, fax, telcofax, telcodata � . telco(4) 815

Fcall, convS2M, convD2M, convM2S, convM2D, fcallfmt, dirfmt, dirmodefmt, read9pmsg,/ . . . fcall(2) 457
setvbuf,/ fopen, freopen, fdopen, fileno, fclose, sopenr, sopenw, sclose, fflush, fopen(2) 469

cp, fcp, mv � copy, move files cp(1) 55
descriptor . fd2path � return file name associated with file fd2path(2) 460
and flashes prep, edisk, fdisk, format, mbr � prepare disks, floppies . . prep(8) 1029
sclose, fflush, setvbuf,/ fopen, freopen, fdopen, fileno, fclose, sopenr, sopenw, fopen(2) 469

fedex, ups, usps � track shipments fedex(1) 96
/setbuf, fgetpos, ftell, fsetpos, fseek, rewind, feof, ferror, clearerr � standard buffered/ fopen(2) 469

mandel,/ 4s, 5s, blabs, catclock, doom, festoon, geigerstats, glendy, juggle, life, games(1) 109

15-i

Permuted Index

ap � fetch Associated Press news articles ap(1) 22
getcallerpc � fetch return PC of current function getcallerpc(2) 485

points/ /pldist3, vdiv3, vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, add4, sub4 � operations on 3-d arith3(2) 375
/sopenw, sclose, fflush, setvbuf, setbuf, fgetpos, ftell, fsetpos, fseek, rewind, feof,/ . . . fopen(2) 469

/getc, getchar, fputc, putc, putchar, ungetc, fgets, gets, fputs, puts, fread, fwrite � Stdio/ . fgetc(2) 461
factotum, fgui, userpasswd � authentication agent factotum(4) 770

wpa � Fi Protected Access setup wpa(8) 1082
clunk � forget about a fid . clunk(5) 835

open, create � prepare a fid for I/O on an existing or new file open(5) 838
closefid, lookupfid, removefid, Req,/ Fid, Fidpool, allocfidpool, freefidpool, allocfid, 9pfid(2) 355

gettokens, tokenize � break a string into fields . getfields, getfields(2) 488
access � determine accessibility of file . access(2) 362

assemble a stream of bullshit from words in a file . bullshit � bullshit(1) 40
dd � convert and copy a file . dd(1) 69

execl, _privates, _nprivates, _tos � execute a file . exec, exec(2) 452
fortune, theo, troll � sample lines from a file . fortune(1) 103

httpfile � serve a single web file . httpfile(4) 783
namespace � name space description file . namespace(6) 878

� open a file for reading or writing, create file open, create, close open(2) 566
� prepare a fid for I/O on an existing or new file . open, create open(5) 838

pr � print file . pr(1) 225
readn, write, pread, pwrite � read or write file . read, read(2) 594

read, write � transfer data from and to a file . read(5) 840
remove � remove a file . remove(2) 599

sha1sum � sum and count blocks in a file . sum, md5sum, sum(1) 288
swap � establish a swap file . swap(8) 1063

tail � deliver the last part of a file . tail(1) 291
touch � set modification date of a file . touch(1) 310

uniq � report repeated lines in a file . uniq(1) 321
venti.conf � a venti configuration file . venti.conf(6) 900

file � determine file type file(1) 97
stat, wstat � inquire or change file attributes . stat(5) 842

diff � differential file comparator . diff(1) 74
swap � memory usage statistics and swap file control . swap(3) 736

opendirfile,/ Tree, alloctree, freetree, File, createfile, closefile, removefile, walkfile, . 9pfile(2) 357
dup � duplicate an open file descriptor . dup(2) 440

fd2path � return file name associated with file descriptor . fd2path(2) 460
iounit � return size of atomic I/O unit for file descriptor . iounit(2) 518

fauth � set up authentication on a file descriptor to a file server fauth(2) 456
grep, g � search a file for a pattern . grep(1) 115

plan9.ini � configuration file for PCs . plan9.ini(8) 1017
open, create, close � open a file for reading or writing, create file open(2) 566

a.out � object file format . a.out(6) 847
ar � archive (library) file format . ar(6) 850

intro � introduction to file formats . intro(6) 846
remove � remove a file from a server . remove(5) 841

chgrp � change file group . chgrp(1) 46
readdirfile, closedirfile, hasperm � in-memory file hierarchy /walkfile, opendirfile, 9pfile(2) 357

pipefile � attach filter to file in name space . pipefile(1) 221
objtraverse, isar, nextar, readar � object file interpretation functions /readobj, object(2) 564

split � split a file into pieces . split(1) 280
rdproto � parse and process a proto file listing . proto(2) 581

mtime � print file modification time mtime(1) 190
mktemp � make a unique file name . mktemp(2) 544

basename � strip file name affixes . basename(1) 33
fd2path � return file name associated with file descriptor fd2path(2) 460

complete � file name completion complete(2) 402
namespace � structure of conventional file name space . namespace(4) 791

history � print file names from the dump history(1) 147
yesterday, diffy � print file names from the dump yesterday(1) 344

seek � change file offset . seek(2) 616
sizeS2M, sizeD2M � interface to Plan 9 File protocol /read9pmsg, statcheck, fcall(2) 457

intro � introduction to the Plan 9 File Protocol, 9P . intro(5) 830
boot, bootrc � connect to the root file server . boot(8) 933

� set up authentication on a file descriptor to a file server . fauth fauth(2) 456
fsconfig � configuring a file server . fsconfig(8) 952

hjfs � file server . hjfs(4) 782
upasfs � mail file server . upasfs(4) 819

� reboot the system upon loss of remote file server connection reboot reboot(8) 1038
cwfs64, cwfs64x, fs64 - cached-worm file server, dump cwfs,

fs � file server, dump . fs(4) 776
fs, exsort � file server maintenance fs(8) 947

hjfs � file server maintenance hjfs(8) 975
exportfs, srvfs � file server plumbing . exportfs(4) 767

16-i

Permuted Index

users � file server user list format users(6) 895
intro � introduction to file servers . intro(4) 749

threadpostsharesrv, srv � 9P file service /threadpostmountsrv, 9p(2) 349
srv, srvtls, 9fs � start network file service . srv(4) 811

dirwstat, dirfwstat, nulldir � get and put file status . . . /wstat, fwstat, dirstat, dirfstat, stat(2) 626
disc (CD, DVD, B) track reader and writer file system cdfs, cddb � optical cdfs(4) 755

cfs � cache file system . cfs(4) 757
ext2srv � ext2 file system . ext2srv(4) 769

ftpfs � file transfer protocol (FT) file system . ftpfs(4) 778
hgfs � mercurial file system . hgfs(4) 780
lnfs � long name file system . lnfs(4) 789

mkfs, mkext � archive or update a file system . mkfs(8) 995
mkpaqfs � make a compressed read-only file system . mkpaqfs(8) 996

mksacfs � make a compressed file system . mksacfs(8) 997
� network news transport protocol (NNT) file system . nntpfs nntpfs(4) 796

paqfs � compressed read-only file system . paqfs(4) 800
playlistfs � playlist file system . playlistfs(7) 914

ramfs � memory file system . ramfs(4) 803
ratfs � mail address ratification file system . ratfs(4) 804

rdbfs � remote kernel debugging file system . rdbfs(4) 805
root � the root file system . root(3) 721

sacfs � compressed file system . sacfs(4) 809
tftpfs � trivial file transfer protocol (TFT) file system . tftpfs(4) 817

truetypefs � TrueType font file system . truetypefs(4) 818
vacfs � a Venti-based file system . vacfs(4) 822

wadfs � WAD file system . wadfs(4) 823
webfs � world wide web file system . webfs(4) 826

wikifs, wikipost � wiki file system . wikifs(4) 828
nfs � Sun network file system client . nfs(4) 794

fs � file system devices . fs(3) 695
consolefs, C, clog � file system for console access consolefs(4) 760
flashfs � journalling file system for flash memory flashfs(4) 775

mkflashfs � make a journalling file system for flash memory mkflashfs(8) 994
plumber � file system for interprocess messaging plumber(4) 801

iostats � file system to measure I/O iostats(4) 786
fstype � determine file system type . fstype(1) 106

9660srv, dosmnt, eject � DOS and ISO9660 file systems dossrv, dossrv(4) 765
� automatically generate mount points for file systems mntgen mntgen(4) 790

tarfs, tpfs, v6fs, v10fs, zipfs � mount archival file systems 32vfs, cpiofs, tapfs, tapefs(4) 814
reboot/ . fshalt, scram, reboot � halt any local file systems and optionally shut down or fshalt(8) 956

uhtml � convert foreign character set HTML file to unicode . uhtml(1) 320
xmr � remote login, execution, and XMODEM file transfer con, telnet, rx, hayes, xms, con(1) 53

sshfs - secure file transfer protocol client sshfs(4) 812
sshnet - secure file transfer protocol client sshnet(4) 813

ftpfs � file transfer protocol (FT) file system ftpfs(4) 778
tftpfs � trivial file transfer protocol (TFT) file system tftpfs(4) 817

file � determine file type . file(1) 97
partfs � serve file, with partitions . partfs(8) 1011

table/ /localsym, globalsym, textsym, file2pc, fileelem, filesym, fileline, fnbound � symbol . . symbol(2) 635
setvbuf, setbuf,/ . . . fopen, freopen, fdopen, fileno, fclose, sopenr, sopenw, sclose, fflush, . fopen(2) 469

pcmconv, mixfs � decode and encode audio files /flacdec, flacenc, sundec, wavdec, audio(1) 26
cat, read � catenate files . cat(1) 44
cmp � compare two files . cmp(1) 49

� select or reject lines common to two sorted files . comm comm(1) 52
cp, fcp, mv � copy, move files . cp(1) 55

dup � dups of open files . dup(3) 689
face � face files . face(6) 858

hgignore � syntax for Mercurial ignore files . hgignore(8) 961
keyfs, warning � authentication database files . keyfs(4) 787

� machine-independent access to executable files . /beswal, beswav, leswab, leswal, leswav mach(2) 529
mk, membername � maintain (make) related files . mk(1) 179

mothra � retrieve and display World-Wide Web files . mothra(1) 186
graphic, PostScript, PDF, and typesetter output files page � view FAX, image, page(1) 208

qer, runq � queue management for spooled files . qer(8) 1033
rio � window system files . rio(4) 806

rm � remove files . rm(1) 254
size � print size of executable files . size(1) 273

sort � sort and/or merge files . sort(1) 275
strip � remove symbols from binary files . strip(1) 287
tmpfile, tmpnam � Stdio temporary files . tmpfile(2) 647

vtfiletruncate, vtfileunlock, vtfilewrite � Venti files /vtfilesetentry, vtfilesetsize, venti-file(2) 659
pointing device paint � create image files by drawing with a mouse or other paint(1) 210

tweak � edit image files, subfont files, face files, etc. tweak(1) 318
bundle � collect files for distribution . bundle(1) 41

17-i

Permuted Index

hgrc � configuration files for Mercurial . hgrc(8) 963
acme � control files for text windows acme(4) 750

pemdecode, pemencode � encode files in Privacy Enhanced Mail (PE) format pem(8) 1014
tweak � edit image files, subfont files, face files, etc. tweak(1) 318

access/ /globalsym, textsym, file2pc, fileelem, filesym, fileline, fnbound � symbol table symbol(2) 635
bzfs � compressed read-write ram filesystem . bzfs(4) 754

kbdfs, console � keyboard and console filesystem . kbdfs(8) 986
cifs - Microsoft" Windows network filesystem client . cifs(4) 758

/fillbezier, fillbezspline, ellipse, fillellipse, arc, fillarc, icossin, icossin2, border, string,/ draw(2) 432
/replclipr, line, poly, fillpoly, bezier, bezspline, fillbezier, fillbezspline, ellipse, fillellipse, arc,/ draw(2) 432

plot � graphics filter . plot(1) 223
ptrap � plumber (4) filter . ptrap(4) 802

filter, list, deliver, token, vf � filtering mail . . . filter(1) 98
pipefile � attach filter to file in name space pipefile(1) 221

scanmail, testscan � spam filters . scanmail(8) 1043
look � find lines in a sorted list look(1) 167

leak, kmem, umem � help find memory leaks . leak(1) 162
man, lookman, sig � print or find pages of this manual man(1) 173

src, Bfn � find source code for executable src(1) 282
spell, sprog � find spelling errors . spell(1) 277

/machbytype, machbyname, newmap, setmap, findseg, unusemap, loadmap, attachproc,/ . . . mach(2) 529
/textseg, line2addr, lookup, findlocal, getauto, findsym, localsym, globalsym, textsym,/ symbol(2) 635

mp3dec, mp3enc, oggdec, oggenc, flacdec, flacenc, sundec, wavdec, pcmconv, mixfs �/ . . audio(1) 26
language rc, cd, eval, exec, exit, flag, rfork, shift, wait, whatis, ., ~ � command . rc(1) 239

flash � flash memory flash(3) 692
flashfs � journalling file system for flash memory . flashfs(4) 775

mkflashfs � make a journalling file system for flash memory . mkflashfs(8) 994
format, mbr � prepare disks, floppies and flashes prep, edisk, fdisk, prep(8) 1029

memory . flashfs � journalling file system for flash flashfs(4) 775
/inflatezlib, inflateblock, inflatezlibblock, flateerr, mkcrctab, blockcrc, adler32 � deflate/ flate(2) 463

getfcr, setfcr, getfsr, setfsr � control floating point . getfcr(2) 487
hoc � interactive floating point language hoc(1) 148

fmod, floor, ceil � absolute value, remainder, floor, ceiling functions fabs, floor(2) 465
prep, edisk, fdisk, format, mbr � prepare disks, floppies and flashes . prep(8) 1029

floppy � floppy disk interface floppy(3) 694
flush � abort a message flush(5) 837

segflush � flush instruction and data caches segflush(2) 620
/getdefont, getwindow, gengetwindow, flushimage, bufimage, lockdisplay,/ graphics(2) 492

floor, ceiling functions fabs, fmod, floor, ceil � absolute value, remainder, . floor(2) 465
fmt, htmlfmt � simple text formatters fmt(1) 100

venti/ /conf, fmtarenas, fmtbloom, fmtindex, fmtisect, syncindex � prepare and maintain a . venti-fmt(8) 1076
/fmtrunestrcpy, fmtfdinit, fmtfdflush, fmtstrinit, fmtstrflush, runefmtstrinit, runefmtstrflush,/ . fmtinstall(2) 466
fmtfdinit,/ fmtinstall, dofmt, dorfmt, fmtprint, fmtvprint, fmtrune, fmtstrcpy, fmtrunestrcpy, . fmtinstall(2) 466

/textsym, file2pc, fileelem, filesym, fileline, fnbound � symbol table access functions symbol(2) 635
tap � follow the pipes of a process tap(1) 292

agefont, loadchar, Subfont, Fontchar, Font � font utilities cachechars, cachechars(2) 395
truetypefs � TrueType font file system . truetypefs(4) 818

subfonts . font, subfont � external format for fonts and . font(6) 859
cachechars, agefont, loadchar, Subfont, Fontchar, Font � font utilities cachechars(2) 395

sopenw, sclose, fflush, setvbuf, setbuf,/ fopen, freopen, fdopen, fileno, fclose, sopenr, fopen(2) 469
uhtml � convert foreign character set HTML file to unicode . . . uhtml(1) 320

fork, rfork � manipulate process resources . . . fork(2) 472
a.out � object file format . a.out(6) 847

ar � archive (library) file format . ar(6) 850
mdir � mail directory format . mdir(6) 872

� print memory statistics in human-readable format . memory memory(8) 991
� encode files in Privacy Enhanced Mail (PE) format pemdecode, pemencode pem(8) 1014

splitmbox � split a mailbox into mdir format . splitmbox(8) 1058
users � file server user list format . users(6) 895

UTF, Unicode, ASCII, rune � character set and format . utf(6) 896
font, subfont � external format for fonts and subfonts font(6) 859

image � external format for images . image(6) 864
flashes prep, edisk, fdisk, format, mbr � prepare disks, floppies and prep(8) 1029

plumb � format of plumb messages and rules plumb(6) 884
rsa2ssh, rsa2x509, rsa2csr � generate and format rsa keys /rsa2asn1, rsa2pub, rsa(8) 1041

tbl � format tables for nroff or troff tbl(1) 295
intro � introduction to file formats . intro(6) 846

map � digitized map formats . map(6) 871
vtparsescore, vtscorefmt � venti data formats /vtrootpack, vtrootunpack, venti-fcall(2) 657

/errfmt � support for user-defined print formats and output routines fmtinstall(2) 466
fscanf, scanf, sscanf, vfscanf � scan formatted input . fscanf(2) 481

vfprintf, vprintf, vsprintf, vsnprintf � print formatted output . . . /printf, sprintf, snprintf, fprintf(2) 474
runevseprint, runevsmprint � print formatted output . . . /vsmprint, runevsnprint, print(2) 576

fmt, htmlfmt � simple text formatters . fmt(1) 100

18-i

Permuted Index

doctype � intuit command line for formatting a document doctype(1) 78
marshal � formatting and sending mail marshal(1) 174

htmlroff � HTML formatting and typesetting htmlroff(1) 150
htmlroff � HTML formatting and typesetting htmlroff(6) 861

troff, nroff, dpost � text formatting and typesetting troff(1) 314
mhtml � macros for formatting HTML . mhtml(6) 873

ms � macros for formatting manuscripts ms(6) 876
deroff � remove formatting requests . deroff(1) 72

forp � formula prover forp(1) 101
fortune, theo, troll � sample lines from a file . . fortune(1) 103

trampoline � forward incoming calls to another address . . . trampoline(8) 1068
/ciscframe, riscframe, localaddr, symoff, fpformat, beieee80ftos, beieeesftos,/ debugger(2) 422

fplot � plot elementary function fplot(1) 104
runesprint, runesnprint, runeseprint,/ . print, fprint, sprint, snprint, seprint, smprint, print(2) 576
vprintf, vsprintf, vsnprintf � print formatted/ . fprintf, printf, sprintf, snprintf, vfprintf, fprintf(2) 474

/fputc, putc, putchar, ungetc, fgets, gets, fputs, puts, fread, fwrite � Stdio input and/ . . . fgetc(2) 461
Network Computing (VN) . vncs, vncv � remote frame buffer server and viewer for Virtual vnc(1) 331

crop, iconv � frame, crop, and convert image crop(1) 59
ntruerand, genrandom, prng,/ . . rand, lrand, frand, nrand, lnrand, srand, truerand, rand(2) 591
frselect,/ . . frinit, frsetrects, frinittick, frclear, frcharofpt, frptofchar, frinsert, frdelete, frame(2) 477
/frinsert, frdelete, frselect, frtick, frselectpaint, frdrawsel, frdrawsel0, frgetmouse � frames of/ frame(2) 477
putc, putchar, ungetc, fgets, gets, fputs, puts, fread, fwrite � Stdio input and output . /fputc, fgetc(2) 461

malloc, mallocz, smalloc, realloc, free, msize, secalloc, secfree, setmalloctag,/ . . malloc(9) 1095
setrealloctag,/ . malloc, mallocalign, mallocz, free, realloc, calloc, msize, setmalloctag, malloc(2) 532
blockalloclen, readblist,/ allocb, iallocb, freeb, freeblist, BLEN, BALLOC, blocklen, allocb(9) 1085

/ctlstrdup, ctlprint, deactivate, freectlfont, freectlimage, initcontrols, namectlfont,/ control(2) 403
parsehtml, printitems, validitems, freeitems, freedocinfo, dimenkind, dimenspec, targetid,/ html(2) 496

removefid, Req,/ . . Fid, Fidpool, allocfidpool, freefidpool, allocfid, closefid, lookupfid, 9pfid(2) 355
/unlockdisplay, openfont, buildfont, freefont, Pfmt, Rfmt, strtochan, chantostr,/ . . . graphics(2) 492

setalpha,/ allocimage, allocimagemix, freeimage, nameimage, namedimage, allocimage(2) 367
bytesperline, wordsperline � allocating, freeing, reading, writing images /writeimage, allocimage(2) 367

parsehtml, printitems, validitems, freeitems, freedocinfo, dimenkind,/ html(2) 496
deletekey � integer to data/ Intmap, allocmap, freemap, insertkey, caninsertkey, lookupkey, . intmap(2) 515

/creadmemimage, writememimage, freememimage, memsetchan, loadmemimage,/ memdraw(2) 536
/allocmemsubfont, openmemsubfont, freememsubfont, memsubfontwidth,/ memdraw(2) 536

/reject, netmkaddr, setnetmtpt, getnetconninfo, freenetconninfo � make and break network/ . . dial(2) 427
/removefid, Req, Reqpool, allocreqpool, freereqpool, allocreq, closereq, lookupreq,/ . . 9pfid(2) 355

Screen, allocscreen, publicscreen, freescreen, allocwindow, bottomwindow,/ window(2) 668
uninstallsubfont, subfontname,/ allocsubfont, freesubfont, installsubfont, lookupsubfont, . . . subfont(2) 633

pushtls, tlsClient, tlsServer, initThumbprints, freeThumbprints, okThumbprint,/ pushtls(2) 583
walkfile, opendirfile,/ Tree, alloctree, freetree, File, createfile, closefile, removefile, . 9pfile(2) 357
sopenw, sclose, fflush, setvbuf,/ fopen, freopen, fdopen, fileno, fclose, sopenr, fopen(2) 469
frequencies . freq � print histogram of character freq(1) 105
exponent . frexp, ldexp, modf � split into mantissa and . . frexp(2) 480

frtick, frselectpaint, frdrawsel, frdrawsel0, frgetmouse � frames of text /frselect, frame(2) 477
frptofchar, frinsert, frdelete, frselect, frtick,/ . frinit, frsetrects, frinittick, frclear, frcharofpt, . frame(2) 477

dimenkind, dimenspec, targetid, targetname, fromStr, toStr � HTML parser . . . /freedocinfo, html(2) 496
frinit, frsetrects, frinittick, frclear, frcharofpt, frptofchar, frinsert, frdelete, frselect, frtick,/ . frame(2) 477
/frptofchar, frinsert, frdelete, frselect, frtick, frselectpaint, frdrawsel, frdrawsel0,/ frame(2) 477

frptofchar, frinsert, frdelete, frselect,/ . frinit, frsetrects, frinittick, frclear, frcharofpt, frame(2) 477
/frptofchar, frinsert, frdelete, frselect, frtick, frselectpaint, frdrawsel, frdrawsel0,/ . . . frame(2) 477

fs � file server, dump fs(4) 776
fs � file system devices fs(3) 695
fs, exsort � file server maintenance fs(8) 947

/cwfs64, cwfs64x, .
input . fscanf, scanf, sscanf, vfscanf � scan formatted fscanf(2) 481

fsconfig � configuring a file server fsconfig(8) 952
/sclose, fflush, setvbuf, setbuf, fgetpos, ftell, fsetpos, fseek, rewind, feof, ferror, clearerr �/ fopen(2) 469

systems and optionally shut down or reboot/ . fshalt, scram, reboot � halt any local file fshalt(8) 956
dirfwstat, nulldir � get and put file/ stat, fstat, wstat, fwstat, dirstat, dirfstat, dirwstat, . stat(2) 626

fstype � determine file system type fstype(1) 106
ftpfs � file transfer protocol FT) file system . ftpfs(4) 778

/sclose, fflush, setvbuf, setbuf, fgetpos, ftell, fsetpos, fseek, rewind, feof, ferror,/ fopen(2) 469
daemons telnetd, rlogind, rexexec, ftpd, socksd, hproxy � Internet remote access . ipserv(8) 984

ftpfs � file transfer protocol (FT) file system . . ftpfs(4) 778
runetochar, chartorune, runelen, runenlen, fullrune, utfecpy, utflen, utfnlen, utfrune,/ . . . rune(2) 603

negotiate version . fversion � initialize 9P connection and fversion(2) 484
putchar, ungetc, fgets, gets, fputs, puts, fread, fwrite � Stdio input and output . . /fputc, putc, fgetc(2) 461

nulldir � get and put file/ . . stat, fstat, wstat, fwstat, dirstat, dirfstat, dirwstat, dirfwstat, . . . stat(2) 626
grep, g � search a file for a pattern grep(1) 115

simulations . galaxy � representations of n-body galaxy(6) 860
galaxy, mkgalaxy � galactic n-body simulator . galaxy(1) 107

readv, writev, preadv, pwritev � gather read and write readv(2) 596
gb, gba, nes, snes � emulators nintendo(1) 201

19-i

Permuted Index

4s, 5s, blabs, catclock, doom, festoon, geigerstats, glendy, juggle, life, mandel,/ games(1) 109
poly, fillpoly, bezier, bezspline,/ Image, draw, gendraw, drawreplxy, drawrepl, replclipr, line, draw(2) 432

smallprimetest � prime number generation /DSAprimes, probably_prime, prime(2) 575
prng, fastrand, nfastrand � random number generators /ntruerand, genrandom, rand(2) 591

opendisk, Disk � generic disk device interface disk(2) 431
/closedisplay, getdefont, getwindow, gengetwindow, flushimage, bufimage,/ graphics(2) 492

Display, Point, Rectangle, Cursor, initdraw, geninitdraw, newwindow, drawerror,/ graphics(2) 492
dmid � MIDI to OPL3 converter using GENMIDI-type instrument banks dmid(1) 76

/nrand, lnrand, srand, truerand, ntruerand, genrandom, prng, fastrand, nfastrand �/ rand(2) 591
probably_prime, smallprimetest �/ . genprime, gensafeprime, genstrongprime, DSAprimes, . . prime(2) 575

move, xform, ixform, persp, look, viewport � Geometric transformations . . /rot, qrot, scale, matrix(2) 534
put8,/ /unusemap, loadmap, attachproc, get1, get2, get4, get8, geta, put1, put2, put4, mach(2) 529

/pc2line, textseg, line2addr, lookup, findlocal, getauto, findsym, localsym, globalsym,/ symbol(2) 635
function . getcallerpc � fetch return PC of current getcallerpc(2) 485
gets, fputs, puts, fread, fwrite �/ . fgetc, getc, getchar, fputc, putc, putchar, ungetc, fgets, . . fgetc(2) 461

/drawerror, initdisplay, closedisplay, getdefont, getwindow, gengetwindow,/ graphics(2) 492
/classname, closedev, configdev, devctl, getdev, loaddevstr, opendev, opendevdata,/ . . nusb(2) 560

variables . getenv, putenv � access environment getenv(2) 486
point . getfcr, setfcr, getfsr, setfsr � control floating . getfcr(2) 487
into fields . getfields, gettokens, tokenize � break a string getfields(2) 488
shell scripts . getflags, usage � command-line parsing for . . getflags(8) 957

getfcr, setfcr, getfsr, setfsr � control floating point getfcr(2) 487
calloc, msize, setmalloctag, setrealloctag, getmalloctag, getrealloctag,/ . . /free, realloc, malloc(2) 532

/secalloc, secfree, setmalloctag, setrealloctag, getmalloctag, getrealloctag � kernel memory/ . malloc(9) 1095
getmap, colors � display color map colors(1) 51

drawing/ /freememsubfont, memsubfontwidth, getmemdefont, memimagestring, hwdraw � . . memdraw(2) 536
/listen, accept, reject, netmkaddr, setnetmtpt, getnetconninfo, freenetconninfo � make and/ . dial(2) 427

getpid, getppid � get process ids getpid(2) 489
/setmalloctag, setrealloctag, getmalloctag, getrealloctag � kernel memory allocator malloc(9) 1095
/setmalloctag, setrealloctag, getmalloctag, getrealloctag, malloctopoolblock � memory/ . . malloc(2) 532

initmouse, readmouse, closemouse, moveto, getrect, drawgetrect, menuhit, setcursor,/ . . . mouse(2) 545
/getchar, fputc, putc, putchar, ungetc, fgets, gets, fputs, puts, fread, fwrite � Stdio input/ . . fgetc(2) 461

line2addr, lookup, findlocal,/ syminit, getsym, symbase, pc2sp, pc2line, textseg, . . . symbol(2) 635
fields . getfields, gettokens, tokenize � break a string into getfields(2) 488

getuser, sysname � get user or system name . getuser(2) 490
getwd � get current directory getwd(2) 491

/drawerror, initdisplay, closedisplay, getdefont, getwindow, gengetwindow, flushimage,/ graphics(2) 492
interpreter) gs � Aladdin Ghostscript (PostScript and PDF language gs(1) 116
tojpg, togeordi, togif, toppm, topng,/ . . . jpg, gif, png, tif, ppm, bmp, v210, yuv, ico, tga, . . jpg(1) 156

blabs, catclock, doom, festoon, geigerstats, glendy, juggle, life, mandel, mahjongg,/ . /5s, games(1) 109
shr � global mountpoints . shr(3) 732

/lookup, findlocal, getauto, findsym, localsym, globalsym, textsym, file2pc, fileelem, filesym,/ symbol(2) 635
date and time ctime, localtime, gmtime, asctime, tm2sec, timezone � convert . ctime(2) 419

mail, go.fishing � mail and mailboxes mail(1) 172
setjmp, longjmp, notejmp � non-local goto . setjmp(2) 622

Internet . ping, gping, traceroute, hogports � probe the ping(8) 1015
gpsfs, gpsevermore � GPS time and position service . gpsfs(8) 959

grap � pic preprocessor for drawing graphs . . grap(1) 112
graph � draw a graph graph(1) 114

statusbar, statusmsg � display a bar graph or status message window statusbar(8) 1061
gview � interactive graph viewer . gview(1) 119

output files page � view FAX, image, graphic, PostScript, PDF, and typesetter page(1) 208
newcontrolset, resizecontrolset � interactive graphical controls /namectlimage, control(2) 403

runestringwidth, runestringnwidth � graphical size of strings /runestringsize, stringsize(2) 632
draw � screen graphics . draw(3) 685

strtochan, chantostr, chantodepth � interactive graphics . . . /buildfont, freefont, Pfmt, Rfmt, graphics(2) 492
emoveto, esetcursor, Event, Mouse, Menu � graphics events /emenuhit, eenter, event(2) 449

plot � graphics filter . plot(1) 223
_string, ARROW, drawsetdebug � graphics functions PB L /runestringnbg, draw(2) 432

plot � graphics interface . plot(6) 882
grap � pic preprocessor for drawing graphs . grap(1) 112

stats � display graphs of system activity stats(8) 1059
network protocols over IP ip, esp, gre, icmp, icmpv6, ipmux, rudp, tcp, udp, il � . ip(3) 698

grep, g � search a file for a pattern grep(1) 115
chgrp � change file group . chgrp(1) 46

postnote � send a note to a process or process group . postnote(2) 574
cons � console, clocks, process/process group ids, user, null, reboot, etc. cons(3) 683

binalloc, bingrow, binfree � grouped memory allocation bin(2) 387
language interpreter) gs � Aladdin Ghostscript (PostScript and PDF . . gs(1) 116

/printnetkey, status, enable, disable, authsrv, guard.srv, debug, wrkey, login, newns, none,/ auth(8) 930
gview � interactive graph viewer gview(1) 119

uncompress, zip, unzip � compress and/ gzip, gunzip, bzip2, bunzip2, compress, gzip(1) 121
/HSPairs, hmydomain, hversion, htmlesc, halloc, hbodypush, hbuflen, hcheckcontent,/ . httpd(2) 508

down or reboot the/ . . fshalt, scram, reboot � halt any local file systems and optionally shut . fshalt(8) 956

20-i

Permuted Index

notify, noted, atnotify � handle asynchronous process notification notify(2) 558
intrdisable � enable (disable) an interrupt handler . intrenable, intrenable(9) 1093

ecp � fast copy, handling errors . ecp(1) 84
error, nexterror, poperror, waserror � error handling functions . error(9) 1089

netmkaddr, setnetmtpt, getnetconninfo,/ dial, hangup, announce, listen, accept, reject, dial(2) 427
uptime � show how long the system has been running . uptime(1) 323
poly1305 � cryptographically secure hashes . . /hmac_sha2_384, hmac_sha2_512, sechash(2) 614

/walkfile, opendirfile, readdirfile, closedirfile, hasperm � in-memory file hierarchy 9pfile(2) 357
and XMODEM file transfer con, telnet, rx, hayes, xms, xmr � remote login, execution, . . con(1) 53
chacha/ . . /chacha_encrypt, chacha_encrypt2, hchacha, ccpoly_encrypt, ccpoly_decrypt � . . . chacha(2) 398
HFields, Hio, Htmlesc, HttpHead, HttpReq,/ . . . HConnect, HContent, HContents, HETag, httpd(2) 508

/hbodypush, hbuflen, hcheckcontent, hclose, hdate2sec, hdatefmt, hfail, hflush, hgetc,/ . . . httpd(2) 508
leak, kmem, umem � help find memory leaks leak(1) 162

panic � abandon hope, all ye who enter here . panic(9) 1097
HttpReq,/ . . HConnect, HContent, HContents, HETag, HFields, Hio, Htmlesc, HttpHead, httpd(2) 508

xd � hex, octal, decimal, or ASCII dump xd(1) 341
/hcheckcontent, hclose, hdate2sec, hdatefmt, hfail, hflush, hgetc, hgethead, hinit, hiserror,/ httpd(2) 508

HConnect, HContent, HContents, HETag, HFields, Hio, Htmlesc, HttpHead, HttpReq,/ . . . httpd(2) 508
hload,/ . . /hclose, hdate2sec, hdatefmt, hfail, hflush, hgetc, hgethead, hinit, hiserror, httpd(2) 508
system . hg � Mercurial source code management hg(1) 123
post to a web page corresponding to a url . . . hget, hpost, webpaste, urlencode � retrieve, . . hget(1) 145

/hdate2sec, hdatefmt, hfail, hflush, hgetc, hgethead, hinit, hiserror, hload, hlower,/ httpd(2) 508
hgfs � mercurial file system hgfs(4) 780
hgignore � syntax for Mercurial ignore files . . . hgignore(8) 961
hgrc � configuration files for Mercurial hgrc(8) 963

closedirfile, hasperm � in-memory file hierarchy . . /walkfile, opendirfile, readdirfile, 9pfile(2) 357
walk � descend a directory hierarchy . walk(5) 845

muldiv, umuldiv � high-precision multiplication and division muldiv(2) 552
/HContent, HContents, HETag, HFields, Hio, Htmlesc, HttpHead, HttpReq, HRange,/ . . httpd(2) 508

/hdatefmt, hfail, hflush, hgetc, hgethead, hinit, hiserror, hload, hlower, hmkcontent,/ httpd(2) 508
histogram � draw a histogram histogram(8) 974

freq � print histogram of character frequencies freq(1) 105
history � print file names from the dump history(1) 147
hjfs � file server . hjfs(4) 782
hjfs � file server maintenance hjfs(8) 975

hflush, hgetc, hgethead, hinit, hiserror, hload, hlower, hmkcontent, hmkhfields,/ /hfail, httpd(2) 508
hmac_md5, hmac_sha1, hmac_sha2_224, hmac_sha2_256, hmac_sha2_384,/ . /hmac_x, sechash(2) 614

secure/ . . /hmac_sha2_256, hmac_sha2_384, hmac_sha2_512, poly1305 � cryptographically sechash(2) 614
sha2_224, sha2_256, sha2_384, sha2_512, hmac_x, hmac_md5, hmac_sha1,/ /sha1, sechash(2) 614

/hgetc, hgethead, hinit, hiserror, hload, hlower, hmkcontent, hmkhfields, hmkmimeboundary,/ httpd(2) 508
/hinit, hiserror, hload, hlower, hmkcontent, hmkhfields, hmkmimeboundary, hmkspairs,/ . httpd(2) 508

/hmkhfields, hmkmimeboundary, hmkspairs, hmoved, hokheaders, hparseheaders,/ httpd(2) 508
Htmlesc, HttpHead, HttpReq, HRange, HSPairs, hmydomain, hversion, htmlesc, halloc,/ /Hio, httpd(2) 508

/nhgetv, nhgetl, nhgets, hnputv, hnputl, hnputs, ptclbsum, readipifc � Internet/ ip(2) 519
hoc � interactive floating point language hoc(1) 148

ping, gping, traceroute, hogports � probe the Internet ping(8) 1015
/hmkmimeboundary, hmkspairs, hmoved, hokheaders, hparseheaders, hparsequery,/ . . . httpd(2) 508

hold � simple text editor hold(1) 149
keys.who � biographic information for key holders . keys.who(6) 868

panic � abandon hope, all ye who enter here panic(9) 1097
usb � USB Host Controller Interface usb(3) 741

storage device/ sdahci � AHCI (Advanced Host Controller Interface) SATA (Serial AT) . . . sdahci(3) 725
cmd � interface to host operating system commands cmd(3) 681

os � interface to host OS commands (drawterm only) os(1) 206
uptime � show how long the system has been running uptime(1) 323

keyboard � how to type characters keyboard(6) 866
/hmoved, hokheaders, hparseheaders, hparsequery, hparsereq, hprint, hputc,/ httpd(2) 508

a web page corresponding to a url hget, hpost, webpaste, urlencode � retrieve, post to . hget(1) 145
telnetd, rlogind, rexexec, ftpd, socksd, hproxy � Internet remote access daemons ipserv(8) 984

/HFields, Hio, Htmlesc, HttpHead, HttpReq, HRange, HSPairs, hmydomain, hversion,/ httpd(2) 508
/hparsequery, hparsereq, hprint, hputc, hreadbuf, hredirected, hreqcleanup,/ httpd(2) 508

/hputc, hreadbuf, hredirected, hreqcleanup, hrevhfields, hrevspairs, hstrdup, http11,/ httpd(2) 508
salsa_setiv, salsa_encrypt, salsa_encrypt2, hsalsa � salsa20 encryption . /salsa_setblock, salsa(2) 606

/hreqcleanup, hrevhfields, hrevspairs, hstrdup, http11, httpfmt, httpunesc,/ httpd(2) 508
mhtml � macros for formatting HTML . mhtml(6) 873

� convert between troff�s ms macros and html ms2html, html2ms ms2html(1) 189
troff2html � convert troff output into HTML . troff2html(1) 316
uhtml � convert foreign character set HTML file to unicode uhtml(1) 320

htmlroff � HTML formatting and typesetting htmlroff(1) 150
htmlroff � HTML formatting and typesetting htmlroff(6) 861

targetid, targetname, fromStr, toStr � HTML parser /dimenkind, dimenspec, html(2) 496
and html . ms2html, html2ms � convert between troff�s ms macros . ms2html(1) 189

/HRange, HSPairs, hmydomain, hversion, htmlesc, halloc, hbodypush, hbuflen,/ httpd(2) 508
/HContent, HContents, HETag, HFields, Hio, Htmlesc, HttpHead, HttpReq, HRange,/ httpd(2) 508

21-i

Permuted Index

fmt, htmlfmt � simple text formatters fmt(1) 100
htmlroff � HTML formatting and typesetting . . htmlroff(1) 150
htmlroff � HTML formatting and typesetting . . htmlroff(6) 861

webcookies � HTTP cookie manager webcookies(4) 825
/hreqcleanup, hrevhfields, hrevspairs, hstrdup, http11, httpfmt, httpunesc, hunallowed,/ httpd(2) 508

httpd � HTTP server . rc-httpd(8) 1035
HTTP server . httpd, save, imagemap, man2html, webls � . . . httpd(8) 977

httpfile � serve a single web file httpfile(4) 783
/HContents, HETag, HFields, Hio, Htmlesc, HttpHead, HttpReq, HRange, HSPairs,/ httpd(2) 508

/hrevspairs, hstrdup, http11, httpfmt, httpunesc, hunallowed, hungetc, hunload,/ . . httpd(2) 508
since epoch seconds � convert human-readable date (and time) to seconds . . seconds(1) 264

memory � print memory statistics in human-readable format memory(8) 991
/hstrdup, http11, httpfmt, httpunesc, hunallowed, hungetc, hunload, hurlfmt,/ httpd(2) 508

/http11, httpfmt, httpunesc, hunallowed, hungetc, hunload, hurlfmt, hurlunesc,/ httpd(2) 508
/HttpReq, HRange, HSPairs, hmydomain, hversion, htmlesc, halloc, hbodypush,/ httpd(2) 508
/hungetc, hunload, hurlfmt, hurlunesc, hvprint, hwrite, hxferenc, � routines for/ httpd(2) 508

/getmemdefont, memimagestring, hwdraw � drawing routines for/ memdraw(2) 536
/hungetc, hunload, hurlfmt, hurlunesc, hvprint, hwrite, hxferenc, � routines for creating an/ . . httpd(2) 508

sinh, cosh, tanh � hyperbolic functions sinh(2) 624
hypot � Euclidean distance hypot(2) 513

times and time/ seconds, ticks, fastticks, HZ, MS2HZ, MS2TK, TK2MS, TK2SEC � kernel . seconds(9) 1103
scheddump, schedinit,/ . anyhigher, anyready, hzsched, procpriority, procrestore, procsave, . sched(9) 1102
Interface Association (PCMCI) device i82365 � Personal Computer Memory Card . . . i82365(3) 697
blocklen, blockalloclen, readblist,/ . . . allocb, iallocb, freeb, freeblist, BLEN, BALLOC, allocb(9) 1085

interface (TWS) and inter-integrated circuit I²C) interface twsi - two-wire serial twsi(3) 739
icanhasmsi � print MSI configuration icanhasmsi(8) 979

cpuid, icanhasvmx � print processor information cpuid(8) 939
protocols over IP ip, esp, gre, icmp, icmpv6, ipmux, rudp, tcp, udp, il � network . . ip(3) 698
totif,/ jpg, gif, png, tif, ppm, bmp, v210, yuv, ico, tga, tojpg, togeordi, togif, toppm, topng, . jpg(1) 156

mug - convert an image to a face icon . mug(1) 191
crop, iconv � frame, crop, and convert image crop(1) 59

/ellipse, fillellipse, arc, fillarc, icossin, icossin2, border, string, stringn, runestring,/ . draw(2) 432
cap � capabilities for setting the user id of processes . cap(3) 680

invertmat, xformpoint, xformpointd,/ ident, matmul, matmulr, determinant, adjoint, matrix(2) 534
pcmcia � identify a PCMCIA card pcmcia(8) 1013

idiff � interactive diff idiff(1) 151
names to and from unicode utf2idn, idn2utf � convert internationalized domain . . . idn(2) 514

/leieee80ftos, leieeesftos, leieeedftos, ieeesftos, ieeedftos � machine-independent/ . debugger(2) 422
hgignore � syntax for Mercurial ignore files . hgignore(8) 961

esp, gre, icmp, icmpv6, ipmux, rudp, tcp, udp, il � network protocols over IP ip, ip(3) 698
crop, iconv � frame, crop, and convert image . crop(1) 59

dump9660, mk9660 � create an ISO-9660 CD image . mk9660(8) 992
image � external format for images image(6) 864

replclipr, line, poly, fillpoly, bezier,/ Image, draw, gendraw, drawreplxy, drawrepl, . draw(2) 432
pointing device paint � create image files by drawing with a mouse or other . paint(1) 210

tweak � edit image files, subfont files, face files, etc. tweak(1) 318
typesetter output files page � view FAX, image, graphic, PostScript, PDF, and page(1) 208

mug - convert an image to a face icon . mug(1) 191
httpd, save, imagemap, man2html, webls � HTTP server . . . httpd(8) 977

� allocating, freeing, reading, writing images /bytesperline, wordsperline allocimage(2) 367
image � external format for images . image(6) 864

� drawing routines for memory-resident images /memimagestring, hwdraw memdraw(2) 536
memltorearn � windows of memory-resident images /memltofrontn, memltorear, memlayer(2) 540

pop3, imap4d � Internet mail servers pop3(8) 1026
oexportfs � legacy exportfs for cpu and import . oexportfs(4) 799

system . import � import a name space from a remote . import(4) 784
outsb, outss, outsl � programmed I/O inb, ins, inl, outb, outs, outl, insb, inss, insl, . . inb(9) 1092

trampoline � forward incoming calls to another address trampoline(8) 1068
/wunlock, rsleep, rwakeup, rwakeupall, incref, decref � spin locks, queueing/ lock(2) 526

/beswal, beswav, leswab, leswal, leswav � independent access to executable files mach(2) 529
/leieeesftos, leieeedftos, ieeesftos, ieeedftos � independent debugger functions debugger(2) 422

functions . NaN, Inf, isNaN, isInf � not-a-number and infinity . . nan(2) 553
/deflatezlibblock, inflateinit, inflate, inflatezlib, inflateblock, inflatezlibblock, flateerr,/ flate(2) 463

dns, dnstcp, dnsquery, dnsdebug, dnsgetip, inform � network database /cs, csquery, ndb(8) 1000
astro � print astronomical information . astro(7) 905

cpuid, icanhasvmx � print processor information . cpuid(8) 939
sysinfo, sysupdate � report information about, update the system sysinfo(1) 290
arch � architecture-specific information and control arch(3) 675

keys.who � biographic information for key holders keys.who(6) 868
init � initialize machine upon booting init(8) 980

/ctlprint, deactivate, freectlfont, freectlimage, initcontrols, namectlfont, namectlimage,/ control(2) 403
initdisplay,/ Display, Point, Rectangle, Cursor, initdraw, geninitdraw, newwindow, drawerror, . graphics(2) 492

fversion � initialize 9P connection and negotiate version . fversion(2) 484
init � initialize machine upon booting init(8) 980

22-i

Permuted Index

keyboard control . initkeyboard, ctlkeyboard, closekeyboard � . . . keyboard(2) 525
getrect, drawgetrect, menuhit, setcursor,/ . . . initmouse, readmouse, closemouse, moveto, . mouse(2) 545
okThumbprint,/ . pushtls, tlsClient, tlsServer, initThumbprints, freeThumbprints, pushtls(2) 583
outss, outsl � programmed I/O inb, ins, inl, outb, outs, outl, insb, inss, insl, outsb, . . . inb(9) 1092

fscanf, scanf, sscanf, vfscanf � scan formatted input . fscanf(2) 481
fgets, gets, fputs, puts, fread, fwrite � Stdio input and output /putc, putchar, ungetc, fgetc(2) 461

zerotrunc � truncate input on zero byte . zerotrunc(8) 1083
Bterm, Bbuffered, Blethal, Biofn � buffered input/output . /Bprint, Bvprint, Bwrite, Bflush, bio(2) 390

feof, ferror, clearerr � standard buffered input/output package /fseek, rewind, fopen(2) 469
stat, wstat � inquire or change file attributes stat(5) 842

programmed/ . . inb, ins, inl, outb, outs, outl, insb, inss, insl, outsb, outss, outsl � inb(9) 1092
� integer to data/ Intmap, allocmap, freemap, insertkey, caninsertkey, lookupkey, deletekey . intmap(2) 515

/subpt, mulpt, divpt, rectaddpt, rectsubpt, insetrect, canonrect, eqpt, eqrect, ptinrect,/ . . addpt(2) 363
I/O inb, ins, inl, outb, outs, outl, insb, inss, insl, outsb, outss, outsl � programmed . . inb(9) 1092
uninstallsubfont,/ . allocsubfont, freesubfont, installsubfont, lookupsubfont, subfont(2) 633

segflush � flush instruction and data caches segflush(2) 620
5i, ki, vi, qi � instruction simulators vi(1) 327

� MIDI to OPL3 converter using GENMIDI-type instrument banks dmid dmid(1) 76
twsi - two-wire serial interface (TWS) and integrated circuit (I²C) interface twsi(3) 739

scheddump, schedinit, sched, yield � scheduler interactions /procrestore, procsave, sched(9) 1102
pnp � Plug �n� Play ISA and PCI Interfaces . pnp(3) 715

twsi - two-wire serial interface (TWS) and inter-integrated circuit (I²C) interface twsi(3) 739
unicode utf2idn, idn2utf � convert internationalized domain names to and from . idn(2) 514

ping, gping, traceroute, hogports � probe the Internet . ping(8) 1015
dhcpd, dhcp6d, dhcpleases, rarpd, tftpd � Internet booting . dhcpd(8) 943

ipconfig, rip, linklocal � Internet configuration and routing ipconfig(8) 981
pop3, imap4d � Internet mail servers pop3(8) 1026

hnputv, hnputl, hnputs, ptclbsum, readipifc � Internet Protocol addressing . /nhgetl, nhgets, ip(2) 519
ircrc � internet relay chat client ircrc(1) 153

rlogind, rexexec, ftpd, socksd, hproxy � Internet remote access daemons telnetd, ipserv(8) 984
ascii, unicode � interpret ASCII, Unicode characters ascii(1) 24

ktrace � interpret kernel stack dumps ktrace(1) 161
objtraverse, isar, nextar, readar � object file interpretation functions . . . objtype, readobj, object(2) 564

programming language python � an interpreted, interactive, object-oriented python(1) 233
pipe � create an interprocess channel pipe(2) 568
pipe � two-way interprocess communication pipe(3) 714

plumber � file system for interprocess messaging plumber(4) 801
intrenable, intrdisable � enable (disable) an interrupt handler . intrenable(9) 1093
� kernel process creation, termination and interruption kproc, pexit, postnote kproc(9) 1094

microdelay, addclock0link � small delays, clock interrupts . delay, delay(9) 1088
splhi, spllo, splx, islo � enable and disable interrupts . splhi(9) 1105

caninsertkey, lookupkey, deletekey � integer/ . Intmap, allocmap, freemap, insertkey, intmap(2) 515
interrupt handler . intrenable, intrdisable � enable (disable) an . . . intrenable(9) 1093

intro � introduction to databases intro(7) 904
intro � introduction to file formats intro(6) 846
intro � introduction to file servers intro(4) 749
intro � introduction to kernel functions intro(9) 1084
intro � introduction to library functions intro(2) 346
intro � introduction to Plan 9 intro(1) 1
intro � introduction to system administration intro(8) 918
intro � introduction to the Plan 9 devices intro(3) 670
intro � introduction to the Plan 9 File Protocol, 9P . . . intro(5) 830

document doctype � intuit command line for formatting a doctype(1) 78
assert � check program invariants . assert(2) 377

ident, matmul, matmulr, determinant, adjoint, invertmat, xformpoint, xformpointd,/ matrix(2) 534
inss, insl, outsb, outss, outsl � programmed I/O inb, ins, inl, outb, outs, outl, insb, inb(9) 1092

iostats � file system to measure I/O . iostats(4) 786
io � access PC I/O registers io(1) 152

open, create � prepare a fid for I/O on an existing or new file open(5) 838
/ioproc, ioread, ioreadn, iosleep, iowrite � slave I/O processes for threaded programs ioproc(2) 516

na � assembler for the Symbios Logic PCI-SCSI I/O Processors . na(8) 999
io � access PC I/O registers . io(1) 152

iounit � return size of atomic I/O unit for file descriptor iounit(2) 518
ioopen, ioproc, ioread, ioreadn,/ closeioproc, iocall, ioclose, ioflush, iointerrupt, iodial, ioproc(2) 516
ioproc, ioread, ioreadn,/ . . closeioproc, iocall, ioclose, ioflush, iointerrupt, iodial, ioopen, . . . ioproc(2) 516

/iodial, ioopen, ioproc, ioread, ioreadn, iosleep, iowrite � slave I/O processes for/ ioproc(2) 516
iostats � file system to measure I/O iostats(4) 786

descriptor . iounit � return size of atomic I/O unit for file . iounit(2) 518
/iodial, ioopen, ioproc, ioread, ioreadn, iosleep, iowrite � slave I/O processes for threaded/ . . . ioproc(2) 516
udp, il � network protocols over IP ip, esp, gre, icmp, icmpv6, ipmux, rudp, tcp, . ip(3) 698

bridge � IP Ethernet bridge . bridge(3) 678
/ndbsearch, ndbsnext, ndbgetvalue, ndbfree, ipattr, ndbgetipaddr, ndbipinfo, csipinfo,/ . . . ndb(2) 554

and routing . ipconfig, rip, linklocal � Internet configuration ipconfig(8) 981
over IP ip, esp, gre, icmp, icmpv6, ipmux, rudp, tcp, udp, il � network protocols . ip(3) 698

23-i

Permuted Index

csquery, dns, dnstcp, dnsquery,/ query, ipquery, mkhash, mkdb, mkhosts, cs, ndb(8) 1000
aescbc, ipso, secstore � secstore commands secstore(1) 265

and run automatic or manual tunnel of IPv6 through IPv4 6in4, ayiya - configure 6in4(8) 919
ircrc � internet relay chat client ircrc(1) 153

pnp � Plug �n� Play ISA and PCI Interfaces pnp(3) 715
isalnum, isspace, ispunct, isprint, isgraph,/ . . isalpha, isupper, islower, isdigit, isxdigit, ctype(2) 421
istitlerune, isupperrune, isdigitrune,/ isalpharune, islowerrune, isspacerune, isalpharune(2) 522
functions objtype, readobj, objtraverse, isar, nextar, readar � object file interpretation . object(2) 564

/isspace, ispunct, isprint, isgraph, iscntrl, isascii, toascii, _toupper, _tolower, toupper,/ . ctype(2) 421
/isalnum, isspace, ispunct, isprint, isgraph, iscntrl, isascii, toascii, _toupper, _tolower,/ . . . ctype(2) 421

isprint, isgraph,/ . . . isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, . . . ctype(2) 421
/isspacerune, istitlerune, isupperrune, isdigitrune, tolowerrune, totitlerune,/ isalpharune(2) 522

eve, iseve � privileged user eve(9) 1091
/isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, isascii, toascii, _toupper,/ . . . ctype(2) 421

NaN, Inf, isNaN, isInf � not-a-number and infinity functions . . . nan(2) 553
splhi, spllo, splx, islo � enable and disable interrupts splhi(9) 1105

ispunct, isprint, isgraph,/ . . isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ctype(2) 421
isupperrune, isdigitrune,/ isalpharune, islowerrune, isspacerune, istitlerune, isalpharune(2) 522
functions . NaN, Inf, isNaN, isInf � not-a-number and infinity nan(2) 553

efiboot.fat � PC bootloader for FAT, ISO and PXE network booting . . /bootx64.efi, 9boot(8) 921
dump9660, mk9660 � create an ISO-9660 CD image . mk9660(8) 992

dossrv, 9660srv, dosmnt, eject � DOS and ISO9660 file systems dossrv(4) 765
/islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, isascii,/ ctype(2) 421

isalpharune, islowerrune, isspacerune, istitlerune, isupperrune, isdigitrune,/ isalpharune(2) 522
/maskip, equivip4, equivip6, defmask, isv4, v4tov6, v6tov4, nhgetv, nhgetl, nhgets,/ . ip(2) 519

isgraph,/ . . . isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, . . . ctype(2) 421
/mptole, mptolel, mptoui, uitomp, mptoi, itomp, uvtomp, mptouv, vtomp, mptov,/ mp(2) 547

tel, iwhois � look in phone book tel(1) 300
/popmat, rot, qrot, scale, move, xform, ixform, persp, look, viewport � Geometric/ . . . matrix(2) 534

mnihongo � macros for typesetting Japanese . mnihongo(6) 874
join � relational database operator join(1) 155

flashfs � journalling file system for flash memory flashfs(4) 775
mkflashfs � make a journalling file system for flash memory mkflashfs(8) 994

tga, tojpg, togeordi, togif, toppm, topng,/ . . . jpg, gif, png, tif, ppm, bmp, v210, yuv, ico, . . jpg(1) 156
jsonparse, jsonfree, jsonbyname, jsonstr � JSON parser json(2) 523

/catclock, doom, festoon, geigerstats, glendy, juggle, life, mandel, mahjongg, memo, midi,/ . games(1) 109
juke � music jukebox juke(7) 907

0a, 1a, 2a, 5a, 6a, 8a, ka, qa, va � assemblers 2a(1) 4
drivers audio, disk, ether, kb, serial, ptp, usbd - Universal Serial Bus . . . nusb(4) 797

kbd � pc keyboard driver kbd(3) 707
filesystem . kbdfs, console � keyboard and console kbdfs(8) 986
maps and switch between them. kbmap � show a list of available keyboard kbmap(1) 159

0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C compilers 2c(1) 5
rdbfs � remote kernel debugging file system rdbfs(4) 805

intro � introduction to kernel functions . intro(9) 1084
setrealloctag, getmalloctag, getrealloctag � kernel memory allocator /setmalloctag, malloc(9) 1095

mouse, cursor � kernel mouse interface mouse(3) 712
interruption kproc, pexit, postnote � kernel process creation, termination and kproc(9) 1094

kprof � kernel profiling . kprof(3) 708
ktrace � interpret kernel stack dumps . ktrace(1) 161

HZ, MS2HZ, MS2TK, TK2MS, TK2SEC � kernel times and time conversions . /fastticks, seconds(9) 1103
keys.who � biographic information for key holders . keys.who(6) 868

securenet � Digital Pathways SecureNet Key remote authentication box securenet(8) 1051
thumbprint � public key thumbprints . thumbprint(6) 894

keyboard � how to type characters keyboard(6) 866
kbdfs, console � keyboard and console filesystem kbdfs(8) 986

initkeyboard, ctlkeyboard, closekeyboard � keyboard control . keyboard(2) 525
kbd � pc keyboard driver . kbd(3) 707

kbmap � show a list of available keyboard maps and switch between them. . . . kbmap(1) 159
utilities bitsyload, light, pencal, keyboard, params, prompter � bitsy-specific . . bitsyload(1) 38

keyfs, warning � authentication database files . keyfs(4) 787
rsa2x509, rsa2csr � generate and format rsa keys . /asn12rsa, rsa2asn1, rsa2pub, rsa2ssh, rsa(8) 1041

delkey � delete keys from factotum . delkey(1) 71
/des3ECBencrypt, des3ECBdecrypt, key_setup, des56to64, des64to56,/ des(2) 425

holders . keys.who � biographic information for key . . . keys.who(6) 868
5i, ki, vi, qi � instruction simulators vi(1) 327

kill processes . kill, slay, broke, dontkill � print commands to . kill(1) 160
0l, 1l, 2l, 5l, 6l, 8l, kl, ql, vl � loaders . 2l(1) 8

leak, kmem, umem � help find memory leaks leak(1) 162
creation, termination and interruption kproc, pexit, postnote � kernel process kproc(9) 1094

prof, tprof, kprof � display profiling data prof(1) 226
kprof � kernel profiling kprof(3) 708
ktrace � interpret kernel stack dumps ktrace(1) 161

ARROW, drawsetdebug � graphics functions PB L /runestringbg, runestringnbg, _string, draw(2) 432

24-i

Permuted Index

rio, label, window, wloc � window system rio(1) 250
abs, labs � integer absolute values abs(2) 361

wol � send lan Ethernet packet . wol(8) 1081
� pattern-directed scanning and processing language . awk awk(1) 29

bc � arbitrary-precision arithmetic language . bc(1) 34
dtracy � dynamic tracing language . dtracy(1) 80

hoc � interactive floating point language . hoc(1) 148
interactive, object-oriented programming language python � an interpreted, python(1) 233

flag, rfork, shift, wait, whatis, ., ~ � command language rc, cd, eval, exec, exit, rc(1) 239
amlenum, amltake, amldrop - ACPI machine language interpreter /amlwalk, amleval, aml(2) 370
gs � Aladdin Ghostscript (PostScript and PDF language interpreter) gs(1) 116

cpp � C language preprocessor cpp(1) 56
ssl � SSL record layer . ssl(3) 734

tls � TLS and SSL3 record layer . tls(3) 737
ls, lc � list contents of directory ls(1) 170

exponent . frexp, ldexp, modf � split into mantissa and frexp(2) 480
leak, kmem, umem � help find memory leaks . leak(1) 162

oexportfs � legacy exportfs for cpu and import oexportfs(4) 799
/beieeedftos, leieee80ftos, leieeesftos, leieeedftos, ieeesftos, ieeedftos �/ debugger(2) 422

lens � interactive screen magnifier lens(1) 164
/dot3, cross3, len3, dist3, unit3, midpt3, lerp3, reflect3, nearseg3, pldist3, vdiv3,/ arith3(2) 375

/put8, puta beswab, beswal, beswav, leswab, leswal, leswav � machine-independent access/ mach(2) 529
/mpfmt, mptoa, betomp, mptobe, mptober, letomp, mptole, mptolel, mptoui, uitomp,/ . . . mp(2) 547

ARGEND, ARGC, ARGF, EARGF � process option letters from argv ARGBEGIN, arg(2) 373
rendezvous � user level process synchronization rendezvous(2) 600

semacquire, tsemacquire, semrelease - user level semaphores . semacquire(2) 621
lex � generator of lexical analysis programs . . lex(1) 165

openep, unstall - USB device driver library . . /loaddevstr, opendev, opendevdata, nusb(2) 560
ar � archive library) file format . ar(6) 850

intro � introduction to library functions . intro(2) 346
ar � archive and library maintainer . ar(1) 23

/doom, festoon, geigerstats, glendy, juggle, life, mandel, mahjongg, memo, midi, mole,/ . . games(1) 109
bitsy-specific utilities bitsyload, light, pencal, keyboard, params, prompter � . . bitsyload(1) 38

doctype � intuit command line for formatting a document doctype(1) 78
getflags, usage � line parsing for shell scripts getflags(8) 957

gendraw, drawreplxy, drawrepl, replclipr, line, poly, fillpoly, bezier, bezspline,/ . /draw, draw(2) 432
/getsym, symbase, pc2sp, pc2line, textseg, line2addr, lookup, findlocal, getauto,/ symbol(2) 635

comm � select or reject lines common to two sorted files comm(1) 52
fortune, theo, troll � sample lines from a file . fortune(1) 103

uniq � report repeated lines in a file . uniq(1) 321
look � find lines in a sorted list . look(1) 167

loopback � network link simulation . loopback(3) 709
ipconfig, rip, linklocal � Internet configuration and routing . ipconfig(8) 981

look � find lines in a sorted list . look(1) 167
xargs � construct argument list and execute . xargs(1) 340

ls, lc � list contents of directory ls(1) 170
filter, list, deliver, token, vf � filtering mail filter(1) 98

users � file server user list format . users(6) 895
between them. kbmap � show a list of available keyboard maps and switch . . . kbmap(1) 159

nm � name list (symbol table) . nm(1) 203
getnetconninfo,/ . . . dial, hangup, announce, listen, accept, reject, netmkaddr, setnetmtpt, . dial(2) 427
tcp23, tcp25, tcp53, tcp110, tcp113, tcp143,/ listen, listen1, tcp7, tcp9, tcp19, tcp21, listen(8) 988

smtpd � SMTP listener configuration smtpd(6) 890
/dirread9p, emalloc9p, erealloc9p, estrdup9p, listensrv, postmountsrv, postsharesrv,/ 9p(2) 349

rdproto � parse and process a proto file listing . proto(2) 581
ml, mlmgr, mlowner � unmoderated mailing lists . mlmgr(1) 185

segment � long lived memory segments segment(3) 730
lnfs � long name file system lnfs(4) 789

genrandom, prng,/ rand, lrand, frand, nrand, lnrand, srand, truerand, ntruerand, rand(2) 591
utilities cachechars, agefont, loadchar, Subfont, Fontchar, Font � font cachechars(2) 395
unstall -/ /closedev, configdev, devctl, getdev, loaddevstr, opendev, opendevdata, openep, . . nusb(2) 560

0l, 1l, 2l, 5l, 6l, 8l, kl, ql, vl � loaders . 2l(1) 8
/nameimage, namedimage, setalpha, loadimage, cloadimage, unloadimage,/ allocimage(2) 367

geta,/ /newmap, setmap, findseg, unusemap, loadmap, attachproc, get1, get2, get4, get8, . . mach(2) 529
/writememimage, freememimage, memsetchan, loadmemimage, cloadmemimage,/ memdraw(2) 536

cisctrace, risctrace, ciscframe, riscframe, localaddr, symoff, fpformat, beieee80ftos,/ . . debugger(2) 422
/line2addr, lookup, findlocal, getauto, findsym, localsym, globalsym, textsym, file2pc,/ symbol(2) 635
� convert date and time ctime, localtime, gmtime, asctime, tm2sec, timezone ctime(2) 419

lock � run a command under lock lock(1) 166
/gengetwindow, flushimage, bufimage, lockdisplay, unlockdisplay, openfont,/ graphics(2) 492

rwakeup, rwakeupall, incref, decref � spin locks, queueing rendezvous locks,/ . /rsleep, lock(2) 526
logarithm, power, square root exp, log, log10, pow, pow10, sqrt � exponential, exp(2) 455

na � assembler for the Symbios Logic PCI-SCSI I/O Processors na(8) 999
ssh - secure shell remote login client . ssh(1) 284

25-i

Permuted Index

con, telnet, rx, hayes, xms, xmr � remote login, execution, and XMODEM file transfer . . . con(1) 53
/disable, authsrv, guard.srv, debug, wrkey, login, newns, none, as � maintain or query/ . . auth(8) 930

fauth_proxy,/ amount, newns, addns, login, noworld, procsetuser, auth_proxy, auth(2) 379
vtlogremove, vtlogopen, ventilogging � Venti logs /vtlognames, vtlogopen, vtlogprint, venti-log(2) 661

setjmp, longjmp, notejmp � non-local goto setjmp(2) 622
look � find lines in a sorted list look(1) 167

tel, iwhois � look in phone book . tel(1) 300
/rot, qrot, scale, move, xform, ixform, persp, look, viewport � Geometric transformations . . matrix(2) 534

manual . man, lookman, sig � print or find pages of this man(1) 173
/symbase, pc2sp, pc2line, textseg, line2addr, lookup, findlocal, getauto, findsym, localsym,/ symbol(2) 635

Cmdbuf, parsecmd, respondcmderror, lookupcmd � control message parsing 9pcmdbuf(2) 354
parsecmd, cmderror, lookupcmd � parse device commands parsecmd(9) 1098

/allocfidpool, freefidpool, allocfid, closefid, lookupfid, removefid, Req, Reqpool,/ 9pfid(2) 355
/allocmap, freemap, insertkey, caninsertkey, lookupkey, deletekey � integer to data/ intmap(2) 515

/allocreqpool, freereqpool, allocreq, closereq, lookupreq, removereq � 9P fid, request/ 9pfid(2) 355
allocsubfont, freesubfont, installsubfont, lookupsubfont, uninstallsubfont,/ subfont(2) 633

loopback � network link simulation loopback(3) 709
sdloop � loopback storage device interface sdloop(3) 728

reboot � reboot the system upon loss of remote file server connection reboot(8) 1038
lp � PostScript preprocessors lp(8) 990
lp � printer output . lp(1) 168
lpt � parallel port interface for PC�s lpt(3) 710

ntruerand, genrandom, prng, fastrand,/ rand, lrand, frand, nrand, lnrand, srand, truerand, . . rand(2) 591
ls, lc � list contents of directory ls(1) 170

findseg, unusemap, loadmap,/ crackhdr, machbytype, machbyname, newmap, setmap, . mach(2) 529
who, whois � who is using the machine . who(1) 338

amleval, amlenum, amltake, amldrop - ACPI machine language interpreter /amlwalk, aml(2) 370
init � initialize machine upon booting init(8) 980

files /beswal, beswav, leswab, leswal, leswav � machine-independent access to executable . . mach(2) 529
/leieeesftos, leieeedftos, ieeesftos, ieeedftos � machine-independent debugger functions . . . debugger(2) 422

emacs � editor macros . emacs(1) 89
mpictures � picture inclusion macros . mpictures(6) 875

html2ms � convert between troff�s ms macros and html ms2html, ms2html(1) 189
mhtml � macros for formatting HTML mhtml(6) 873

ms � macros for formatting manuscripts ms(6) 876
mnihongo � macros for typesetting Japanese mnihongo(6) 874

man � macros to typeset manual man(6) 869
lens � interactive screen magnifier . lens(1) 164

/geigerstats, glendy, juggle, life, mandel, mahjongg, memo, midi, mole, packet,/ games(1) 109
filter, list, deliver, token, vf � filtering mail . filter(1) 98

marshal � formatting and sending mail . marshal(1) 174
nedmail � reading mail . nedmail(1) 193

ratfs � mail address ratification file system ratfs(4) 804
aliasmail � expand system wide mail aliases . aliasmail(8) 926

mail, go.fishing � mail and mailboxes . mail(1) 172
mdir � mail directory format mdir(6) 872

upasfs � mail file server . upasfs(4) 819
mail, go.fishing � mail and mailboxes mail(1) 172

pemencode � encode files in Privacy Enhanced Mail (PE) format pemdecode, pem(8) 1014
rewrite � mail rewrite rules . rewrite(6) 889

send � mail routing and delivery send(8) 1052
pop3, imap4d � Internet mail servers . pop3(8) 1026

smtp, smtpd � mail transport . smtp(8) 1054
faces, seemail, vwhois � mailbox interface . faces(1) 94

splitmbox � split a mailbox into mdir format splitmbox(8) 1058
mail, go.fishing � mail and mailboxes . mail(1) 172

ml, mlmgr, mlowner � unmoderated mailing lists . mlmgr(1) 185
/chancreate, chanfree, chanclosing, chanprint, mainstacksize, proccreate, procdata,/ thread(2) 638

ar � archive and library maintainer . ar(1) 23
fs, exsort � file server maintenance . fs(8) 947

hjfs � file server maintenance . hjfs(8) 975
mksacfs � make a compressed file system mksacfs(8) 997
mkpaqfs � make a compressed read-only file system mkpaqfs(8) 996

mkdir � make a directory . mkdir(1) 184
memory mkflashfs � make a journalling file system for flash mkflashfs(8) 994

mktemp � make a unique file name mktemp(2) 544
/setnetmtpt, getnetconninfo, freenetconninfo � make and break network connections dial(2) 427

mk, membername � maintain make) related files . mk(1) 179
/setrealloctag, getmalloctag, getrealloctag, malloctopoolblock � memory allocator malloc(2) 532

setmalloctag,/ malloc, mallocalign, mallocz, free, realloc, calloc, msize, malloc(2) 532
secalloc, secfree, setmalloctag,/ malloc, mallocz, smalloc, realloc, free, msize, malloc(9) 1095

man � macros to typeset manual man(6) 869
this manual . man, lookman, sig � print or find pages of . . . man(1) 173

httpd, save, imagemap, man2html, webls � HTTP server httpd(8) 977

26-i

Permuted Index

pullupblock, adjustblock, checkb � data block management /padblock, pullblock, allocb(9) 1085
privalloc � per-process private storage management . privalloc(2) 579
pull, push, scan � client-server replica management changes, replica(1) 246

updatedb � simple client-server replica management /applylog, compactdb, replica(8) 1039
threadwaitchan, yield � thread and proc management . /threadsetgrp, threadsetname, thread(2) 638

topnwindows, originwindow � window management . /bottomnwindows, topwindow, window(2) 668
xspanalloc, xfree, xsummary � basic memory management xalloc, xallocz, xalloc(9) 1106

apm � Advanced Power Management 1.2 BIOS interface apm(3) 674
apm � Advanced Power Management 1.2 BIOS interface apm(8) 927

qer, runq � queue management for spooled files qer(8) 1033
poolblockcheck, pooldump � general memory management routines /poolcheck, pool(2) 571

hg � Mercurial source code management system hg(1) 123
webcookies � HTTP cookie manager . webcookies(4) 825

/festoon, geigerstats, glendy, juggle, life, mandel, mahjongg, memo, midi, mole,/ games(1) 109
strsubfontwidth, mkfont � subfont manipulation . . /writesubfont, stringsubfont, subfont(2) 633

frexp, ldexp, modf � split into mantissa and exponent frexp(2) 480
man, lookman, sig � print or find pages of this manual . man(1) 173

man � macros to typeset manual . man(6) 869
6in4, ayiya - configure and run automatic or manual tunnel of IPv6 through IPv4 6in4(8) 919

ms � macros for formatting manuscripts . ms(6) 876
getmap, colors � display color map . colors(1) 51

readcolmap, writecolmap � access display color map . RGB, readcolmap(2) 595
map � digitized map formats map(6) 871

map, mapdemo � draw maps on various projections map(7) 910
cmap2rgba, rgb2cmap � colors and color maps . cmap2rgb, color(2) 401

deletekey � integer to data structure maps . . . /insertkey, caninsertkey, lookupkey, intmap(2) 515
kbmap � show a list of available keyboard maps and switch between them. kbmap(1) 159

map, mapdemo � draw maps on various projections map(7) 910
segattach, segdetach, segfree � map/unmap a segment in virtual memory segattach(2) 617

marshal � formatting and sending mail marshal(1) 174
/v4parseip, parseether, myipaddr, myetheraddr, maskip, equivip4, equivip6, defmask, isv4,/ . . ip(2) 519

eqn � typeset mathematics . eqn(1) 90
xformpoint, xformpointd,/ . . . ident, matmul, matmulr, determinant, adjoint, invertmat, matrix(2) 534

prep, edisk, fdisk, format, mbr � prepare disks, floppies and flashes prep(8) 1029
mc � multicolumn print mc(1) 176
md � emulator . sega(1) 271

sha2_384, sha2_512, hmac_x,/ md4, md5, ripemd160, sha1, sha2_224, sha2_256, . sechash(2) 614
a file . sum, md5sum, sha1sum � sum and count blocks in . sum(1) 288

mdir � mail directory format mdir(6) 872
splitmbox � split a mailbox into mdir format . splitmbox(8) 1058

iostats � file system to measure I/O . iostats(4) 786
tput � measure read throughput tput(1) 311

/unloadmemimage, memfillcolor, memarc, mempoly, memellipse, memfillpoly,/ . memdraw(2) 536
mk, membername � maintain (make) related files . . mk(1) 179

memset � memory operations memccpy, memchr, memcmp, memcpy, memmove, memory(2) 543
wordaddr, byteaddr,/ Memimage, Memdata, Memdrawparam, memimageinit, . . . memdraw(2) 536
byteaddr,/ Memimage, Memdata, Memdrawparam, memimageinit, wordaddr, . . . memdraw(2) 536

/memfillcolor, memarc, mempoly, memellipse, memfillpoly, memimageline,/ . . . memdraw(2) 536
memimageinit, wordaddr, byteaddr,/ Memimage, Memdata, Memdrawparam, memdraw(2) 536

/memellipse, memfillpoly, memimageline, memimagedraw, drawclip, drawclipnorepl,/ . . memdraw(2) 536
Memimage, Memdata, Memdrawparam, memimageinit, wordaddr, byteaddr,/ memdraw(2) 536

/memarc, mempoly, memellipse, memfillpoly, memimageline, memimagedraw, drawclip,/ . . . memdraw(2) 536
/memimageinit, wordaddr, byteaddr, memimagemove, allocmemimage,/ memdraw(2) 536

for/ /memsubfontwidth, getmemdefont, memimagestring, hwdraw � drawing routines . memdraw(2) 536
memlfree, memlhide, memline,/ . . memdraw, memlalloc, memldelete, memlexpose, memlayer(2) 540

/drawclip, drawclipnorepl, memlinebbox, memlineendsize, allocmemsubfont,/ memdraw(2) 536
/memlexpose, memlfree, memlhide, memline, memlnorefresh, memload, memunload,/ memlayer(2) 540

/memload, memunload, memlorigin, memlsetrefresh, memltofront, memltofrontn,/ memlayer(2) 540
/memlsetrefresh, memltofront, memltofrontn, memltorear, memltorearn � windows of/ memlayer(2) 540

memccpy, memchr, memcmp, memcpy, memmove, memset � memory operations memory(2) 543
time/ /glendy, juggle, life, mandel, mahjongg, memo, midi, mole, packet, sokoban, sudoku � games(1) 109

flash � flash memory . flash(3) 692
flashfs � journalling file system for flash memory . flashfs(4) 775
� make a journalling file system for flash memory . mkflashfs mkflashfs(8) 994

segfree � map/unmap a segment in virtual memory segattach, segdetach, segattach(2) 617
human-readable format memory � print memory statistics in memory(8) 991

binalloc, bingrow, binfree � grouped memory allocation . bin(2) 387
brk, sbrk � change memory allocation . brk(2) 394

segbrk � change memory allocation . segbrk(2) 619
getrealloctag, malloctopoolblock � memory allocator /getmalloctag, malloc(2) 532

getmalloctag, getrealloctag � kernel memory allocator /setrealloctag, malloc(9) 1095
vtrealloc, vtstrdup, vtfree � error-checking memory allocators /vtmalloc, vtmallocz, venti-mem(2) 662

device i82365 � Personal Computer Memory Card Interface Association (PCMCI) . . . i82365(3) 697
opendirfile, readdirfile, closedirfile, hasperm � memory file hierarchy . . /removefile, walkfile, 9pfile(2) 357

27-i

Permuted Index

ramfs � memory file system . ramfs(4) 803
leak, kmem, umem � help find memory leaks . leak(1) 162

xallocz, xspanalloc, xfree, xsummary � basic memory management xalloc, xalloc(9) 1106
poolblockcheck, pooldump � general memory management routines . . /poolcheck, pool(2) 571

memcmp, memcpy, memmove, memset � memory operations memccpy, memchr, memory(2) 543
segment � long lived memory segments . segment(3) 730

memory � print memory statistics in human-readable format . memory(8) 991
swap � memory usage statistics and swap file control . swap(3) 736

hwdraw � drawing routines for memory-resident images . /memimagestring, memdraw(2) 536
memltorear, memltorearn � windows of memory-resident images . . . /memltofrontn, memlayer(2) 540

/unloadmemimage, memfillcolor, memarc, mempoly, memellipse, memfillpoly,/ memdraw(2) 536
memchr, memcmp, memcpy, memmove, memset � memory operations memccpy, memory(2) 543

/writememimage, freememimage, memsetchan, loadmemimage,/ memdraw(2) 536
/openmemsubfont, freememsubfont, memsubfontwidth, getmemdefont,/ memdraw(2) 536
/memline, memlnorefresh, memload, memunload, memlorigin, memlsetrefresh,/ . . . memlayer(2) 540

eenter, emoveto, esetcursor, Event, Mouse, Menu � graphics events /emenuhit, event(2) 449
/closemouse, moveto, getrect, drawgetrect, menuhit, setcursor, enter � mouse control . . . mouse(2) 545

hgrc � configuration files for Mercurial . hgrc(8) 963
hgfs � mercurial file system hgfs(4) 780

hgignore � syntax for Mercurial ignore files hgignore(8) 961
hg � Mercurial source code management system . . hg(1) 123

sort � sort and/or merge files . sort(1) 275
tinc - mesh peer to peer VPN tinc(8) 1065

flush � abort a message . flush(5) 837
respondcmderror, lookupcmd � control message parsing Cmdbuf, parsecmd, 9pcmdbuf(2) 354

plumb � send message to plumber plumb(1) 224
statusmsg � display a bar graph or status message window statusbar, statusbar(8) 1061

perror, syslog, sysfatal � system error messages . perror(2) 567
plumbunpackattr, Plumbmsg � plumb messages /plumbunpackpartial, plumb(2) 569

plumb � format of plumb messages and rules . plumb(6) 884
attach, auth � messages to establish a connection attach(5) 834

plumber � file system for interprocess messaging . plumber(4) 801
mhtml � macros for formatting HTML mhtml(6) 873

clock interrupts delay, microdelay, addclock0link � small delays, delay(9) 1088
msexceltables � extract printable text from Microsoft documents . /olefs, mswordstrings, doc2txt(1) 77

cifs - Microsoft" Windows network filesystem client cifs(4) 758
mus � MUS to MIDI converter . mus(1) 192

/glendy, juggle, life, mandel, mahjongg, memo, midi, mole, packet, sokoban, sudoku � time/ . games(1) 109
instrument banks dmid � MIDI to OPL3 converter using GENMIDI-type . . dmid(1) 76

/closept3, dot3, cross3, len3, dist3, unit3, midpt3, lerp3, reflect3, nearseg3, pldist3,/ . . . arith3(2) 375
mines � minesweeper mines(1) 177

rotate - rotate or mirror a picture . rotate(1) 255
mix � MIX assembler and emulator mix(1) 178

/flacdec, flacenc, sundec, wavdec, pcmconv, mixfs � decode and encode audio files audio(1) 26
files . mk, membername � maintain (make) related . . mk(1) 179

dump9660, mk9660 � create an ISO-9660 CD image mk9660(8) 992
/inflateblock, inflatezlibblock, flateerr, mkcrctab, blockcrc, adler32 � deflate/ flate(2) 463

dnsquery,/ query, ipquery, mkhash, mkdb, mkhosts, cs, csquery, dns, dnstcp, ndb(8) 1000
mkdir � make a directory mkdir(1) 184

mkfs, mkext � archive or update a file system mkfs(8) 995
flash memory . mkflashfs � make a journalling file system for . mkflashfs(8) 994

/writesubfont, stringsubfont, strsubfontwidth, mkfont � subfont manipulation subfont(2) 633
mkfs, mkext � archive or update a file system . mkfs(8) 995

archfs � mount mkfs-style archive . archfs(4) 753
galaxy, mkgalaxy � galactic n-body simulator galaxy(1) 107

dnsdebug,/ . . query, ipquery, mkhash, mkdb, mkhosts, cs, csquery, dns, dnstcp, dnsquery, . ndb(8) 1000
system . mkpaqfs � make a compressed read-only file . mkpaqfs(8) 996

mksacfs � make a compressed file system mksacfs(8) 997
mktemp � make a unique file name mktemp(2) 544

ml, mlmgr, mlowner � unmoderated mailing lists . mlmgr(1) 185
mnihongo � macros for typesetting Japanese . . mnihongo(6) 874
mnt � attach to 9P servers mnt(3) 711

points for file systems mntgen � automatically generate mount mntgen(4) 790
chmod � change mode . chmod(1) 47

5e � mode ARM emulation 5e(1) 10
spin - verification tool for models of concurrent systems spin(1) 278

frexp, ldexp, modf � split into mantissa and exponent frexp(2) 480
touch � set modification date of a file touch(1) 310

mtime � print file modification time . mtime(1) 190
/juggle, life, mandel, mahjongg, memo, midi, mole, packet, sokoban, sudoku � time/ games(1) 109

vgadb � VGA controller and monitor database . vgadb(6) 901
winwatch � monitor rio windows winwatch(1) 339

disk/smart � SMART error monitoring . smart(8) 1053
Web files . mothra � retrieve and display World-Wide mothra(1) 186

28-i

Permuted Index

cpiofs, tapfs, tarfs, tpfs, v6fs, v10fs, zipfs � mount archival file systems 32vfs, tapefs(4) 814
archfs � mount mkfs-style archive archfs(4) 753

stub � provide mount point stubs . stub(8) 1062
mntgen � automatically generate mount points for file systems mntgen(4) 790

snap, snapfs � create and mount process snapshots snap(4) 810
bind, mount, unmount � change name space bind(1) 36
bind, mount, unmount � change name space bind(2) 388

shr � global mountpoints . shr(3) 732
a port . mouse, aux/accupoint � configure a mouse to mouse(8) 998

drawgetrect, menuhit, setcursor, enter � mouse control /moveto, getrect, mouse(2) 545
mouse, cursor � kernel mouse interface mouse(3) 712

/emenuhit, eenter, emoveto, esetcursor, Event, Mouse, Menu � graphics events event(2) 449
paint � create image files by drawing with a mouse or other pointing device paint(1) 210

aux/mouse, aux/accupoint � configure a mouse to a port . mouse(8) 998
cp, fcp, mv � copy, move files . cp(1) 55

/xformplane, pushmat, popmat, rot, qrot, scale, move, xform, ixform, persp, look, viewport �/ . matrix(2) 534
initmouse, readmouse, closemouse, moveto, getrect, drawgetrect, menuhit,/ mouse(2) 545

sundec, wavdec, pcmconv, mixfs �/ . mp3dec, mp3enc, oggdec, oggenc, flacdec, flacenc, . . . audio(1) 26
/vtomp, mptov, mptod, dtomp, mpdigdiv, mpadd, mpsub, mpleft, mpright, mpmul,/ . . . mp(2) 547

/mpnew, mpfree, mpbits, mpnorm, mpcopy, mpassign, mprand, mpnrand, strtomp,/ mp(2) 547
generator . mpc � extended precision arithmetic code mpc(1) 188

/mpmodadd, mpmodsub, mpmodmul, mpdiv, mpcmp, mpsel, mpfactorial, mpextendedgcd,/ mp(2) 547
strtomp,/ /mpnew, mpfree, mpbits, mpnorm, mpcopy, mpassign, mprand, mpnrand, mp(2) 547

/mptouv, vtomp, mptov, mptod, dtomp, mpdigdiv, mpadd, mpsub, mpleft, mpright,/ . . mp(2) 547
mpmod, mpmodadd, mpmodsub, mpmodmul, mpdiv, mpcmp, mpsel, mpfactorial,/ /mpexp, mp(2) 547

/mpdiv, mpcmp, mpsel, mpfactorial, mpextendedgcd, mpinvert, mpsignif,/ mp(2) 547
/mpassign, mprand, mpnrand, strtomp, mpfmt, mptoa, betomp, mptobe, mptober,/ . . mp(2) 547

mprand, mpnrand,/ . . mpsetminbits, mpnew, mpfree, mpbits, mpnorm, mpcopy, mpassign, . mp(2) 547
mpictures � picture inclusion macros mpictures(6) 875

mpcmp, mpsel, mpfactorial, mpextendedgcd, mpinvert, mpsignif, mplowbits0,/ . . . /mpdiv, mp(2) 547
/mptod, dtomp, mpdigdiv, mpadd, mpsub, mpleft, mpright, mpmul, mpexp, mpmod,/ . . . mp(2) 547

mpextendedgcd, mpinvert, mpsignif, mplowbits0, mpvecdigmuladd,/ /mpfactorial, mp(2) 547
/mpveccmp, mpvecmul, mpmagcmp, mpmagadd, mpmagsub, crtpre, crtin, crtout,/ . mp(2) 547

/mpsub, mpleft, mpright, mpmul, mpexp, mpmod, mpmodadd, mpmodsub, mpmodmul,/ mp(2) 547
mpassign, mprand, mpnrand,/ mpsetminbits, mpnew, mpfree, mpbits, mpnorm, mpcopy, . . mp(2) 547

dtomp, mpdigdiv, mpadd, mpsub, mpleft, mpright, mpmul, mpexp, mpmod,/ . /mptod, mp(2) 547
/mpmodsub, mpmodmul, mpdiv, mpcmp, mpsel, mpfactorial, mpextendedgcd,/ mp(2) 547

mpnorm, mpcopy, mpassign, mprand,/ mpsetminbits, mpnew, mpfree, mpbits, mp(2) 547
/mpsel, mpfactorial, mpextendedgcd, mpinvert, mpsignif, mplowbits0, mpvecdigmuladd,/ mp(2) 547

/mptov, mptod, dtomp, mpdigdiv, mpadd, mpsub, mpleft, mpright, mpmul, mpexp,/ . . . mp(2) 547
/mpassign, mprand, mpnrand, strtomp, mpfmt, mptoa, betomp, mptobe, mptober, letomp,/ . . mp(2) 547
/mptoi, itomp, uvtomp, mptouv, vtomp, mptov, mptod, dtomp, mpdigdiv, mpadd, mpsub,/ . . . mp(2) 547

/mptoa, betomp, mptobe, mptober, letomp, mptole, mptolel, mptoui, uitomp, mptoi,/ mp(2) 547
/mptoui, uitomp, mptoi, itomp, uvtomp, mptouv, vtomp, mptov, mptod, dtomp,/ mp(2) 547

/mpvecdigmuladd, mpvecdigmulsub, mpvecadd, mpvecsub, mpveccmp, mpvecmul,/ mp(2) 547
ms � macros for formatting manuscripts ms(6) 876

ms macros and html ms2html, html2ms � convert between troff�s . . ms2html(1) 189
time/ . . seconds, ticks, fastticks, HZ, MS2HZ, MS2TK, TK2MS, TK2SEC � kernel times and . . . seconds(9) 1103

/wdoc2txt, xls2txt, olefs, mswordstrings, msexceltables � extract printable text from/ . . doc2txt(1) 77
icanhasmsi � print MSI configuration . icanhasmsi(8) 979

malloc, mallocz, smalloc, realloc, free, msize, secalloc, secfree, setmalloctag,/ malloc(9) 1095
mallocalign, mallocz, free, realloc, calloc, msize, setmalloctag, setrealloctag,/ . . malloc, malloc(2) 532
doc2txt, doc2ps, wdoc2txt, xls2txt, olefs, mswordstrings, msexceltables � extract/ doc2txt(1) 77

mtime � print file modification time mtime(1) 190
qinv, qlen, slerp, qmid, qsqrt �/ qtom, mtoq, qadd, qsub, qneg, qmul, qdiv, qunit, . . . quaternion(2) 588

mug - convert an image to a face icon mug(1) 191
dist3, unit3, midpt3,/ add3, sub3, neg3, div3, mul3, eqpt3, closept3, dot3, cross3, len3, . . . arith3(2) 375
multiplication and division muldiv, umuldiv � high-precision muldiv(2) 552
canonrect, eqpt, eqrect,/ addpt, subpt, mulpt, divpt, rectaddpt, rectsubpt, insetrect, . . addpt(2) 363

mc � multicolumn print . mc(1) 176
muldiv, umuldiv � high-precision multiplication and division muldiv(2) 552

mus � MUS to MIDI converter mus(1) 192
juke � music jukebox . juke(7) 907

cp, fcp, mv � copy, move files cp(1) 55
/parseipandmask, v4parseip, parseether, myipaddr, myetheraddr, maskip, equivip4,/ . . ip(2) 519

PCI Interfaces pnp � Plug �n� Play ISA and . pnp(3) 715
PCI-SCSI I/O Processors na � assembler for the Symbios Logic na(8) 999

cleanname � clean a path name . cleanname(1) 48
cleanname � clean a path name . cleanname(2) 400

getuser, sysname � get user or system name . getuser(2) 490
mktemp � make a unique file name . mktemp(2) 544

basename � strip file name affixes . basename(1) 33
fd2path � return file name associated with file descriptor fd2path(2) 460

complete � file name completion . complete(2) 402

29-i

Permuted Index

lnfs � long name file system . lnfs(4) 789
nm � name list (symbol table) nm(1) 203

bind, mount, unmount � change name space . bind(1) 36
bind, mount, unmount � change name space . bind(2) 388

namespace � structure of conventional file name space . namespace(4) 791
ns � display name space . ns(1) 204

pipefile � attach filter to file in name space . pipefile(1) 221
namespace � name space description file namespace(6) 878

import � import a name space from a remote system import(4) 784
freectlimage, initcontrols, namectlfont, namectlimage, newcontrolset,/ . . /freectlfont, control(2) 403

seg � access a named segment . seg(1) 270
allocimage, allocimagemix, freeimage, nameimage, namedimage, setalpha,/ allocimage(2) 367

history � print file names from the dump history(1) 147
yesterday, diffy � print file names from the dump yesterday(1) 344

idn2utf � convert internationalized domain names to and from unicode utf2idn, idn(2) 514
namespace � name space description file namespace(6) 878

name space . namespace � structure of conventional file . . . namespace(4) 791
infinity functions . NaN, Inf, isNaN, isInf � not-a-number and . . . nan(2) 553

time, nsec � time in seconds and nanoseconds since epoch time(2) 642
nbrecv, nbrecvp, nbrecvul, nbsend, nbsendp, nbsendul, threadcreate, threaddata,/ /sendul, thread(2) 638

ndb � Network database ndb(6) 879
ndbsearch, ndbsnext, ndbgetvalue,/ ndbopen, ndbcat, ndbchanged, ndbclose, ndbreopen, . . ndb(2) 554
ndbsearch, ndbsnext,/ ndbopen, ndbcat, ndbchanged, ndbclose, ndbreopen, ndb(2) 554
/csgetvalue, ndbfindattr, dnsquery, ndbdiscard, ndbconcatenate, ndbreorder, ndbsubstitute,/ . ndb(2) 554

ndbconcatenate, ndbreorder, ndbsubstitute, ndbdedup � network database . . /ndbdiscard, ndb(2) 554
/csipinfo, ndbhash, ndbparse, csgetvalue, ndbfindattr, dnsquery, ndbdiscard,/ ndb(2) 554

csipinfo,/ /ndbsearch, ndbsnext, ndbgetvalue, ndbfree, ipattr, ndbgetipaddr, ndbipinfo, ndb(2) 554
/ipattr, ndbgetipaddr, ndbipinfo, csipinfo, ndbhash, ndbparse, csgetvalue, ndbfindattr,/ . ndb(2) 554

ndbreopen, ndbsearch, ndbsnext,/ ndbopen, ndbcat, ndbchanged, ndbclose, ndb(2) 554
/ndbgetipaddr, ndbipinfo, csipinfo, ndbhash, ndbparse, csgetvalue, ndbfindattr, dnsquery,/ ndb(2) 554

ndbopen, ndbcat, ndbchanged, ndbclose, ndbreopen, ndbsearch, ndbsnext,/ ndb(2) 554
/dnsquery, ndbdiscard, ndbconcatenate, ndbreorder, ndbsubstitute, ndbdedup �/ ndb(2) 554

/ndbcat, ndbchanged, ndbclose, ndbreopen, ndbsearch, ndbsnext, ndbgetvalue, ndbfree,/ . ndb(2) 554
/ndbdiscard, ndbconcatenate, ndbreorder, ndbsubstitute, ndbdedup � network database . ndb(2) 554
/len3, dist3, unit3, midpt3, lerp3, reflect3, nearseg3, pldist3, vdiv3, vrem3, pn2f3,/ arith3(2) 375

nedmail � reading mail nedmail(1) 193
/quoterunestrfmt, quotefmtinstall, doquote, needsrcquote � quoted character strings quote(2) 590

cross3, len3, dist3, unit3,/ add3, sub3, neg3, div3, mul3, eqpt3, closept3, dot3, arith3(2) 375
version � negotiate protocol version version(5) 844

fversion � initialize 9P connection and negotiate version . fversion(2) 484
gb, gba, nes, snes � emulators nintendo(1) 201

netaudit - network configuration checker netaudit(8) 1005
encrypt, decrypt, netcrypt � DES encryption encrypt(2) 447

passwd, netkey � change or verify user password passwd(1) 211
dial, hangup, announce, listen, accept, reject, netmkaddr, setnetmtpt, getnetconninfo,/ dial(2) 427

netstat � summarize network connections netstat(1) 196
aan, aanuke � always available network . aan(8) 924

fax, telcofax, telcodata � telephone dialer network telco, faxreceive, faxsend, telco(4) 815
� PC bootloader for FAT, ISO and PXE network booting . . . /bootx64.efi, efiboot.fat 9boot(8) 921
packettrailer, packettrim � zero-copy network buffers . . . /packetsplit, packetstats, venti-packet(2) 663

frame buffer server and viewer for Virtual Network Computing (VN) /vncv � remote vnc(1) 331
netaudit - network configuration checker netaudit(8) 1005

freenetconninfo � make and break network connections /getnetconninfo, dial(2) 427
netstat � summarize network connections netstat(1) 196

vtrecv, vtversion, vtdebug, vthangup � Venti network connections . . . /vtfreeconn, vtsend, venti-conn(2) 655
cifsd � CIFS/SMB network daemon . cifsd(8) 938

ndbreorder, ndbsubstitute, ndbdedup � network database /ndbconcatenate, ndb(2) 554
ndb � Network database . ndb(6) 879

dnsquery, dnsdebug, dnsgetip, inform � network database . /cs, csquery, dns, dnstcp, ndb(8) 1000
tcp17019, tcp17020 � listen for calls on a network device /tcp17010, tcp17013, listen(8) 988

srv, srvtls, 9fs � start network file service . srv(4) 811
nfs � Sun network file system client nfs(4) 794

cifs - Microsoft" Windows network filesystem client cifs(4) 758
execnet � network interface to program execution execnet(4) 766

loopback � network link simulation loopback(3) 709
newt � network news transport protocol (NNT) client . newt(1) 198

system . nntpfs � network news transport protocol (NNT) file . . . nntpfs(4) 796
snoopy � spy on network packets . snoopy(8) 1056

gre, icmp, icmpv6, ipmux, rudp, tcp, udp, il � network protocols over IP ip, esp, ip(3) 698
create � prepare a fid for I/O on an existing or new file . open, open(5) 838

newuser � adding a new user . newuser(8) 1006
/initcontrols, namectlfont, namectlimage, newcontrolset, resizecontrolset � interactive/ . control(2) 403

crackhdr, machbytype, machbyname, newmap, setmap, findseg, unusemap,/ mach(2) 529
auth_proxy, fauth_proxy,/ amount, newns, addns, login, noworld, procsetuser, . . . auth(2) 379

30-i

Permuted Index

/authsrv, guard.srv, debug, wrkey, login, newns, none, as � maintain or query/ auth(8) 930
news � print news items news(1) 197

ap � fetch Associated Press news articles . ap(1) 22
nntpfs � network news transport protocol (NNT) file system nntpfs(4) 796

client . newt � network news transport protocol (NNT) newt(1) 198
newuser � adding a new user newuser(8) 1006

Point, Rectangle, Cursor, initdraw, geninitdraw, newwindow, drawerror, initdisplay,/ . Display, graphics(2) 492
functions . objtype, readobj, objtraverse, isar, nextar, readar � object file interpretation object(2) 564
handling functions error, nexterror, poperror, waserror � error error(9) 1089

/ntruerand, genrandom, prng, fastrand, nfastrand � random number generators rand(2) 591
nfs � Sun network file system client nfs(4) 794
nfsserver, portmapper, pcnfsd � NFS service . . nfsserver(8) 1008

/defmask, isv4, v4tov6, v6tov4, nhgetv, nhgetl, nhgets, hnputv, hnputl, hnputs, ptclbsum,/ . . ip(2) 519
nietzsche � print out Nietzsche quote nietzsche(1) 200
nm � name list (symbol table) nm(1) 203

newt � network news transport protocol NNT) client . newt(1) 198
(NNT) file system . nntpfs � network news transport protocol nntpfs(4) 796

/guard.srv, debug, wrkey, login, newns, none, as � maintain or query authentication/ . auth(8) 930
setjmp, longjmp, notejmp � non-local goto . setjmp(2) 622

rtc � real-time clock and non-volatile RAM . rtc(3) 722
NaN, Inf, isNaN, isInf � not-a-number and infinity functions nan(2) 553

regexp � regular expression notation . regexp(6) 888
alarm � ask for delayed note . alarm(1) 21

sleep, alarm � delay, ask for delayed note . sleep(2) 625
postnote � send a note to a process or process group postnote(2) 574
setjmp, longjmp, notejmp � non-local goto setjmp(2) 622

process notification . notify, noted, atnotify � handle asynchronous . notify(2) 558
fauth_proxy,/ . amount, newns, addns, login, noworld, procsetuser, auth_proxy, auth(2) 379

exec, execl, _privates, _nprivates, _tos � execute a file exec(2) 452
genrandom, prng,/ rand, lrand, frand, nrand, lnrand, srand, truerand, ntruerand, . . . rand(2) 591

troff, nroff, dpost � text formatting and typesetting . troff(1) 314
tbl � format tables for nroff or troff . tbl(1) 295

ns � display name space ns(1) 204
since epoch . time, nsec � time in seconds and nanoseconds time(2) 642

/lrand, frand, nrand, lnrand, srand, truerand, ntruerand, genrandom, prng, fastrand,/ rand(2) 591
clocks, process/process group ids, user, null, reboot, etc. cons � console, cons(3) 683

fwstat, dirstat, dirfstat, dirwstat, dirfwstat, nulldir � get and put file status . /fstat, wstat, stat(2) 626
NaN, Inf, isNaN, isInf � number and infinity functions nan(2) 553

factor, primes � factor a number, generate large primes factor(1) 95
probably_prime, smallprimetest � prime number generation /DSAprimes, prime(2) 575

prng, fastrand, nfastrand � random number generators . /ntruerand, genrandom, rand(2) 591
strtol, strtoll, strtoul, strtoull � convert text to numbers . . /atoi, atol, atoll, charstod, strtod, atof(2) 378

seq � print sequences of numbers . seq(1) 272
nusbrc - Universal Serial Bus startup script . . . nusbrc(8) 1010

convTR2M, convM2TR,/ . authdial, passtokey, nvcsum, readnvram, convT2M, convM2T, authsrv(2) 382
a.out � object file format . a.out(6) 847

python � an interpreted, interactive, object-oriented programming language python(1) 233
interpretation functions . . . objtype, readobj, objtraverse, isar, nextar, readar � object file . . object(2) 564

xd � hex, octal, decimal, or ASCII dump xd(1) 341
import . oexportfs � legacy exportfs for cpu and oexportfs(4) 799

seek � change file offset . seek(2) 616
pcmconv, mixfs �/ mp3dec, mp3enc, oggdec, oggenc, flacdec, flacenc, sundec, wavdec, audio(1) 26

/tlsServer, initThumbprints, freeThumbprints, okThumbprint, okCertificate, readcert,/ pushtls(2) 583
printable/ doc2txt, doc2ps, wdoc2txt, xls2txt, olefs, mswordstrings, msexceltables � extract . doc2txt(1) 77

thesaurus � search online thesaurus . thesaurus(1) 303
os � interface to host OS commands (drawterm only) . os(1) 206

mkpaqfs � make a compressed only file system . mkpaqfs(8) 996
paqfs � compressed only file system . paqfs(4) 800

existing or new file . open, create � prepare a fid for I/O on an open(5) 838
or writing, create file open, create, close � open a file for reading . . open(2) 566

dup � duplicate an open file descriptor . dup(2) 440
dup � dups of open files . dup(3) 689

/configdev, devctl, getdev, loaddevstr, opendev, opendevdata, openep, unstall - USB device/ . . nusb(2) 560
/File, createfile, closefile, removefile, walkfile, opendirfile, readdirfile, closedirfile, hasperm/ . 9pfile(2) 357

opendisk, Disk � generic disk device interface . disk(2) 431
/getdev, loaddevstr, opendev, opendevdata, openep, unstall - USB device driver library . . . nusb(2) 560

/bufimage, lockdisplay, unlockdisplay, openfont, buildfont, freefont, Pfmt, Rfmt,/ . . . graphics(2) 492
/memlineendsize, allocmemsubfont, openmemsubfont, freememsubfont,/ memdraw(2) 536

scsierror � SCSI device operations openscsi, closescsi, scsiready, scsi, scsicmd, . . scsi(2) 612
cmd � interface to host operating system commands cmd(3) 681

opl3 � OPL3 chip emulator opl3(1) 205
instrument banks dmid � MIDI to OPL3 converter using GENMIDI-type dmid(1) 76
writer file system cdfs, cddb � optical disc (CD, DVD, B) track reader and cdfs(4) 755

ARGEND, ARGC, ARGF, EARGF � process option letters from argv ARGBEGIN, arg(2) 373

31-i

Permuted Index

/scram, reboot � halt any local file systems and optionally shut down or reboot the system . . . fshalt(8) 956
python � an interpreted, interactive, oriented programming language python(1) 233

/bottomnwindows, topwindow, topnwindows, originwindow � window management window(2) 668
(drawterm only) . os � interface to host OS commands os(1) 206
programmed I/O inb, ins, inl, outb, outs, outl, insb, inss, insl, outsb, outss, outsl � inb(9) 1092

Bterm, Bbuffered, Blethal, Biofn � buffered output /Bprint, Bvprint, Bwrite, Bflush, bio(2) 390
fputs, puts, fread, fwrite � Stdio input and output . . . /putc, putchar, ungetc, fgets, gets, fgetc(2) 461

vprintf, vsprintf, vsnprintf � print formatted output /printf, sprintf, snprintf, vfprintf, fprintf(2) 474
lp � printer output . lp(1) 168

runevseprint, runevsmprint � print formatted output . . . /vseprint, vsmprint, runevsnprint, print(2) 576
image, graphic, PostScript, PDF, and typesetter output files page � view FAX, page(1) 208

proof � troff output interpreter . proof(1) 228
troff2html � convert troff output into HTML . troff2html(1) 316

feof, ferror, clearerr � standard buffered output package . /ftell, fsetpos, fseek, rewind, fopen(2) 469
� support for user-defined print formats and output routines /runefmtstrflush, errfmt fmtinstall(2) 466
inb, ins, inl, outb, outs, outl, insb, inss, insl, outsb, outss, outsl � programmed I/O inb(9) 1092

p � paginate . p(1) 207
authsrv, p9any, p9sk1, dp9ik � authentication protocols authsrv(6) 851

clearerr � standard buffered input/output package . /fsetpos, fseek, rewind, feof, ferror, fopen(2) 469
/readblist, concatblock, copyblock, trimblock, packblock, padblock, pullblock, pullupblock,/ . allocb(9) 1085

wol � send wake-on-lan Ethernet packet . wol(8) 1081
packetasize, packetcmp, packetconcat,/ Packet, packetalloc, packetappend, venti-packet(2) 663

/life, mandel, mahjongg, memo, midi, mole, packet, sokoban, sudoku � time wasters games(1) 109
packetcmp, packetconcat,/ Packet, packetalloc, packetappend, packetasize, venti-packet(2) 663

/packetasize, packetcmp, packetconcat, packetconsume, packetcopy, packetdup,/ venti-packet(2) 663
/packetconsume, packetcopy, packetdup, packetforeign, packetfragments, packetfree,/ . venti-packet(2) 663

/packetforeign, packetfragments, packetfree, packetheader, packetpeek, packetprefix,/ venti-packet(2) 663
snoopy � spy on network packets . snoopy(8) 1056

udpecho � echo UDP packets . udpecho(8) 1069
/packetheader, packetpeek, packetprefix, packetsha1, packetsize, packetsplit,/ venti-packet(2) 663

/packetpeek, packetprefix, packetsha1, packetsize, packetsplit, packetstats,/ venti-packet(2) 663
buffers . /packetsize, packetsplit, packetstats, packettrailer, packettrim � zero-copy network . venti-packet(2) 663
/concatblock, copyblock, trimblock, packblock, padblock, pullblock, pullupblock, adjustblock,/ allocb(9) 1085

PDF, and typesetter output files page � view FAX, image, graphic, PostScript, . . page(1) 208
webpaste, urlencode � retrieve, post to a web page corresponding to a url hget, hpost, hget(1) 145

man, lookman, sig � print or find pages of this manual man(1) 173
p � paginate . p(1) 207

mouse or other pointing device paint � create image files by drawing with a . . paint(1) 210
panic � abandon hope, all ye who enter here . . panic(9) 1097
paqfs � compressed read-only file system paqfs(4) 800

lpt � parallel port interface for PC�s lpt(3) 710
bitsyload, light, pencal, keyboard, params, prompter � bitsy-specific utilities bitsyload(1) 38

rdproto � parse and process a proto file listing proto(2) 581
device commands . parsecmd, cmderror, lookupcmd � parse parsecmd(9) 1098
control message parsing Cmdbuf, parsecmd, respondcmderror, lookupcmd � . . . 9pcmdbuf(2) 354
freedocinfo, dimenkind, dimenspec, targetid,/ parsehtml, printitems, validitems, freeitems, . . html(2) 496
v4parseip, parseether, myipaddr,/ . . . eipfmt, parseip, parseipmask, parseipandmask, ip(2) 519

targetid, targetname, fromStr, toStr � HTML parser . /freedocinfo, dimenkind, dimenspec, html(2) 496
jsonfree, jsonbyname, jsonstr � JSON parser . jsonparse, json(2) 523

lookupcmd � control message parsing /parsecmd, respondcmderror, 9pcmdbuf(2) 354
getflags, usage � command-line parsing for shell scripts getflags(8) 957

partfs � serve file, with partitions partfs(8) 1011
cryptsetup � setup encrypted partition . cryptsetup(8) 942

at, drain, expect, pass � dialer scripting tools expect(1) 92
convM2T, convTR2M, convM2TR,/ . . authdial, passtokey, nvcsum, readnvram, convT2M, authsrv(2) 382
password . passwd, netkey � change or verify user passwd(1) 211
system . patch � simple patch creation and tracking . . . patch(1) 212

walk � walk a path . walk(1) 334
cleanname � clean a path name . cleanname(1) 48
cleanname � clean a path name . cleanname(2) 400

authentication box securenet � Digital Pathways SecureNet Key remote securenet(8) 1051
grep, g � search a file for a pattern . grep(1) 115

language . awk � pattern-directed scanning and processing . . . awk(1) 29
ARROW, drawsetdebug � graphics functions PB L . . /runestringbg, runestringnbg, _string, draw(2) 432

pwd, pbd � working directory pwd(1) 232
vmx � virtual PC . vmx(1) 329

pc � programmer�s calculator pc(1) 214
/bootia32.efi, bootx64.efi, efiboot.fat � PC bootloader for FAT, ISO and PXE network/ . 9boot(8) 921

io � access PC I/O registers . io(1) 152
kbd � pc keyboard driver . kbd(3) 707

getcallerpc � fetch return PC of current function getcallerpc(2) 485
findlocal, getauto,/ syminit, getsym, symbase, pc2sp, pc2line, textseg, line2addr, lookup, . . . symbol(2) 635

pcc � APE C compiler driver pcc(1) 216
pci � print PCI bus configuration pci(8) 1012

32-i

Permuted Index

pnp � Plug �n� Play ISA and PCI Interfaces . pnp(3) 715
na � assembler for the Symbios Logic PCI-SCSI I/O Processors na(8) 999

Computer Memory Card Interface Association PCMCI) device i82365 � Personal i82365(3) 697
pcmcia � identify a PCMCIA card pcmcia(8) 1013

/oggenc, flacdec, flacenc, sundec, wavdec, pcmconv, mixfs � decode and encode audio/ . audio(1) 26
nfsserver, portmapper, pcnfsd � NFS service nfsserver(8) 1008

lpt � parallel port interface for PC�s . lpt(3) 710
plan9.ini � configuration file for PCs . plan9.ini(8) 1017

pdf2ps � convert between PostScript and PDF . ps2pdf, ps2pdf(1) 230
page � view FAX, image, graphic, PostScript, PDF, and typesetter output files page(1) 208

gs � Aladdin Ghostscript (PostScript and PDF language interpreter) gs(1) 116
ps2pdf, pdf2ps � convert between PostScript and PDF . ps2pdf(1) 230

/pldist3, vdiv3, vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, add4, sub4 � operations on 3-d points/ arith3(2) 375
tinc - mesh peer to peer VPN . tinc(8) 1065

Mail (PE) format pemdecode, pemencode � encode files in Privacy Enhanced pem(8) 1014
bitsy-specific utilities bitsyload, light, pencal, keyboard, params, prompter � bitsyload(1) 38

privalloc � per-process private storage management privalloc(2) 579
messages . perror, syslog, sysfatal � system error perror(2) 567
Association (PCMCI) device i82365 � Personal Computer Memory Card Interface . . . i82365(3) 697

popmat, rot, qrot, scale, move, xform, ixform, persp, look, viewport � Geometric/ /pushmat, matrix(2) 534
termination and interruption kproc, pexit, postnote � kernel process creation, kproc(9) 1094

/unlockdisplay, openfont, buildfont, freefont, Pfmt, Rfmt, strtochan, chantostr, chantodepth/ graphics(2) 492
tel, iwhois � look in phone book . tel(1) 300

timmy � physics sandbox . timmy(1) 306
pic � troff preprocessor for drawing pictures . . pic(1) 218

grap � pic preprocessor for drawing graphs grap(1) 112
resample, resize - resample a picture . resample(1) 249

rotate - rotate or mirror a picture . rotate(1) 255
dpic, todpic � Doom picture decoder and encoder dpic(1) 79

mpictures � picture inclusion macros mpictures(6) 875
toppm, topng, totif, toico � view and convert pictures . /yuv, ico, tga, tojpg, togeordi, togif, jpg(1) 156

pic � troff preprocessor for drawing pictures . pic(1) 218
Internet . ping, gping, traceroute, hogports � probe the . ping(8) 1015

pipe � create an interprocess channel pipe(2) 568
pipe � two-way interprocess communication . . pipe(3) 714

tee � pipe fitting . tee(1) 299
pipefile � attach filter to file in name space . . . pipefile(1) 221

tap � follow the pipes of a process . tap(1) 292
color � representation of pixels and colors . color(6) 856

intro � introduction to Plan 9 . intro(1) 1
style � Plan 9 coding conventions for C style(6) 893

intro � introduction to the Plan 9 devices . intro(3) 670
statcheck, sizeS2M, sizeD2M � interface to Plan 9 File protocol /read9pmsg, fcall(2) 457

intro � introduction to the Plan 9 File Protocol, 9P intro(5) 830
plan9.ini � configuration file for PCs plan9.ini(8) 1017

add4, sub4 � operations on 3-d points and planes . /vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, arith3(2) 375
play � simple audio player play(1) 222

pnp � Plug �n� Play ISA and PCI Interfaces pnp(3) 715
playlistfs � playlist file system playlistfs(7) 914

/dist3, unit3, midpt3, lerp3, reflect3, nearseg3, pldist3, vdiv3, vrem3, pn2f3, ppp2f3, fff2p3,/ arith3(2) 375
plot � graphics filter . plot(1) 223
plot � graphics interface plot(6) 882

fplot � plot elementary function fplot(1) 104
pnp � Plug �n� Play ISA and PCI Interfaces pnp(3) 715

plumb � format of plumb messages and rules . plumb(6) 884
plumb � send message to plumber plumb(1) 224

/plumblookup, plumbpack, plumbpackattr, plumbaddattr, plumbdelattr, plumbrecv,/ plumb(2) 569
messaging . plumber � file system for interprocess plumber(4) 801

ptrap � plumber (4) filter . ptrap(4) 802
plumbsendtext, plumblookup,/ eplumb, plumbfree, plumbopen, plumbsend, plumb(2) 569

exportfs, srvfs � file server plumbing . exportfs(4) 767
/plumbopen, plumbsend, plumbsendtext, plumblookup, plumbpack, plumbpackattr,/ . . . plumb(2) 569

plumbunpackpartial, plumbunpackattr, Plumbmsg � plumb messages /plumbunpack, plumb(2) 569
plumblookup,/ eplumb, plumbfree, plumbopen, plumbsend, plumbsendtext, plumb(2) 569

/plumbsend, plumbsendtext, plumblookup, plumbpack, plumbpackattr, plumbaddattr,/ . . plumb(2) 569
plumbpackattr, plumbaddattr, plumbdelattr, plumbrecv, plumbunpack,/ /plumbpack, plumb(2) 569

plumbpack,/ eplumb, plumbfree, plumbopen, plumbsend, plumbsendtext, plumblookup, . . . plumb(2) 569
/plumbaddattr, plumbdelattr, plumbrecv, plumbunpack, plumbunpackpartial,/ plumb(2) 569

/plumbrecv, plumbunpack, plumbunpackpartial, plumbunpackattr, Plumbmsg � plumb/ plumb(2) 569
/reflect3, nearseg3, pldist3, vdiv3, vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, add4, sub4 �/ . . arith3(2) 375

togeordi, togif, toppm, topng, totif,/ . jpg, gif, png, tif, ppm, bmp, v210, yuv, ico, tga, tojpg, . jpg(1) 156
pnp � Plug �n� Play ISA and PCI Interfaces pnp(3) 715

getfcr, setfcr, getfsr, setfsr � control floating point . getfcr(2) 487
hoc � interactive floating point language . hoc(1) 148

33-i

Permuted Index

ppp, pppoe, pptp, pptpd � point protocol . ppp(8) 1027
geninitdraw, newwindow, drawerror,/ Display, Point, Rectangle, Cursor, initdraw, graphics(2) 492

stub � provide mount point stubs . stub(8) 1062
image files by drawing with a mouse or other pointing device paint � create paint(1) 210

fff2p3, pdiv4, add4, sub4 � operations on 3-d points and planes . . . /vrem3, pn2f3, ppp2f3, arith3(2) 375
badrect, Dx, Dy, Pt, Rect, Rpt � arithmetic on points and rectangles . /rectclip, combinerect, addpt(2) 363

locks, reader-writer locks, rendezvous points, and reference counts . . . /rendezvous lock(2) 526
mntgen � automatically generate mount points for file systems mntgen(4) 790

ppp, pppoe, pptp, pptpd � point-to-point protocol ppp(8) 1027
/gendraw, drawreplxy, drawrepl, replclipr, line, poly, fillpoly, bezier, bezspline, fillbezier,/ . . . draw(2) 432

/hmac_sha2_384, hmac_sha2_512, poly1305 � cryptographically secure hashes . . sechash(2) 614
/poolrealloc, poolcompact, poolcheck, poolblockcheck, pooldump � general memory/ pool(2) 571

poolrealloc,/ poolalloc, poolallocalign, poolfree, poolmsize, poolisoverlap, pool(2) 571
pop3, imap4d � Internet mail servers pop3(8) 1026

error, nexterror, poperror, waserror � error handling functions . error(9) 1089
ixform,/ /xformpointd, xformplane, pushmat, popmat, rot, qrot, scale, move, xform, matrix(2) 534

aux/accupoint � configure a mouse to a port . aux/mouse, mouse(8) 998
lpt � parallel port interface for PC�s lpt(3) 710

nfsserver, portmapper, pcnfsd � NFS service nfsserver(8) 1008
gpsfs, gpsevermore � GPS time and position service . gpsfs(8) 959

hget, hpost, webpaste, urlencode � retrieve, post to a web page corresponding to a url . . . hget(1) 145
/emalloc9p, erealloc9p, estrdup9p, listensrv, postmountsrv, postsharesrv, readbuf, readstr,/ 9p(2) 349

termination and interruption . . . kproc, pexit, postnote � kernel process creation, kproc(9) 1094
process group . postnote � send a note to a process or postnote(2) 574

ps2pdf, pdf2ps � convert between PostScript and PDF . ps2pdf(1) 230
gs � Aladdin Ghostscript PostScript and PDF language interpreter) gs(1) 116

page � view FAX, image, graphic, PostScript, PDF, and typesetter output files . . . page(1) 208
lp � PostScript preprocessors lp(8) 990

/estrdup9p, listensrv, postmountsrv, postsharesrv, readbuf, readstr, respond,/ 9p(2) 349
square root exp, log, log10, pow, pow10, sqrt � exponential, logarithm, power, . exp(2) 455

acpi � Advanced Configuration and Power Interface . acpi(8) 925
apm � Advanced Power Management 1.2 BIOS interface apm(3) 674
apm � Advanced Power Management 1.2 BIOS interface apm(8) 927

pow, pow10, sqrt � exponential, logarithm, power, square root exp, log, log10, exp(2) 455
togeordi, togif, toppm,/ jpg, gif, png, tif, ppm, bmp, v210, yuv, ico, tga, tojpg, jpg(1) 156

/nearseg3, pldist3, vdiv3, vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, add4, sub4 �/ arith3(2) 375
ppp, pppoe, pptp, pptpd � point-to-point protocol . ppp(8) 1027

pr � print file . pr(1) 225
read, readn, write, pread, pwrite � read or write file read(2) 594

write . readv, writev, preadv, pwritev � scatter/gather read and readv(2) 596
crtin, crtout, crtprefree, crtresfree � extended precision arithmetic /mpmagsub, crtpre, mp(2) 547

mpc � extended precision arithmetic code generator mpc(1) 188
bc � precision arithmetic language bc(1) 34

muldiv, umuldiv � precision multiplication and division muldiv(2) 552
disks, floppies and flashes prep, edisk, fdisk, format, mbr � prepare prep(8) 1029

cpp � C language preprocessor . cpp(1) 56
grap � pic preprocessor for drawing graphs grap(1) 112
pic � troff preprocessor for drawing pictures pic(1) 218

timepic � troff preprocessor for drawing timing diagrams . . . timepic(1) 305
lp � PostScript preprocessors . lp(8) 990

ap � fetch Associated Press news articles . ap(1) 22
DSAprimes, probably_prime, smallprimetest � prime number generation . /genstrongprime, prime(2) 575

primes . factor, primes � factor a number, generate large factor(1) 95
mc � multicolumn print . mc(1) 176

echo � print arguments . echo(1) 83
astro � print astronomical information astro(7) 905

cal � print calendar . cal(1) 42
kill, slay, broke, dontkill � print commands to kill processes kill(1) 160

stop, start � print commands to stop and start processes . . stop(1) 285
pr � print file . pr(1) 225

mtime � print file modification time mtime(1) 190
history � print file names from the dump history(1) 147

yesterday, diffy � print file names from the dump yesterday(1) 344
/errfmt � support for user-defined print formats and output routines fmtinstall(2) 466

snprintf, vfprintf, vprintf, vsprintf, vsnprintf � print formatted output /printf, sprintf, fprintf(2) 474
runesprint, runesnprint, runeseprint,/ print, fprint, sprint, snprint, seprint, smprint, . print(2) 576

freq � print histogram of character frequencies freq(1) 105
format . memory � print memory statistics in human-readable . . . memory(8) 991

icanhasmsi � print MSI configuration icanhasmsi(8) 979
news � print news items . news(1) 197

man, lookman, sig � print or find pages of this manual man(1) 173
nietzsche � print out Nietzsche quote nietzsche(1) 200

pci � print PCI bus configuration pci(8) 1012
cpuid, icanhasvmx � print processor information cpuid(8) 939

34-i

Permuted Index

seq � print sequences of numbers seq(1) 272
size � print size of executable files size(1) 273

calendar � print upcoming events calendar(1) 43
weather � print weather report weather(1) 337

strings � extract printable strings . strings(1) 286
/olefs, mswordstrings, msexceltables � extract printable text from Microsoft documents doc2txt(1) 77

lp � printer output . lp(1) 168
vsprintf, vsnprintf � print formatted/ . fprintf, printf, sprintf, snprintf, vfprintf, vprintf, fprintf(2) 474
dimenkind, dimenspec, targetid,/ . parsehtml, printitems, validitems, freeitems, freedocinfo, . html(2) 496
guard.srv, debug,/ . . . changeuser, convkeys, printnetkey, status, enable, disable, authsrv, . . auth(8) 930

pemdecode, pemencode � encode files in Privacy Enhanced Mail (PE) format pem(8) 1014
management . privalloc � per-process private storage privalloc(2) 579

exec, execl, _privates, _nprivates, _tos � execute a file exec(2) 452
eve, iseve � privileged user . eve(9) 1091

/srand, truerand, ntruerand, genrandom, prng, fastrand, nfastrand � random number/ . rand(2) 591
/gensafeprime, genstrongprime, DSAprimes, probably_prime, smallprimetest � prime/ prime(2) 575

ping, gping, traceroute, hogports � probe the Internet . ping(8) 1015
proc � running processes proc(3) 717

/chanclosing, chanprint, mainstacksize, proccreate, procdata, procexec, procexecl,/ . . thread(2) 638
booting � bootstrapping procedures . booting(8) 935

tap � follow the pipes of a process . tap(1) 292
rdproto � parse and process a proto file listing proto(2) 581

cputime, times, cycles � cpu time in this process and children cputime(2) 418
procsetname � set process arguments . procsetname(2) 580

trace � show (real-time) process behavior . trace(1) 313
atexitdont, terminate � terminate process, process cleanup exits, _exits, atexit, exits(2) 454

interruption . . kproc, pexit, postnote � kernel process creation, termination and kproc(9) 1094
postnote � send a note to a process or process group . postnote(2) 574

cons � console, clocks, process group ids, user, null, reboot, etc. cons(3) 683
getpid, getppid � get process ids . getpid(2) 489

notify, noted, atnotify � handle asynchronous process notification . notify(2) 558
ARGBEGIN, ARGEND, ARGC, ARGF, EARGF � process option letters from argv arg(2) 373

postnote � send a note to a process or process group postnote(2) 574
privalloc � process private storage management privalloc(2) 579

_exits, atexit, atexitdont, terminate � terminate process, process cleanup exits, exits(2) 454
fork, rfork � manipulate process resources . fork(2) 472

snap, snapfs � create and mount process snapshots . snap(4) 810
snap � process snapshots . snap(6) 892

ps, psu, pstree � process status . ps(1) 229
sleep, wakeup, tsleep, return0 � process synchronisation sleep(9) 1104

rendezvous � user level process synchronization rendezvous(2) 600
ratrace � trace process system calls ratrace(1) 238

await, wait, waitpid � wait for a process to exit . wait(2) 667
cap � capabilities for setting the user id of processes . cap(3) 680

slay, broke, dontkill � print commands to kill processes . kill, kill(1) 160
proc � running processes . proc(3) 717

stop, start � print commands to stop and start processes . stop(1) 285
ioread, ioreadn, iosleep, iowrite � slave I/O processes for threaded programs . . . /ioproc, ioproc(2) 516

awk � pattern-directed scanning and processing language awk(1) 29
reqqueuepush, reqqueueflush � deferred processing of 9P requests . . /reqqueuecreate, 9pqueue(2) 359
troff2png, troff2gif � miscellaneous text processing tools . troff2png(1) 317

cpuid, icanhasvmx � print processor information cpuid(8) 939
� assembler for the Symbios Logic PCI-SCSI I/O Processors . na na(8) 999

etc. cons � console, clocks, process/process group ids, user, null, reboot, . cons(3) 683
anyhigher, anyready, hzsched, procpriority, procrestore, procsave, scheddump, schedinit,/ sched(9) 1102
/proccreate, procdata, procexec, procexecl, procrfork, recv, recvp, recvul, send, sendp,/ . . thread(2) 638

procsetname � set process arguments procsetname(2) 580
amount, newns, addns, login, noworld, procsetuser, auth_proxy, fauth_proxy,/ auth(2) 379

prof, tprof, kprof � display profiling data prof(1) 226
kprof � kernel profiling . kprof(3) 708

units � conversion program . units(1) 322
cb � C program beautifier . cb(1) 45

execnet � network interface to program execution . execnet(4) 766
assert � check program invariants . assert(2) 377

outs, outl, insb, inss, insl, outsb, outss, outsl � programmed I/O inb, ins, inl, outb, inb(9) 1092
pc � programmer�s calculator pc(1) 214

� an interpreted, interactive, object-oriented programming language python python(1) 233
iowrite � slave I/O processes for threaded programs . . /ioproc, ioread, ioreadn, iosleep, ioproc(2) 516

lex � generator of lexical analysis programs . lex(1) 165
map, mapdemo � draw maps on various projections . map(7) 910

bitsyload, light, pencal, keyboard, params, prompter � bitsy-specific utilities bitsyload(1) 38
proof � troff output interpreter proof(1) 228

wpa � Wi-Fi Protected Access setup wpa(8) 1082
rdproto � parse and process a proto file listing . proto(2) 581

35-i

Permuted Index

sizeS2M, sizeD2M � interface to Plan 9 File protocol /read9pmsg, statcheck, fcall(2) 457
ppp, pppoe, pptp, pptpd � point-to-point protocol . ppp(8) 1027

sdp � secure datagram protocol . sdp(3) 729
intro � introduction to the Plan 9 File Protocol, 9P . intro(5) 830

hnputl, hnputs, ptclbsum, readipifc � Internet Protocol addressing . /nhgetl, nhgets, hnputv, ip(2) 519
sshfs - secure file transfer protocol client . sshfs(4) 812

sshnet - secure file transfer protocol client . sshnet(4) 813
ftpfs � file transfer protocol (FT) file system ftpfs(4) 778

newt � network news transport protocol (NNT) client newt(1) 198
nntpfs � network news transport protocol (NNT) file system nntpfs(4) 796

tftpfs � trivial file transfer protocol (TFT) file system tftpfs(4) 817
version � negotiate protocol version . version(5) 844

authsrv, p9any, p9sk1, dp9ik � authentication protocols . authsrv(6) 851
icmpv6, ipmux, rudp, tcp, udp, il � network protocols over IP ip, esp, gre, icmp, ip(3) 698

forp � formula prover . forp(1) 101
and PDF . ps2pdf, pdf2ps � convert between PostScript . . ps2pdf(1) 230

ps, psu, pstree � process status ps(1) 229
/rectclip, combinerect, badrect, Dx, Dy, Pt, Rect, Rpt � arithmetic on points and/ addpt(2) 363

/nhgetl, nhgets, hnputv, hnputl, hnputs, ptclbsum, readipifc � Internet Protocol/ ip(2) 519
/rectsubpt, insetrect, canonrect, eqpt, eqrect, ptinrect, rectinrect, rectXrect, rectclip,/ addpt(2) 363

audio, disk, ether, kb, serial, ptp, usbd - Universal Serial Bus drivers nusb(4) 797
ptrap � plumber (4) filter ptrap(4) 802

thumbprint � public key thumbprints thumbprint(6) 894
bottomwindow,/ Screen, allocscreen, publicscreen, freescreen, allocwindow, window(2) 668
management changes, pull, push, scan � client-server replica replica(1) 246

/trimblock, packblock, padblock, pullblock, pullupblock, adjustblock, checkb � data block/ allocb(9) 1085
circular buffer . pump � copy asynchronously via a large pump(1) 231
management changes, pull, push, scan � client-server replica replica(1) 246

/xformpoint, xformpointd, xformplane, pushmat, popmat, rot, qrot, scale, move,/ . . . matrix(2) 534
communication channel pushssl � attach SSL version 2 encryption to a . pushssl(2) 582
freeThumbprints, okThumbprint,/ pushtls, tlsClient, tlsServer, initThumbprints, . pushtls(2) 583

dirfstat, dirwstat, dirfwstat, nulldir � get and put file status . . . /fstat, wstat, fwstat, dirstat, stat(2) 626
/attachproc, get1, get2, get4, get8, geta, put1, put2, put4, put8, puta beswab, beswal,/ mach(2) 529

fread, fwrite/ fgetc, getc, getchar, fputc, putc, putchar, ungetc, fgets, gets, fputs, puts, fgetc(2) 461
getenv, putenv � access environment variables getenv(2) 486

pwd, pbd � working directory pwd(1) 232
read, readn, write, pread, pwrite � read or write file read(2) 594

readv, writev, preadv, pwritev � scatter/gather read and write readv(2) 596
efiboot.fat � PC bootloader for FAT, ISO and PXE network booting /bootx64.efi, 9boot(8) 921

object-oriented programming language python � an interpreted, interactive, python(1) 233
0a, 1a, 2a, 5a, 6a, 8a, ka, qa, va � assemblers . 2a(1) 4

qlen, slerp, qmid, qsqrt �/ qtom, mtoq, qadd, qsub, qneg, qmul, qdiv, qunit, qinv, . . . quaternion(2) 588
qball � 3-d rotation controller qball(2) 586

0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C compilers . 2c(1) 5
qtom, mtoq, qadd, qsub, qneg, qmul, qdiv, qunit, qinv, qlen, slerp, qmid, qsqrt �/ . . quaternion(2) 588

files . qer, runq � queue management for spooled . . qer(8) 1033
5i, ki, vi, qi � instruction simulators vi(1) 327

0l, 1l, 2l, 5l, 6l, 8l, kl, ql, vl � loaders . 2l(1) 8
qadd, qsub, qneg, qmul, qdiv, qunit, qinv, qlen, slerp, qmid, qsqrt � Quaternion/ /mtoq, quaternion(2) 588

runlock, wlock,/ lock, canlock, unlock, qlock, canqlock, qunlock, rlock, canrlock, lock(2) 526
wlock, wunlock � serial synchronisation qlock, qunlock, canqlock, rlock, runlock, qlock(9) 1099
qsqrt �/ qtom, mtoq, qadd, qsub, qneg, qmul, qdiv, qunit, qinv, qlen, slerp, qmid, quaternion(2) 588

qr � generate QR code qr(1) 237
viewport/ /xformplane, pushmat, popmat, rot, qrot, scale, move, xform, ixform, persp, look, . matrix(2) 534

qsort � quicker sort . qsort(2) 587
slerp, qmid, qsqrt �/ qtom, mtoq, qadd, qsub, qneg, qmul, qdiv, qunit, qinv, qlen, quaternion(2) 588

wrkey, login, newns, none, as � maintain or query authentication databases /debug, auth(8) 930
csquery, dns, dnstcp, dnsquery, dnsdebug,/ . . query, ipquery, mkhash, mkdb, mkhosts, cs, . . ndb(8) 1000

qer, runq � queue management for spooled files qer(8) 1033
locks,/ /rwakeupall, incref, decref � spin locks, queueing rendezvous locks, reader-writer . . . lock(2) 526

qtom, mtoq, qadd, qsub, qneg, qmul, qdiv, qunit, qinv, qlen, slerp, qmid, qsqrt �/ quaternion(2) 588
wunlock � serial synchronisation qlock, qunlock, canqlock, rlock, runlock, wlock, qlock(9) 1099

lock, canlock, unlock, qlock, canqlock, qunlock, rlock, canrlock, runlock, wlock,/ lock(2) 526
nietzsche � print out Nietzsche quote . nietzsche(1) 200

quoted/ /quotestrfmt, quoterunestrfmt, quotefmtinstall, doquote, needsrcquote � quote(2) 590
unquoterunestrdup,/ quotestrdup, quoterunestrdup, unquotestrdup, quote(2) 590

/unquoterunestrdup, quotestrfmt, quoterunestrfmt, quotefmtinstall, doquote,/ . . quote(2) 590
unquotestrdup, unquoterunestrdup,/ quotestrdup, quoterunestrdup, quote(2) 590

/unquotestrdup, unquoterunestrdup, quotestrfmt, quoterunestrfmt,/ quote(2) 590
rtc � real-time clock and non-volatile RAM . rtc(3) 722

bzfs � compressed read-write ram filesystem . bzfs(4) 754
ramfs � memory file system ramfs(4) 803

truerand, ntruerand, genrandom, prng,/ rand, lrand, frand, nrand, lnrand, srand, rand(2) 591
dhcpd, dhcp6d, dhcpleases, rarpd, tftpd � Internet booting dhcpd(8) 943

36-i

Permuted Index

ratfs � mail address ratification file system . . . ratfs(4) 804
ratrace � trace process system calls ratrace(1) 238

dumparenas, restore � backup venti arenas to ray discs or restore from them . . . /tobackup, backup(8) 932
whatis, ., ~ � command language rc, cd, eval, exec, exit, flag, rfork, shift, wait, . rc(1) 239

setupRC4state, rc4, rc4skip, rc4back - alleged rc4 encryption . rc4(2) 593
rc-httpd � HTTP server rc-httpd(8) 1035

to CPU server . rcpu, rimport, rexport, rconnect � connection . rcpu(1) 245
servers . rdarena, wrarena � copy arenas between venti .venti-backup(8) 1075

rdbfs � remote kernel debugging file system . . rdbfs(4) 805
listing . rdproto � parse and process a proto file proto(2) 581

cat, read � catenate files . cat(1) 44
readv, writev, preadv, pwritev � scatter/gather read and write . readv(2) 596

dirread, dirreadall � read directory . dirread(2) 430
write file . read, readn, write, pread, pwrite � read or read(2) 594

readnum, readstr � device read routines . readnum(9) 1101
tput � measure read throughput . tput(1) 311

read, write � transfer data from and to a file . . read(5) 840
read, write, copy � simple Venti clients venti(1) 326

/convM2D, fcallfmt, dirfmt, dirmodefmt, read9pmsg, statcheck, sizeS2M, sizeD2M �/ . . fcall(2) 457
epoch seconds � convert readable date (and time) to seconds since seconds(1) 264

memory � print memory statistics in readable format . memory(8) 991
objtype, readobj, objtraverse, isar, nextar, readar � object file interpretation functions . . . object(2) 564

/BLEN, BALLOC, blocklen, blockalloclen, readblist, concatblock, copyblock, trimblock,/ . allocb(9) 1085
/listensrv, postmountsrv, postsharesrv, readbuf, readstr, respond, responderror,/ 9p(2) 349
/okThumbprint, okCertificate, readcert, readcertchain � attach TLS1 or SSL3/ pushtls(2) 583

color map . RGB, readcolmap, writecolmap � access display readcolmap(2) 595
file/ /closefile, removefile, walkfile, opendirfile, readdirfile, closedirfile, hasperm � in-memory 9pfile(2) 357

cdfs, cddb � optical disc (CD, DVD, B) track reader and writer file system cdfs(4) 755
/� spin locks, queueing rendezvous locks, reader-writer locks, rendezvous points, and/ . lock(2) 526

/loadimage, cloadimage, unloadimage, readimage, writeimage, bytesperline,/ allocimage(2) 367
nedmail � reading mail . nedmail(1) 193

open, create, close � open a file for reading or writing, create file open(2) 566
wordsperline � allocating, freeing, reading, writing images /bytesperline, allocimage(2) 367

/nhgets, hnputv, hnputl, hnputs, ptclbsum, readipifc � Internet Protocol addressing ip(2) 519
/allocmemimage, allocmemimaged, readmemimage, creadmemimage,/ memdraw(2) 536

drawgetrect, menuhit, setcursor,/ . initmouse, readmouse, closemouse, moveto, getrect, mouse(2) 545
read, readn, write, pread, pwrite � read or write file . read(2) 594

readnum, readstr � device read routines readnum(9) 1101
convM2TR,/ . . . authdial, passtokey, nvcsum, readnvram, convT2M, convM2T, convTR2M, . . authsrv(2) 382
object file interpretation functions . . objtype, readobj, objtraverse, isar, nextar, readar � . . . object(2) 564

mkpaqfs � make a compressed read-only file system mkpaqfs(8) 996
paqfs � compressed read-only file system paqfs(4) 800

readnum, readstr � device read routines readnum(9) 1101
/postmountsrv, postsharesrv, readbuf, readstr, respond, responderror, srvacquire,/ . . 9p(2) 349

/uninstallsubfont, subfontname, readsubfont, readsubfonti, writesubfont, stringsubfont,/ . . . subfont(2) 633
scatter/gather read and write readv, writev, preadv, pwritev � readv(2) 596

bzfs � compressed read-write ram filesystem bzfs(4) 754
/dev/realmode . realemu � software emulation of realemu(8) 1037

malloc, mallocalign, mallocz, free, realloc, calloc, msize, setmalloctag,/ malloc(2) 532
setmalloctag,/ malloc, mallocz, smalloc, realloc, free, msize, secalloc, secfree, malloc(9) 1095

realemu � software emulation of realmode . realemu(8) 1037
rtc � real-time clock and non-volatile RAM rtc(3) 722

trace � show real-time) process behavior trace(1) 313
optionally shut down or reboot/ fshalt, scram, reboot � halt any local file systems and fshalt(8) 956
remote file server connection reboot � reboot the system upon loss of reboot(8) 1038

clocks, process/process group ids, user, null, reboot, etc. cons � console, cons(3) 683
local file systems and optionally shut down or reboot the system . /scram, reboot � halt any fshalt(8) 956

server connection reboot � reboot the system upon loss of remote file . . . reboot(8) 1038
scribblealloc, recognize � character recognition scribble(2) 610

ssl � SSL record layer . ssl(3) 734
tls � TLS and SSL3 record layer . tls(3) 737

/rectclip, combinerect, badrect, Dx, Dy, Pt, Rect, Rpt � arithmetic on points and/ addpt(2) 363
eqpt, eqrect,/ . . . addpt, subpt, mulpt, divpt, rectaddpt, rectsubpt, insetrect, canonrect, . . . addpt(2) 363
newwindow, drawerror,/ Display, Point, Rectangle, Cursor, initdraw, geninitdraw, graphics(2) 492

/insetrect, canonrect, eqpt, eqrect, ptinrect, rectinrect, rectXrect, rectclip, combinerect,/ . . addpt(2) 363
addpt, subpt, mulpt, divpt, rectaddpt, rectsubpt, insetrect, canonrect, eqpt, eqrect,/ . addpt(2) 363

/canonrect, eqpt, eqrect, ptinrect, rectinrect, rectXrect, rectclip, combinerect, badrect, Dx,/ . addpt(2) 363
derp � directory-examining recursive compare . derp(1) 73

/procdata, procexec, procexecl, procrfork, recv, recvp, recvul, send, sendp, sendul, nbrecv,/ . . thread(2) 638
reader-writer locks, rendezvous points, and reference counts /rendezvous locks, lock(2) 526

/dot3, cross3, len3, dist3, unit3, midpt3, lerp3, reflect3, nearseg3, pldist3, vdiv3, vrem3,/ . . . arith3(2) 375
rregexec, rregsub, regerror �/ regcomp, regcomplit, regcompnl, regexec, regsub, regexp(2) 597

regexp � regular expression notation regexp(6) 888
io � access PC I/O registers . io(1) 152

37-i

Permuted Index

srv � server registry . srv(3) 733
regcomp, regcomplit, regcompnl, regexec, regsub, rregexec, rregsub, regerror � regular/ regexp(2) 597

regexp � regular expression notation regexp(6) 888
samterm � screen editor with structural regular expressions sam, B, sam.save, sam(1) 258

comm � select or reject lines common to two sorted files comm(1) 52
dial, hangup, announce, listen, accept, reject, netmkaddr, setnetmtpt,/ dial(2) 427

join � relational database operator join(1) 155
ircrc � internet relay chat client . ircrc(1) 153

fabs, fmod, floor, ceil � absolute value, remainder, floor, ceiling functions floor(2) 465
rexexec, ftpd, socksd, hproxy � Internet remote access daemons telnetd, rlogind, ipserv(8) 984

securenet � Digital Pathways SecureNet Key remote authentication box securenet(8) 1051
reboot � reboot the system upon loss of remote file server connection reboot(8) 1038

Virtual Network Computing (VN) . vncs, vncv � remote frame buffer server and viewer for . . . vnc(1) 331
rdbfs � remote kernel debugging file system rdbfs(4) 805

ssh - secure shell remote login client . ssh(1) 284
transfer . . . con, telnet, rx, hayes, xms, xmr � remote login, execution, and XMODEM file . . . con(1) 53

import � import a name space from a remote system . import(4) 784
rwd, conswdir � maintain remote working directory rwd(1) 256

remove � remove a file remove(2) 599
remove � remove a file from a server remove(5) 841

rm � remove files . rm(1) 254
deroff � remove formatting requests deroff(1) 72

strip � remove symbols from binary files strip(1) 287
/freefidpool, allocfid, closefid, lookupfid, removefid, Req, Reqpool, allocreqpool,/ 9pfid(2) 355

/alloctree, freetree, File, createfile, closefile, removefile, walkfile, opendirfile, readdirfile,/ . 9pfile(2) 357
/freereqpool, allocreq, closereq, lookupreq, removereq � 9P fid, request tracking 9pfid(2) 355

ttfnewbitmap, ttffreebitmap, ttfblit � TrueType renderer /ttfrender, ttfrunerender, ttf(2) 648
synchronization . rendezvous � user level process rendezvous(2) 600

/rendezvous locks, reader-writer locks, rendezvous points, and reference counts lock(2) 526
uniq � report repeated lines in a file uniq(1) 321

Image, draw, gendraw, drawreplxy, drawrepl, replclipr, line, poly, fillpoly, bezier, bezspline,/ draw(2) 432
changes, pull, push, scan � client-server replica management replica(1) 246

compactdb, updatedb � simple client-server replica management /applylog, replica(8) 1039
weather � print weather report . weather(1) 337

sysinfo, sysupdate � report information about, update the system . sysinfo(1) 290
uniq � report repeated lines in a file uniq(1) 321
color � representation of pixels and colors color(6) 856

galaxy � representations of n-body simulations galaxy(6) 860
/allocfid, closefid, lookupfid, removefid, Req, Reqpool, allocreqpool, freereqpool, allocreq,/ . 9pfid(2) 355

reqqueueflush � deferred/ Reqqueue, reqqueuecreate, reqqueuepush, 9pqueue(2) 359
closereq, lookupreq, removereq � 9P fid, request tracking /freereqpool, allocreq, 9pfid(2) 355

deroff � remove formatting requests . deroff(1) 72
call error . errstr, rerrstr, werrstr � description of last system . . . errstr(2) 448

resample, resize - resample a picture resample(1) 249
hwdraw � drawing routines for resident images /memimagestring, memdraw(2) 536

memltorear, memltorearn � windows of resident images /memltofrontn, memlayer(2) 540
resample, resize - resample a picture resample(1) 249

/namectlfont, namectlimage, newcontrolset, resizecontrolset � interactive graphical/ control(2) 403
fork, rfork � manipulate process resources . fork(2) 472

message parsing Cmdbuf, parsecmd, respondcmderror, lookupcmd � control 9pcmdbuf(2) 354
/postsharesrv, readbuf, readstr, respond, responderror, srvacquire, srvrelease,/ 9p(2) 349

or restore/ . . backup, tobackup, dumparenas, restore � backup venti arenas to blu-ray discs . backup(8) 932
mothra � retrieve and display World-Wide Web files mothra(1) 186

a url hget, hpost, webpaste, urlencode � retrieve, post to a web page corresponding to . hget(1) 145
error � return an error . error(5) 836

descriptor fd2path � return file name associated with file fd2path(2) 460
getcallerpc � fetch return PC of current function getcallerpc(2) 485

descriptor . iounit � return size of atomic I/O unit for file iounit(2) 518
sleep, wakeup, tsleep, return0 � process synchronisation sleep(9) 1104

/setvbuf, setbuf, fgetpos, ftell, fsetpos, fseek, rewind, feof, ferror, clearerr � standard/ fopen(2) 469
rewrite � mail rewrite rules rewrite(6) 889

remote access daemons telnetd, rlogind, rexexec, ftpd, socksd, hproxy � Internet ipserv(8) 984
rcpu, rimport, rexport, rconnect � connection to CPU server . rcpu(1) 245

/openfont, buildfont, freefont, Pfmt, Rfmt, strtochan, chantostr, chantodepth �/ . . . graphics(2) 492
fork, rfork � manipulate process resources fork(2) 472

language rc, cd, eval, exec, exit, flag, rfork, shift, wait, whatis, ., ~ � command rc(1) 239
display color map . RGB, readcolmap, writecolmap � access readcolmap(2) 595

cmap2rgb, cmap2rgba, rgb2cmap � colors and color maps color(2) 401
advanced encryption standard rijndael) /aesgcm_decrypt - aes(2) 365

CPU server . rcpu, rimport, rexport, rconnect � connection to . . . rcpu(1) 245
rio � window system files rio(4) 806
rio, label, window, wloc � window system rio(1) 250

winwatch � monitor rio windows . winwatch(1) 339
routing . ipconfig, rip, linklocal � Internet configuration and ipconfig(8) 981

38-i

Permuted Index

sha2_384, sha2_512, hmac_x,/ . . md4, md5, ripemd160, sha1, sha2_224, sha2_256, sechash(2) 614
symoff, fpformat, beieee80ftos,/ . . cisctrace, risctrace, ciscframe, riscframe, localaddr, debugger(2) 422

/canlock, unlock, qlock, canqlock, qunlock, rlock, canrlock, runlock, wlock, canwlock,/ . . . lock(2) 526
synchronisation . . . qlock, qunlock, canqlock, rlock, runlock, wlock, wunlock � serial qlock(9) 1099
Internet remote access daemons telnetd, rlogind, rexexec, ftpd, socksd, hproxy � ipserv(8) 984

rm � remove files . rm(1) 254
sqrt � exponential, logarithm, power, square root exp, log, log10, pow, pow10, exp(2) 455

root � the root file system root(3) 721
boot, bootrc � connect to the root file server . boot(8) 933

/xformpointd, xformplane, pushmat, popmat, rot, qrot, scale, move, xform, ixform, persp,/ . matrix(2) 534
rotate - rotate or mirror a picture rotate(1) 255

qball � 3-d rotation controller . qball(2) 586
rip, linklocal � Internet configuration and routing . ipconfig, ipconfig(8) 981

send � mail routing and delivery . send(8) 1052
/combinerect, badrect, Dx, Dy, Pt, Rect, Rpt � arithmetic on points and rectangles addpt(2) 363
/regcompnl, regexec, regsub, rregexec, rregsub, regerror � regular expression regexp(2) 597

/asn1encodeRSApub, decodePEM, rsadecrypt, rsaencrypt, rsafill, rsagen, rsaprivalloc,/ rsa(2) 601
rsa2ssh, rsa2x509, rsa2csr � generate and/ . . rsagen, rsafill, asn12rsa, rsa2asn1, rsa2pub, . . rsa(8) 1041
/rsagen, rsaprivalloc, rsaprivfree, rsaprivtopub, rsapuballoc, rsapubfree, X509toRSApub,/ rsa(2) 601

/canrlock, runlock, wlock, canwlock, wunlock, rsleep, rwakeup, rwakeupall, incref, decref �/ . lock(2) 526
rtc � real-time clock and non-volatile RAM . . . rtc(3) 722

ip, esp, gre, icmp, icmpv6, ipmux, rudp, tcp, udp, il � network protocols over IP . ip(3) 698
plumb � format of plumb messages and rules . plumb(6) 884

rewrite � mail rewrite rules . rewrite(6) 889
lock � run a command under lock lock(1) 166

through IPv4 6in4, ayiya - configure and run automatic or manual tunnel of IPv6 6in4(8) 919
UTF, Unicode, ASCII, rune � character set and format utf(6) 896

runestrrchr, runestrdup, runestrstr � rune string operations /runestrchr, runestrcat(2) 605
/fmtfdinit, fmtfdflush, fmtstrinit, fmtstrflush, runefmtstrinit, runefmtstrflush, errfmt �/ fmtinstall(2) 466

utfrune,/ . . . runetochar, chartorune, runelen, runenlen, fullrune, utfecpy, utflen, utfnlen, . . . rune(2) 603
/smprint, runesprint, runesnprint, runeseprint, runesmprint, vfprint, vsnprint, vseprint,/ print(2) 576

runestrncpy,/ runestrcat, runestrncat, runestrcmp, runestrncmp, runestrcpy, runestrcat(2) 605
/runestrlen, runestrchr, runestrrchr, runestrdup, runestrstr � rune string/ runestrcat(2) 605

/runestrncmp, runestrcpy, runestrncpy, runestrecpy, runestrlen, runestrchr,/ runestrcat(2) 605
/runestring, runestringn, stringbg, stringnbg, runestringbg, runestringnbg, _string, ARROW,/ draw(2) 432

/stringnwidth, runestringsize, runestringwidth, runestringnwidth � graphical size of strings . . stringsize(2) 632
stringsize, stringwidth, stringnwidth, runestringsize, runestringwidth,/ stringsize(2) 632

runestrcpy, runestrncpy,/ runestrcat, runestrncat, runestrcmp, runestrncmp, runestrcat(2) 605
string/ . /runestrecpy, runestrlen, runestrchr, runestrrchr, runestrdup, runestrstr � rune runestrcat(2) 605
fullrune, utfecpy, utflen, utfnlen, utfrune,/ . . . runetochar, chartorune, runelen, runenlen, . . . rune(2) 603

utflen, utfnlen, utfrune, utfrrune, utfutf � rune/UTF conversion /fullrune, utfecpy, rune(2) 603
/vseprint, vsmprint, runevsnprint, runevseprint, runevsmprint � print formatted output print(2) 576

/qlock, canqlock, qunlock, rlock, canrlock, runlock, wlock, canwlock, wunlock, rsleep,/ . . lock(2) 526
qlock, qunlock, canqlock, rlock, runlock, wlock, wunlock � serial/ qlock(9) 1099

uptime � show how long the system has been running . uptime(1) 323
proc � running processes . proc(3) 717

qer, runq � queue management for spooled files . . qer(8) 1033
/wlock, canwlock, wunlock, rsleep, rwakeup, rwakeupall, incref, decref � spin locks,/ lock(2) 526

directory . rwd, conswdir � maintain remote working rwd(1) 256
execution, and XMODEM file/ . . . con, telnet, rx, hayes, xms, xmr � remote login, con(1) 53

satval, satreset, satfree � boolean satisfiability SA) solver /satrangev, satsolve, satmore, sat(2) 607
sacfs � compressed file system sacfs(4) 809

s_free, s_incref, s_memappend, s_nappend,/ . s_alloc, s_append, s_array, s_copy, s_error, . . . string(2) 630
setupSalsastate, salsa_setblock, salsa_setiv, salsa_encrypt, salsa_encrypt2, hsalsa �/ salsa(2) 606

ssam � stream interface to sam . ssam(1) 283
fortune, theo, troll � sample lines from a file fortune(1) 103

structural regular expressions sam, B, sam.save, samterm � screen editor with sam(1) 258
timmy � physics sandbox . timmy(1) 306

s_memappend,/ s_alloc, s_append, s_array, s_copy, s_error, s_free, s_incref, string(2) 630
/� AHCI (Advanced Host Controller Interface) SATA (Serial AT) storage device drivers sdahci(3) 725

/satrangev, satsolve, satmore, satval, satreset, satfree � boolean satisfiability (SA) solver sat(2) 607
satrangev, satsolve, satmore, satval, satreset,/ satnew, satadd1, sataddv, satrange1, sat(2) 607
server . httpd, save, imagemap, man2html, webls � HTTP . . . httpd(8) 977

brk, sbrk � change memory allocation brk(2) 394
/xformplane, pushmat, popmat, rot, qrot, scale, move, xform, ixform, persp, look,/ matrix(2) 534

changes, pull, push, scan � client-server replica management replica(1) 246
fscanf, scanf, sscanf, vfscanf � scan formatted input . fscanf(2) 481

scanmail, testscan � spam filters scanmail(8) 1043
awk � pattern-directed scanning and processing language awk(1) 29

scat � sky catalogue and Digitized Sky Survey . scat(7) 915
readv, writev, preadv, pwritev � scatter/gather read and write readv(2) 596

/hzsched, procpriority, procrestore, procsave, scheddump, schedinit, sched, yield �/ sched(9) 1102
/fdopen, fileno, fclose, sopenr, sopenw, sclose, fflush, setvbuf, setbuf, fgetpos, ftell,/ . fopen(2) 469

s_memappend,/ . . s_alloc, s_append, s_array, s_copy, s_error, s_free, s_incref, string(2) 630

39-i

Permuted Index

and optionally shut down or reboot/ . . fshalt, scram, reboot � halt any local file systems . . . fshalt(8) 956
allocwindow, bottomwindow,/ Screen, allocscreen, publicscreen, freescreen, . window(2) 668
expressions . . . sam, B, sam.save, samterm � screen editor with structural regular sam(1) 258

draw � screen graphics . draw(3) 685
lens � interactive screen magnifier . lens(1) 164

screenlock � disable access to a terminal screenlock(8) 1046
recognition . scribblealloc, recognize � character scribble(2) 610

nusbrc - Universal Serial Bus startup script . nusbrc(8) 1010
at, drain, expect, pass � dialer scripting tools . expect(1) 92

cpurc, cpurc.local, termrc, termrc.local � boot scripts . cpurc(8) 940
usage � command-line parsing for shell scripts . getflags, getflags(8) 957

na � assembler for the Symbios Logic SCSI I/O Processors . na(8) 999
openscsi, closescsi, scsiready, scsi, scsicmd, scsierror � SCSI device operations scsi(2) 612

scuzz � SCSI target control scuzz(8) 1047
sd � storage device interface sd(3) 723

Interface) SATA (Serial AT) storage device/ . . . sdahci � AHCI (Advanced Host Controller sdahci(3) 725
device interface . sdaoe � ATA-over-Ethernet (Ao) storage sdaoe(3) 727

sdloop � loopback storage device interface . . . sdloop(3) 728
sdp � secure datagram protocol sdp(3) 729

grep, g � search a file for a pattern grep(1) 115
thesaurus � search online thesaurus thesaurus(1) 303

avllookup, avlnext, avlprev � Balanced binary search tree routines /avlinsert, avldelete, avl(2) 385
mallocz, smalloc, realloc, free, msize, secalloc, secfree, setmalloctag, setrealloctag,/ . malloc, malloc(9) 1095

time) to seconds since epoch seconds � convert human-readable date (and . seconds(1) 264
time, nsec � time in seconds and nanoseconds since epoch time(2) 642

TK2MS, TK2SEC � kernel times and time/ seconds, ticks, fastticks, HZ, MS2HZ, MS2TK, . seconds(9) 1103
ecdominit, ecdomfree, ecassign, ecadd,/ secp256r1, secp256k1, secp384r1, ec(2) 441

aescbc, ipso, secstore � secstore commands secstore(1) 265
secstored, secuser � secstore commands secstore(8) 1050

sdp � secure datagram protocol sdp(3) 729
sshfs - secure file transfer protocol client sshfs(4) 812

sshnet - secure file transfer protocol client sshnet(4) 813
hmac_sha2_512, poly1305 � cryptographically secure hashes /hmac_sha2_384, sechash(2) 614

ssh - secure shell remote login client ssh(1) 284
remote authentication box securenet � Digital Pathways SecureNet Key . . securenet(8) 1051

secstored, secuser � secstore commands secstore(8) 1050
sed � stream editor . sed(1) 267
seek � change file offset seek(2) 616

faces, seemail, vwhois � mailbox interface faces(1) 94
seg � access a named segment seg(1) 270
segbrk � change memory allocation segbrk(2) 619
segflush � flush instruction and data caches . . segflush(2) 620

memory segattach, segdetach, segfree � map/unmap a segment in virtual . . . segattach(2) 617
seg � access a named segment . seg(1) 270

segment � long lived memory segments segment(3) 730
segattach, segdetach, segfree � map/unmap a segment in virtual memory segattach(2) 617

files . comm � select or reject lines common to two sorted . . comm(1) 52
semacquire, tsemacquire, semrelease - user level semaphores semacquire(2) 621

send � mail routing and delivery send(8) 1052
postnote � send a note to a process or process group . . . postnote(2) 574

plumb � send message to plumber plumb(1) 224
/procexecl, procrfork, recv, recvp, recvul, send, sendp, sendul, nbrecv, nbrecvp,/ thread(2) 638

wol � send wake-on-lan Ethernet packet wol(8) 1081
marshal � formatting and sending mail . marshal(1) 174

/procrfork, recv, recvp, recvul, send, sendp, sendul, nbrecv, nbrecvp, nbrecvul, nbsend,/ . . thread(2) 638
runeseprint,/ . . . print, fprint, sprint, snprint, seprint, smprint, runesprint, runesnprint, print(2) 576

seq � print sequences of numbers seq(1) 272
(Advanced Host Controller Interface) SATA Serial AT) storage device drivers /� AHCI sdahci(3) 725

disk, ether, kb, serial, ptp, usbd - Universal Serial Bus drivers audio, nusb(4) 797
nusbrc - Universal Serial Bus startup script nusbrc(8) 1010

uart, eia � serial communication control uart(3) 740
circuit (I²C) interface twsi - two-wire serial interface (TWS) and inter-integrated . . . twsi(3) 739

audio, disk, ether, kb, serial, ptp, usbd - Universal Serial Bus drivers . nusb(4) 797
canqlock, rlock, runlock, wlock, wunlock � serial synchronisation qlock, qunlock, qlock(9) 1099

s_alloc, s_append, s_array, s_copy, s_error, s_free, s_incref, s_memappend,/ string(2) 630
httpfile � serve a single web file httpfile(4) 783

partfs � serve file, with partitions partfs(8) 1011
boot, bootrc � connect to the root file server . boot(8) 933

cpu � connection to CPU server . cpu(1) 57
up authentication on a file descriptor to a file server . fauth � set fauth(2) 456

fsconfig � configuring a file server . fsconfig(8) 952
hjfs � file server . hjfs(4) 782

hxferenc, � routines for creating an http server . . /hurlfmt, hurlunesc, hvprint, hwrite, httpd(2) 508
save, imagemap, man2html, webls � HTTP server . httpd, httpd(8) 977

40-i

Permuted Index

rc-httpd � HTTP server . rc-httpd(8) 1035
rimport, rexport, rconnect � connection to CPU server . rcpu, rcpu(1) 245

remove � remove a file from a server . remove(5) 841
upasfs � mail file server . upasfs(4) 819

venti � archival storage server . venti(2) 650
venti � archival storage server . venti(6) 897
venti � archival storage server . venti(8) 1071

syncindex � prepare and maintain a venti server /fmtbloom, fmtindex, fmtisect, venti-fmt(8) 1076
vtsrvhello, vtlisten, vtgetreq, vtrespond � Venti server . venti-server(2) 665

tlsclient, tlssrvtunnel, tlsclienttunnel � TLS server and client tlssrv, tlssrv(8) 1066
Computing/ vncs, vncv � remote frame buffer server and viewer for Virtual Network vnc(1) 331

� reboot the system upon loss of remote file server connection reboot reboot(8) 1038
cwfs64x, fs64 - cached-worm file server, dump cwfs, cwfs64, cwfs(4) 762

fs � file server, dump . fs(4) 776
fs, exsort � file server maintenance . fs(8) 947

hjfs � file server maintenance . hjfs(8) 975
exportfs, srvfs � file server plumbing . exportfs(4) 767

srv � server registry . srv(3) 733
changes, pull, push, scan � server replica management replica(1) 246

applylog, compactdb, updatedb � simple server replica management . . . applychanges, replica(8) 1039
users � file server user list format users(6) 895

for communicating with authentication servers /authpak_finish � routines authsrv(2) 382
intro � introduction to file servers . intro(4) 749

mnt � attach to 9P servers . mnt(3) 711
pop3, imap4d � Internet mail servers . pop3(8) 1026

rdarena, wrarena � copy arenas between venti servers .venti-backup(8) 1075
threadpostsharesrv, srv � 9P file service /threadpostmountsrv, 9p(2) 349

gpsfs, gpsevermore � GPS time and position service . gpsfs(8) 959
nfsserver, portmapper, pcnfsd � NFS service . nfsserver(8) 1008

srv, srvtls, 9fs � start network file service . srv(4) 811
/freeimage, nameimage, namedimage, setalpha, loadimage, cloadimage,/ allocimage(2) 367

/fclose, sopenr, sopenw, sclose, fflush, setvbuf, setbuf, fgetpos, ftell, fsetpos, fseek, rewind,/ . fopen(2) 469
/moveto, getrect, drawgetrect, menuhit, setcursor, enter � mouse control mouse(2) 545

getfcr, setfcr, getfsr, setfsr � control floating point getfcr(2) 487
setjmp, longjmp, notejmp � non-local goto . . . setjmp(2) 622

/mallocz, free, realloc, calloc, msize, setmalloctag, setrealloctag, getmalloctag,/ . . . malloc(2) 532
/smalloc, realloc, free, msize, secalloc, secfree, setmalloctag, setrealloctag, getmalloctag,/ . . . malloc(9) 1095
crackhdr, machbytype, machbyname, newmap, setmap, findseg, unusemap, loadmap,/ mach(2) 529

/announce, listen, accept, reject, netmkaddr, setnetmtpt, getnetconninfo, freenetconninfo/ . dial(2) 427
/free, realloc, calloc, msize, setmalloctag, setrealloctag, getmalloctag, getrealloctag,/ . . . malloc(2) 532

/free, msize, secalloc, secfree, setmalloctag, setrealloctag, getmalloctag, getrealloctag �/ . . malloc(9) 1095
cap � capabilities for setting the user id of processes cap(3) 680

wpa � Wi-Fi Protected Access setup . wpa(8) 1082
cryptsetup � setup encrypted partition cryptsetup(8) 942

aesgcm_encrypt, aesgcm_decrypt - advanced encryption standard (rijndael) / aes_xts_encrypt, aes_xts_decrypt,
aesCBCdecrypt, aesCFBencrypt,/ setupAESstate, aesCBCencrypt, aes(2) 365

bfECBencrypt, bfECBdecrypt - blowfish/ setupBFstate, bfCBCencrypt, bfCBCdecrypt, . . . blowfish(2) 393
chacha_setiv, chacha_encrypt,/ setupChachastate, chacha_setblock, chacha(2) 398
and triple/ /key_setup, des56to64, des64to56, setupDES3state, triple_block_cipher - single . . des(2) 425
desCBCencrypt, desCBCdecrypt,/ setupDESstate, des_key_setup, block_cipher, . . des(2) 425
alleged rc4 encryption setupRC4state, rc4, rc4skip, rc4back - rc4(2) 593
salsa_encrypt, salsa_encrypt2, hsalsa �/ setupSalsastate, salsa_setblock, salsa_setiv, . . salsa(2) 606

/fileno, fclose, sopenr, sopenw, sclose, fflush, setvbuf, setbuf, fgetpos, ftell, fsetpos, fseek,/ fopen(2) 469
s_alloc, s_append, s_array, s_copy, s_error, s_free, s_incref, s_memappend, s_nappend,/ . string(2) 630

s_putc, s_unique, s_grow, s_read, s_read_line, s_getline � extensible strings /s_tolower, string(2) 630
sum, md5sum, sha1sum � sum and count blocks in a file sum(1) 288

hmac_x,/ md4, md5, ripemd160, sha1, sha2_224, sha2_256, sha2_384, sha2_512, . . . sechash(2) 614
ssh - secure shell remote login client ssh(1) 284

getflags, usage � command-line parsing for shell scripts . getflags(8) 957
rc, cd, eval, exec, exit, flag, rfork, shift, wait, whatis, ., ~ � command language . . rc(1) 239

fedex, ups, usps � track shipments . fedex(1) 96
switch between them. kbmap � show a list of available keyboard maps and . . . kbmap(1) 159

uptime � show how long the system has been running . uptime(1) 323
trace � show (real-time) process behavior trace(1) 313

shr � global mountpoints shr(3) 732
tinyurl � shrink a URL . tinyurl(1) 307

� halt any local file systems and optionally shut down or reboot the system /reboot fshalt(8) 956
man, lookman, sig � print or find pages of this manual man(1) 173

dsasigalloc, dsasigfree, dsaprivtopub - digital signature algorithm /dsaprivfree, dsa(2) 438
loopback � network link simulation . loopback(3) 709

galaxy � representations of n-body simulations . galaxy(6) 860
disksim � disk simulator . disksim(8) 946

galaxy, mkgalaxy � galactic n-body simulator . galaxy(1) 107
5i, ki, vi, qi � instruction simulators . vi(1) 327

41-i

Permuted Index

trigonometric functions sin, cos, tan, asin, acos, atan, atan2 � sin(2) 623
human-readable date (and time) to seconds since epoch seconds � convert seconds(1) 264

time, nsec � time in seconds and nanoseconds since epoch . time(2) 642
/s_append, s_array, s_copy, s_error, s_free, s_incref, s_memappend, s_nappend, s_new,/ . string(2) 630

/setupDES3state, triple_block_cipher - single and triple digital encryption standard . . des(2) 425
httpfile � serve a single web file . httpfile(4) 783

sinh, cosh, tanh � hyperbolic functions sinh(2) 624
size � print size of executable files size(1) 273

iounit � return size of atomic I/O unit for file descriptor iounit(2) 518
runestringwidth, runestringnwidth � graphical size of strings . /stringnwidth, runestringsize, stringsize(2) 632

/dirfmt, dirmodefmt, read9pmsg, statcheck, sizeS2M, sizeD2M � interface to Plan 9 File/ . . fcall(2) 457
scat � sky catalogue and Digitized Sky Survey . scat(7) 915

/ioproc, ioread, ioreadn, iosleep, iowrite � slave I/O processes for threaded programs . . . ioproc(2) 516
processes . kill, slay, broke, dontkill � print commands to kill . kill(1) 160

sleep � suspend execution for an interval sleep(1) 274
sleep, alarm � delay, ask for delayed note sleep(2) 625

synchronisation . sleep, wakeup, tsleep, return0 � process sleep(9) 1104
/qsub, qneg, qmul, qdiv, qunit, qinv, qlen, slerp, qmid, qsqrt � Quaternion arithmetic . . . quaternion(2) 588

delay, microdelay, addclock0link � small delays, clock interrupts delay(9) 1088
secfree, setmalloctag,/ malloc, mallocz, smalloc, realloc, free, msize, secalloc, malloc(9) 1095
/genstrongprime, DSAprimes, probably_prime, smallprimetest � prime number generation . . . prime(2) 575

smart � SMART error monitoring smart(8) 1053
cifsd � SMB network daemon cifsd(8) 938

/s_array, s_copy, s_error, s_free, s_incref, s_memappend, s_nappend, s_new,/ string(2) 630
print, fprint, sprint, snprint, seprint, smprint, runesprint, runesnprint, runeseprint,/ print(2) 576

smtp, smtpd � mail transport smtp(8) 1054
smtpd � SMTP listener configuration smtpd(6) 890
snap � process snapshots snap(6) 892

snap, snapfs � create and mount process snapshots . snap(4) 810
/s_error, s_free, s_incref, s_memappend, s_nappend, s_new, s_newalloc, s_parse,/ string(2) 630

snap � process snapshots . snap(6) 892
gb, gba, nes, snes � emulators . nintendo(1) 201

/s_incref, s_memappend, s_nappend, s_new, s_newalloc, s_parse, s_reset, s_restart,/ string(2) 630
snoopy � spy on network packets snoopy(8) 1056

runesnprint, runeseprint,/ print, fprint, sprint, snprint, seprint, smprint, runesprint, print(2) 576
print formatted output . fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf, vsnprintf � . fprintf(2) 474
daemons telnetd, rlogind, rexexec, ftpd, socksd, hproxy � Internet remote access ipserv(8) 984

realemu � software emulation of /dev/realmode realemu(8) 1037
mandel, mahjongg, memo, midi, mole, packet, sokoban, sudoku � time wasters . /juggle, life, games(1) 109

satreset, satfree � boolean satisfiability (SA) solver . /satrangev, satsolve, satmore, satval, sat(2) 607
fopen, freopen, fdopen, fileno, fclose, sopenr, sopenw, sclose, fflush, setvbuf, setbuf,/ fopen(2) 469

qsort � quicker sort . qsort(2) 587
sort � sort and/or merge files sort(1) 275

comm � select or reject lines common to two sorted files . comm(1) 52
look � find lines in a sorted list . look(1) 167

� synchronize the system clock to a time source . timesync timesync(8) 1064
src, Bfn � find source code for executable src(1) 282
hg � Mercurial source code management system hg(1) 123

bind, mount, unmount � change name space . bind(1) 36
bind, mount, unmount � change name space . bind(2) 388

� structure of conventional file name space . namespace namespace(4) 791
ns � display name space . ns(1) 204

pipefile � attach filter to file in name space . pipefile(1) 221
namespace � name space description file namespace(6) 878

import � import a name space from a remote system import(4) 784
scanmail, testscan � spam filters . scanmail(8) 1043

/s_memappend, s_nappend, s_new, s_newalloc, s_parse, s_reset, s_restart, s_terminate,/ string(2) 630
arch � specific information and control arch(3) 675

light, pencal, keyboard, params, prompter � specific utilities bitsyload, bitsyload(1) 38
spell, sprog � find spelling errors spell(1) 277

concurrent systems . spin - verification tool for models of spin(1) 278
/rsleep, rwakeup, rwakeupall, incref, decref � spin locks, queueing rendezvous locks,/ lock(2) 526

interrupts . splhi, spllo, splx, islo � enable and disable . . . splhi(9) 1105
split � split a file into pieces split(1) 280

frexp, ldexp, modf � split into mantissa and exponent frexp(2) 480
splitmbox � split a mailbox into mdir format . . splitmbox(8) 1058

splhi, spllo, splx, islo � enable and disable interrupts splhi(9) 1105
qer, runq � queue management for spooled files . qer(8) 1033

spred � sprite editor spred(1) 281
runesnprint, runeseprint,/ print, fprint, sprint, snprint, seprint, smprint, runesprint, . . print(2) 576
vsnprintf � print formatted/ . . . fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf, . . . fprintf(2) 474

spred � sprite editor . spred(1) 281
spell, sprog � find spelling errors spell(1) 277

/s_reset, s_restart, s_terminate, s_tolower, s_putc, s_unique, s_grow, s_read, s_read_line,/ string(2) 630

42-i

Permuted Index

snoopy � spy on network packets snoopy(8) 1056
root exp, log, log10, pow, pow10, sqrt � exponential, logarithm, power, square . . exp(2) 455
fastrand,/ . . rand, lrand, frand, nrand, lnrand, srand, truerand, ntruerand, genrandom, prng, rand(2) 591

src, Bfn � find source code for executable src(1) 282
strings . /s_tolower, s_putc, s_unique, s_grow, s_read, s_read_line, s_getline � extensible string(2) 630

/s_tolower, s_putc, s_unique, s_grow, s_read, s_read_line, s_getline � extensible strings string(2) 630
/s_nappend, s_new, s_newalloc, s_parse, s_reset, s_restart, s_terminate, s_tolower,/ . . . string(2) 630

srv � server registry . srv(3) 733
erealloc9p, estrdup9p, listensrv,/ Srv, chatty9p, dirread9p, emalloc9p, 9p(2) 349

srv, srvtls, 9fs � start network file service srv(4) 811
exportfs, srvfs � file server plumbing exportfs(4) 767

readstr, respond, responderror, srvacquire, srvrelease, threadlistensrv,/ /readbuf, 9p(2) 349
srv, srvtls, 9fs � start network file service srv(4) 811

ssam � stream interface to sam ssam(1) 283
fscanf, scanf, sscanf, vfscanf � scan formatted input fscanf(2) 481

ssh - secure shell remote login client ssh(1) 284
sshfs - secure file transfer protocol client sshfs(4) 812
sshnet - secure file transfer protocol client . . . sshnet(4) 813
ssl � SSL record layer ssl(3) 734

channel pushssl � attach SSL version 2 encryption to a communication . pushssl(2) 582
/readcert, readcertchain � attach TLS1 or SSL3 encryption to a communication channel . pushtls(2) 583

tls � TLS and SSL3 record layer . tls(3) 737
ktrace � interpret kernel stack dumps . ktrace(1) 161

- single and triple digital encryption standard /triple_block_cipher des(2) 425
/fsetpos, fseek, rewind, feof, ferror, clearerr � standard buffered input/output package fopen(2) 469

/advanced encryption standard (rijndael) . aes(2) 365
processes . stop, start � print commands to stop and start stop(1) 285

srv, srvtls, 9fs � start network file service srv(4) 811
nusbrc - Universal Serial Bus startup script . nusbrc(8) 1010

dirwstat, dirfwstat, nulldir � get and put file/ . stat, fstat, wstat, fwstat, dirstat, dirfstat, stat(2) 626
stat, wstat � inquire or change file attributes . . stat(5) 842

/fcallfmt, dirfmt, dirmodefmt, read9pmsg, statcheck, sizeS2M, sizeD2M � interface to/ . . fcall(2) 457
swap � memory usage statistics and swap file control swap(3) 736

memory � print memory statistics in human-readable format memory(8) 991
stats � display graphs of system activity stats(8) 1059

ps, psu, pstree � process status . ps(1) 229
dirwstat, dirfwstat, nulldir � get and put file status . . /fstat, wstat, fwstat, dirstat, dirfstat, stat(2) 626

test � set status according to condition test(1) 301
debug,/ . changeuser, convkeys, printnetkey, status, enable, disable, authsrv, guard.srv, . . . auth(8) 930
status message window statusbar, statusmsg � display a bar graph or . statusbar(8) 1061

ungetc, fgets, gets, fputs, puts, fread, fwrite � Stdio input and output . /fputc, putc, putchar, fgetc(2) 461
tmpfile, tmpnam � Stdio temporary files tmpfile(2) 647

/s_parse, s_reset, s_restart, s_terminate, s_tolower, s_putc, s_unique, s_grow, s_read,/ . string(2) 630
processes . stop, start � print commands to stop and start stop(1) 285

Host Controller Interface) SATA (Serial AT) storage device drivers . . . /� AHCI (Advanced sdahci(3) 725
sd � storage device interface sd(3) 723

sdaoe � ATA-over-Ethernet (Ao) storage device interface sdaoe(3) 727
sdloop � loopback storage device interface sdloop(3) 728

privalloc � per-process private storage management privalloc(2) 579
venti � archival storage server . venti(2) 650
venti � archival storage server . venti(6) 897
venti � archival storage server . venti(8) 1071

strncpy, strecpy, strlen,/ strcat, strncat, strcmp, strncmp, cistrcmp, cistrncmp, strcpy, . strcat(2) 628
/strecpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok, strdup, strstr, cistrstr � string/ strcat(2) 628

sed � stream editor . sed(1) 267
ssam � stream interface to sam ssam(1) 283

bullshit � assemble a stream of bullshit from words in a file bullshit(1) 40
/strncmp, cistrcmp, cistrncmp, strcpy, strncpy, strecpy, strlen, strchr, strrchr, strpbrk,/ strcat(2) 628

/stringnbg, runestringbg, runestringnbg, _string, ARROW, drawsetdebug � graphics/ . . . draw(2) 432
getfields, gettokens, tokenize � break a string into fields . getfields(2) 488

runestrrchr, runestrdup, runestrstr � rune string operations . . . /runestrlen, runestrchr, runestrcat(2) 605
strspn, strcspn, strtok, strdup, strstr, cistrstr � string operations . . . /strchr, strrchr, strpbrk, strcat(2) 628

string, stringn, runestring, runestringn, stringbg, stringnbg, runestringbg,/ . /border, draw(2) 432
runestringnwidth �/ . . stringsize, stringwidth, stringnwidth, runestringsize, runestringwidth, stringsize(2) 632

encodefmt � encoding byte arrays as strings /enc32chr, dec16chr, enc16chr, encode(2) 445
doquote, needsrcquote � quoted character strings . . . /quoterunestrfmt, quotefmtinstall, quote(2) 590
s_read, s_read_line, s_getline � extensible strings . /s_tolower, s_putc, s_unique, s_grow, string(2) 630

strings � extract printable strings strings(1) 286
runestringsize, runestringwidth,/ stringsize, stringwidth, stringnwidth, stringsize(2) 632

/readsubfont, readsubfonti, writesubfont, stringsubfont, strsubfontwidth, mkfont �/ . . . subfont(2) 633
strip � remove symbols from binary files strip(1) 287

basename � strip file name affixes basename(1) 33
cistrncmp, strcpy, strncpy, strecpy,/ . . strcat, strncat, strcmp, strncmp, cistrcmp, strcat(2) 628
/strcpy, strncpy, strecpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok, strdup, strstr,/ strcat(2) 628

43-i

Permuted Index

/readsubfonti, writesubfont, stringsubfont, strsubfontwidth, mkfont � subfont/ subfont(2) 633
/openfont, buildfont, freefont, Pfmt, Rfmt, strtochan, chantostr, chantodepth �/ graphics(2) 492

text to/ atof, atoi, atol, atoll, charstod, strtod, strtol, strtoll, strtoul, strtoull � convert . atof(2) 378
/ecdominit, ecdomfree, ecassign, ecadd, ecmul, strtoec, ecgen, ecverify, ecpubverify,/ ec(2) 441
/strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok, strdup, strstr, cistrstr � string/ strcat(2) 628

atof, atoi, atol, atoll, charstod, strtod, strtol, strtoll, strtoul, strtoull � convert text to/ atof(2) 378
/mpcopy, mpassign, mprand, mpnrand, strtomp, mpfmt, mptoa, betomp, mptobe,/ . . . mp(2) 547

B, sam.save, samterm � screen editor with structural regular expressions sam, sam(1) 258
lookupkey, deletekey � integer to data structure maps /insertkey, caninsertkey, intmap(2) 515

namespace � structure of conventional file name space namespace(4) 791
stub � provide mount point stubs stub(8) 1062
style � Plan 9 coding conventions for C style(6) 893

archfs � mount style archive . archfs(4) 753
dot3, cross3, len3, dist3, unit3,/ add3, sub3, neg3, div3, mul3, eqpt3, closept3, arith3(2) 375

/vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, add4, sub4 � operations on 3-d points and planes . . arith3(2) 375
subfonts . font, subfont � external format for fonts and font(6) 859

tweak � edit image files, subfont files, face files, etc. tweak(1) 318
cachechars, agefont, loadchar, Subfont, Fontchar, Font � font utilities cachechars(2) 395

/lookupsubfont, uninstallsubfont, subfontname, readsubfont, readsubfonti,/ . . . subfont(2) 633
font, subfont � external format for fonts and subfonts . font(6) 859

insetrect, canonrect, eqpt, eqrect,/ . . . addpt, subpt, mulpt, divpt, rectaddpt, rectsubpt, addpt(2) 363
memo, midi, mole, packet, sokoban, sudoku � time wasters . . /mandel, mahjongg, games(1) 109

blocks in a file . sum, md5sum, sha1sum � sum and count sum(1) 288
nfs � Sun network file system client nfs(4) 794

/mp3enc, oggdec, oggenc, flacdec, flacenc, sundec, wavdec, pcmconv, mixfs � decode/ . . audio(1) 26
/s_restart, s_terminate, s_tolower, s_putc, s_unique, s_grow, s_read, s_read_line,/ string(2) 630
/runefmtstrinit, runefmtstrflush, errfmt � support for user-defined print formats and/ . . fmtinstall(2) 466

scat � sky catalogue and Digitized Sky Survey . scat(7) 915
sleep � suspend execution for an interval sleep(1) 274

swap � establish a swap file swap(8) 1063
control . swap � memory usage statistics and swap file . swap(3) 736

� show a list of available keyboard maps and switch between them. kbmap kbmap(1) 159
lookup, findlocal, getauto,/ . syminit, getsym, symbase, pc2sp, pc2line, textseg, line2addr, . symbol(2) 635

na � assembler for the Symbios Logic PCI-SCSI I/O Processors na(8) 999
nm � name list symbol table) . nm(1) 203
strip � remove symbols from binary files strip(1) 287

textseg, line2addr, lookup, findlocal,/ syminit, getsym, symbase, pc2sp, pc2line, . . . symbol(2) 635
/risctrace, ciscframe, riscframe, localaddr, symoff, fpformat, beieee80ftos, beieeesftos,/ . debugger(2) 422

rlock, runlock, wlock, wunlock � serial synchronisation . . . qlock, qunlock, canqlock, qlock(9) 1099
sleep, wakeup, tsleep, return0 � process synchronisation . sleep(9) 1104

rendezvous � user level process synchronization . rendezvous(2) 600
source . timesync � synchronize the system clock to a time timesync(8) 1064
/conf, fmtarenas, fmtbloom, fmtindex, fmtisect, syncindex � prepare and maintain a venti/ . . . venti-fmt(8) 1076

hgignore � syntax for Mercurial ignore files hgignore(8) 961
syscall � test a system call syscall(1) 289

about, update the system sysinfo, sysupdate � report information sysinfo(1) 290
perror, syslog, sysfatal � system error messages perror(2) 567

getuser, sysname � get user or system name getuser(2) 490
disc (CD, DVD, B) track reader and writer file system cdfs, cddb � optical cdfs(4) 755

cfs � cache file system . cfs(4) 757
ext2srv � ext2 file system . ext2srv(4) 769

and optionally shut down or reboot the system . . /reboot � halt any local file systems fshalt(8) 956
ftpfs � file transfer protocol (FT) file system . ftpfs(4) 778

hg � Mercurial source code management system . hg(1) 123
hgfs � mercurial file system . hgfs(4) 780

import � import a name space from a remote system . import(4) 784
lnfs � long name file system . lnfs(4) 789

mkfs, mkext � archive or update a file system . mkfs(8) 995
mkpaqfs � make a compressed read-only file system . mkpaqfs(8) 996

mksacfs � make a compressed file system . mksacfs(8) 997
� network news transport protocol (NNT) file system . nntpfs nntpfs(4) 796

paqfs � compressed read-only file system . paqfs(4) 800
patch � simple patch creation and tracking system . patch(1) 212

playlistfs � playlist file system . playlistfs(7) 914
ramfs � memory file system . ramfs(4) 803

ratfs � mail address ratification file system . ratfs(4) 804
rdbfs � remote kernel debugging file system . rdbfs(4) 805

rio, label, window, wloc � window system . rio(1) 250
root � the root file system . root(3) 721

sacfs � compressed file system . sacfs(4) 809
� report information about, update the system sysinfo, sysupdate sysinfo(1) 290

tftpfs � trivial file transfer protocol (TFT) file system . tftpfs(4) 817
truetypefs � TrueType font file system . truetypefs(4) 818

vacfs � a Venti-based file system . vacfs(4) 822

44-i

Permuted Index

wadfs � WAD file system . wadfs(4) 823
webfs � world wide web file system . webfs(4) 826

wikifs, wikipost � wiki file system . wikifs(4) 828
stats � display graphs of system activity . stats(8) 1059

intro � introduction to system administration intro(8) 918
syscall � test a system call . syscall(1) 289

errstr, rerrstr, werrstr � description of last system call error . errstr(2) 448
ratrace � trace process system calls . ratrace(1) 238
nfs � Sun network file system client . nfs(4) 794

timesync � synchronize the system clock to a time source timesync(8) 1064
cmd � interface to host operating system commands . cmd(3) 681

fs � file system devices . fs(3) 695
perror, syslog, sysfatal � system error messages perror(2) 567

rio � window system files . rio(4) 806
consolefs, C, clog � file system for console access consolefs(4) 760
flashfs � journalling file system for flash memory flashfs(4) 775

mkflashfs � make a journalling file system for flash memory mkflashfs(8) 994
plumber � file system for interprocess messaging plumber(4) 801

uptime � show how long the system has been running uptime(1) 323
getuser, sysname � get user or system name . getuser(2) 490

iostats � file system to measure I/O iostats(4) 786
fstype � determine file system type . fstype(1) 106

connection reboot � reboot the system upon loss of remote file server reboot(8) 1038
aliasmail � expand system wide mail aliases aliasmail(8) 926

9660srv, dosmnt, eject � DOS and ISO9660 file systems . dossrv, dossrv(4) 765
� automatically generate mount points for file systems . mntgen mntgen(4) 790

- verification tool for models of concurrent systems . spin spin(1) 278
tpfs, v6fs, v10fs, zipfs � mount archival file systems 32vfs, cpiofs, tapfs, tarfs, tapefs(4) 814

the/ . fshalt, scram, reboot � halt any local file systems and optionally shut down or reboot . . fshalt(8) 956
the system . sysinfo, sysupdate � report information about, update . sysinfo(1) 290

nm � name list (symbol table) . nm(1) 203
fileelem, filesym, fileline, fnbound � symbol table access functions /textsym, file2pc, symbol(2) 635

tbl � format tables for nroff or troff tbl(1) 295
tail � deliver the last part of a file tail(1) 291

functions . sin, cos, tan, asin, acos, atan, atan2 � trigonometric . . . sin(2) 623
sinh, cosh, tanh � hyperbolic functions sinh(2) 624

tap � follow the pipes of a process tap(1) 292
tar, dircp � archiver . tar(1) 293

file systems 32vfs, cpiofs, tapfs, tarfs, tpfs, v6fs, v10fs, zipfs � mount archival . tapefs(4) 814
vblade � virtual AoE target . vblade(8) 1070

atazz � ATA target control . atazz(8) 928
scuzz � SCSI target control . scuzz(8) 1047

/freedocinfo, dimenkind, dimenspec, targetid, targetname, fromStr, toStr � HTML parser html(2) 496
tbl � format tables for nroff or troff tbl(1) 295

ip, esp, gre, icmp, icmpv6, ipmux, rudp, tcp, udp, il � network protocols over IP ip(3) 698
/tcp7, tcp9, tcp19, tcp21, tcp23, tcp25, tcp53, tcp110, tcp113, tcp143, tcp445, tcp513,/ listen(8) 988

/tcp19, tcp21, tcp23, tcp25, tcp53, tcp110, tcp113, tcp143, tcp445, tcp513, tcp515,/ listen(8) 988
/tcp566, tcp567, tcp993, tcp995, tcp1723, tcp17007, tcp17008, tcp17009, tcp17010,/ . . listen(8) 988

/tcp17007, tcp17008, tcp17009, tcp17010, tcp17013, tcp17019, tcp17020 � listen for/ . . listen(8) 988
/tcp565, tcp566, tcp567, tcp993, tcp995, tcp1723, tcp17007, tcp17008, tcp17009,/ . . . listen(8) 988

tcp113, tcp143,/ . . listen, listen1, tcp7, tcp9, tcp19, tcp21, tcp23, tcp25, tcp53, tcp110, . . . listen(8) 988
/tcp23, tcp25, tcp53, tcp110, tcp113, tcp143, tcp445, tcp513, tcp515, tcp564, tcp565,/ listen(8) 988

/tcp445, tcp513, tcp515, tcp564, tcp565, tcp566, tcp567, tcp993, tcp995, tcp1723,/ . . . listen(8) 988
tcp110, tcp113, tcp143,/ listen, listen1, tcp7, tcp9, tcp19, tcp21, tcp23, tcp25, tcp53, . listen(8) 988

/tcp515, tcp564, tcp565, tcp566, tcp567, tcp993, tcp995, tcp1723, tcp17007,/ listen(8) 988
tcs � translate character sets tcs(1) 297
tee � pipe fitting . tee(1) 299
tel, iwhois � look in phone book tel(1) 300

telco, faxreceive, faxsend, fax, telcofax, telcodata � telephone dialer network telco(4) 815
execution, and XMODEM file transfer . . . con, telnet, rx, hayes, xms, xmr � remote login, . . . con(1) 53
hproxy � Internet remote access daemons telnetd, rlogind, rexexec, ftpd, socksd, ipserv(8) 984

tmpfile, tmpnam � Stdio temporary files . tmpfile(2) 647
screenlock � disable access to a terminal . screenlock(8) 1046

vt � emulate a VT-100 or VT-220 terminal . vt(1) 333
exits, _exits, atexit, atexitdont, terminate � terminate process, process cleanup exits(2) 454

pexit, postnote � kernel process creation, termination and interruption kproc, kproc(9) 1094
cpurc, cpurc.local, termrc, termrc.local � boot scripts cpurc(8) 940

test � set status according to condition test(1) 301
syscall � test a system call . syscall(1) 289

scanmail, testscan � spam filters scanmail(8) 1043
frdrawsel, frdrawsel0, frgetmouse � frames of text . . /frdelete, frselect, frtick, frselectpaint, frame(2) 477

ed � text editor . ed(1) 85
hold � simple text editor . hold(1) 149

fmt, htmlfmt � simple text formatters . fmt(1) 100

45-i

Permuted Index

troff, nroff, dpost � text formatting and typesetting troff(1) 314
/msexceltables � extract printable text from Microsoft documents doc2txt(1) 77

troff2png, troff2gif � miscellaneous text processing tools troff2png(1) 317
strtod, strtol, strtoll, strtoul, strtoull � convert text to numbers . . /atoi, atol, atoll, charstod, atof(2) 378

9pcon � 9P to text translator . 9pcon(8) 923
acme, win � interactive text windows . acme(1) 16
acme � control files for text windows . acme(4) 750

syminit, getsym, symbase, pc2sp, pc2line, textseg, line2addr, lookup, findlocal, getauto,/ symbol(2) 635
/getauto, findsym, localsym, globalsym, textsym, file2pc, fileelem, filesym, fileline,/ . . symbol(2) 635

dhcpd, dhcp6d, dhcpleases, rarpd, tftpd � Internet booting dhcpd(8) 943
system . tftpfs � trivial file transfer protocol (TFT) file . . tftpfs(4) 817

jpg, gif, png, tif, ppm, bmp, v210, yuv, ico, tga, tojpg, togeordi, togif, toppm, topng,/ . . . jpg(1) 156
venti arenas to blu-ray discs or restore from them /dumparenas, restore � backup backup(8) 932
available keyboard maps and switch between them. kbmap � show a list of kbmap(1) 159

fortune, theo, troll � sample lines from a file fortune(1) 103
thesaurus � search online thesaurus thesaurus(1) 303

/nbrecvul, nbsend, nbsendp, nbsendul, threadcreate, threaddata, threadexits,/ thread(2) 638
iosleep, iowrite � slave I/O processes for threaded programs . /ioproc, ioread, ioreadn, ioproc(2) 516

/threadcreate, threaddata, threadexits, threadexitsall, threadgetgrp, threadgetname,/ thread(2) 638
/threadkillgrp, threadmain, threadnotify, threadid, threadpid, threadsetgrp,/ thread(2) 638

/threadexitsall, threadgetgrp, threadgetname, threadint, threadintgrp, threadkill,/ thread(2) 638
threadid,/ /threadint, threadintgrp, threadkill, threadkillgrp, threadmain, threadnotify, thread(2) 638

/threadlistensrv, threadpostmountsrv, threadpostsharesrv, srv � 9P file service 9p(2) 349
thread/ . . /threadid, threadpid, threadsetgrp, threadsetname, threadwaitchan, yield � thread(2) 638

and run automatic or manual tunnel of IPv6 through IPv4 6in4, ayiya - configure 6in4(8) 919
tput � measure read throughput . tput(1) 311

thumbprint � public key thumbprints thumbprint(6) 894
TK2SEC � kernel times and time/ . . . seconds, ticks, fastticks, HZ, MS2HZ, MS2TK, TK2MS, . . seconds(9) 1103
togeordi, togif, toppm, topng,/ . jpg, gif, png, tif, ppm, bmp, v210, yuv, ico, tga, tojpg, jpg(1) 156

asctime, tm2sec, timezone � convert date and time ctime, localtime, gmtime, ctime(2) 419
date, clock � date and time . date(1) 60

mtime � print file modification time . mtime(1) 190
tmparse, tmfmt, tmnorm - convert date and time tmnow, tzload, tmtime, tmdate(2) 643

time � time a command time(1) 304
gpsfs, gpsevermore � GPS time and position service gpsfs(8) 959

rtc � time clock and non-volatile RAM rtc(3) 722
MS2TK, TK2MS, TK2SEC � kernel times and time conversions /fastticks, HZ, MS2HZ, seconds(9) 1103

cputime, times, cycles � cpu time in this process and children cputime(2) 418
nanoseconds since epoch time, nsec � time in seconds and time(2) 642

trace � show time) process behavior trace(1) 313
timesync � synchronize the system clock to a time source . timesync(8) 1064
seconds � convert human-readable date (and time) to seconds since epoch seconds(1) 264

memo, midi, mole, packet, sokoban, sudoku � time wasters /life, mandel, mahjongg, games(1) 109
timing diagrams . timepic � troff preprocessor for drawing timepic(1) 305

HZ, MS2HZ, MS2TK, TK2MS, TK2SEC � kernel times and time conversions . /ticks, fastticks, seconds(9) 1103
children . cputime, times, cycles � cpu time in this process and . . cputime(2) 418
time source . timesync � synchronize the system clock to a . timesync(8) 1064

ctime, localtime, gmtime, asctime, tm2sec, timezone � convert date and time ctime(2) 419
timepic � troff preprocessor for drawing timing diagrams . timepic(1) 305

timmy � physics sandbox timmy(1) 306
tinc - mesh peer to peer VPN tinc(8) 1065
tinyurl � shrink a URL tinyurl(1) 307

/ticks, fastticks, HZ, MS2HZ, MS2TK, TK2MS, TK2SEC � kernel times and time conversions . . seconds(9) 1103
tls � TLS and SSL3 record layer tls(3) 737

tlssrv, tlsclient, tlssrvtunnel, tlsclienttunnel � TLS server and client tlssrv(8) 1066
okThumbprint,/ pushtls, tlsClient, tlsServer, initThumbprints, freeThumbprints, . pushtls(2) 583

ctime, localtime, gmtime, asctime, tm2sec, timezone � convert date and time . . . ctime(2) 419
tmpfile, tmpnam � Stdio temporary files tmpfile(2) 647

date and time tmnow, tzload, tmtime, tmparse, tmfmt, tmnorm - convert . . . tmdate(2) 643
ASCII/ /ispunct, isprint, isgraph, iscntrl, isascii, toascii, _toupper, _tolower, toupper, tolower � ctype(2) 421
venti arenas to blu-ray discs or/ backup, tobackup, dumparenas, restore � backup backup(8) 932

dpic, todpic � Doom picture decoder and encoder . . dpic(1) 79
/ppm, bmp, v210, yuv, ico, tga, tojpg, togeordi, togif, toppm, topng, totif, toico � view and/ . . jpg(1) 156

filter, list, deliver, token, vf � filtering mail filter(1) 98
getfields, gettokens, tokenize � break a string into fields getfields(2) 488

/isgraph, iscntrl, isascii, toascii, _toupper, _tolower, toupper, tolower � ASCII character/ . ctype(2) 421
Unicode/ /istitlerune, isupperrune, isdigitrune, tolowerrune, totitlerune, toupperrune � isalpharune(2) 522

spin - verification tool for models of concurrent systems spin(1) 278
at, drain, expect, pass � dialer scripting tools . expect(1) 92

troff2gif � miscellaneous text processing tools . troff2png, troff2png(1) 317
/bmp, v210, yuv, ico, tga, tojpg, togeordi, togif, toppm, topng, totif, toico � view and convert/ . jpg(1) 156
window/ . /bottomwindow, bottomnwindows, topwindow, topnwindows, originwindow � . . . window(2) 668

torrent � bittorrent client torrent(1) 308
exec, execl, _privates, _nprivates, _tos � execute a file . exec(2) 452

46-i

Permuted Index

dimenspec, targetid, targetname, fromStr, toStr � HTML parser /freedocinfo, dimenkind, html(2) 496
ico, tga, tojpg, togeordi, togif, toppm, topng, totif, toico � view and convert pictures . /yuv, jpg(1) 156

/isupperrune, isdigitrune, tolowerrune, totitlerune, toupperrune � Unicode character/ . isalpharune(2) 522
touch � set modification date of a file touch(1) 310

/ispunct, isprint, isgraph, iscntrl, isascii, toascii, _toupper, _tolower, toupper, tolower � ASCII/ . ctype(2) 421
cases . . /isdigitrune, tolowerrune, totitlerune, toupperrune � Unicode character classes and . isalpharune(2) 522
systems 32vfs, cpiofs, tapfs, tarfs, tpfs, v6fs, v10fs, zipfs � mount archival file . . tapefs(4) 814

prof, tprof, kprof � display profiling data prof(1) 226
tput � measure read throughput tput(1) 311
tr � translate characters tr(1) 312
trace � show (real-time) process behavior trace(1) 313

ratrace � trace process system calls ratrace(1) 238
ping, gping, traceroute, hogports � probe the Internet ping(8) 1015

dtracy � dynamic tracing language . dtracy(1) 80
cdfs, cddb � optical disc (CD, DVD, B) track reader and writer file system cdfs(4) 755

fedex, ups, usps � track shipments . fedex(1) 96
lookupreq, removereq � 9P fid, request tracking /freereqpool, allocreq, closereq, 9pfid(2) 355

patch � simple patch creation and tracking system . patch(1) 212
another address . trampoline � forward incoming calls to trampoline(8) 1068

� remote login, execution, and XMODEM file transfer con, telnet, rx, hayes, xms, xmr con(1) 53
read, write � transfer data from and to a file read(5) 840

sshfs - secure file transfer protocol client sshfs(4) 812
sshnet - secure file transfer protocol client sshnet(4) 813

ftpfs � file transfer protocol (FT) file system ftpfs(4) 778
tftpfs � trivial file transfer protocol (TFT) file system tftpfs(4) 817

ixform, persp, look, viewport � Geometric transformations . . /qrot, scale, move, xform, matrix(2) 534
tcs � translate character sets tcs(1) 297
tr � translate characters . tr(1) 312

9pcon � 9P to text translator . 9pcon(8) 923
closefile, removefile, walkfile, opendirfile,/ . . . Tree, alloctree, freetree, File, createfile, 9pfile(2) 357

avlnext, avlprev � Balanced binary search tree routines . /avlinsert, avldelete, avllookup, avl(2) 385
sin, cos, tan, asin, acos, atan, atan2 � trigonometric functions sin(2) 623

/readblist, concatblock, copyblock, trimblock, packblock, padblock, pullblock,/ . . allocb(9) 1085
/des56to64, des64to56, setupDES3state, triple_block_cipher - single and triple digital/ . des(2) 425

tftpfs � trivial file transfer protocol (TFT) file system . . tftpfs(4) 817
tbl � format tables for nroff or troff . tbl(1) 295

typesetting . troff, nroff, dpost � text formatting and troff(1) 314
proof � troff output interpreter proof(1) 228

troff2html � convert troff output into HTML troff2html(1) 316
pic � troff preprocessor for drawing pictures pic(1) 218

diagrams . timepic � troff preprocessor for drawing timing timepic(1) 305
troff2html � convert troff output into HTML . . troff2html(1) 316

processing tools . troff2png, troff2gif � miscellaneous text troff2png(1) 317
ms2html, html2ms � convert between troff�s ms macros and html ms2html(1) 189

fortune, theo, troll � sample lines from a file fortune(1) 103
rand, lrand, frand, nrand, lnrand, srand, truerand, ntruerand, genrandom, prng,/ rand(2) 591

ttfnewbitmap, ttffreebitmap, ttfblit � TrueType renderer . /ttfrender, ttfrunerender, ttf(2) 648
truetypefs � TrueType font file system truetypefs(4) 818

acid, truss, trump � debugger . acid(1) 12
zerotrunc � truncate input on zero byte zerotrunc(8) 1083

vtzeroextend, vtzeroscore � Venti block truncation vtzerotruncate, venti-zero(2) 666
acid, truss, trump � debugger acid(1) 12

semaphores semacquire, tsemacquire, semrelease - user level semacquire(2) 621
sleep, wakeup, tsleep, return0 � process synchronisation sleep(9) 1104

ttfrunerender, ttfnewbitmap, ttffreebitmap, ttfblit � TrueType renderer /ttfrender, ttf(2) 648
ttfputglyph, ttfgetcontour,/ . ttfopen, ttfscale, ttfclose, ttffindchar, ttfenumchar, ttfgetglyph, . ttf(2) 648

/ttfrender, ttfrunerender, ttfnewbitmap, ttffreebitmap, ttfblit � TrueType renderer ttf(2) 648
/ttfenumchar, ttfgetglyph, ttfputglyph, ttfgetcontour, ttfrender, ttfrunerender,/ ttf(2) 648

/ttfgetcontour, ttfrender, ttfrunerender, ttfnewbitmap, ttffreebitmap, ttfblit �/ ttf(2) 648
ttfenumchar, ttfgetglyph, ttfputglyph,/ ttfopen, ttfscale, ttfclose, ttffindchar, ttf(2) 648

/ttfgetglyph, ttfputglyph, ttfgetcontour, ttfrender, ttfrunerender, ttfnewbitmap,/ ttf(2) 648
ttfgetglyph, ttfputglyph,/ ttfopen, ttfscale, ttfclose, ttffindchar, ttfenumchar, . . . ttf(2) 648
ayiya - configure and run automatic or manual tunnel of IPv6 through IPv4 6in4, 6in4(8) 919

files, etc. tweak � edit image files, subfont files, face . . . tweak(1) 318
inter-integrated circuit (I²C) interface twsi - two-wire serial interface (TWS) and twsi(3) 739

file � determine file type . file(1) 97
fstype � determine file system type . fstype(1) 106

keyboard � how to type characters . keyboard(6) 866
dmid � MIDI to OPL3 converter using type instrument banks dmid(1) 76

man � macros to typeset manual . man(6) 869
eqn � typeset mathematics eqn(1) 90

view FAX, image, graphic, PostScript, PDF, and typesetter output files page � page(1) 208
htmlroff � HTML formatting and typesetting . htmlroff(1) 150
htmlroff � HTML formatting and typesetting . htmlroff(6) 861

47-i

Permuted Index

troff, nroff, dpost � text formatting and typesetting . troff(1) 314
mnihongo � macros for typesetting Japanese mnihongo(6) 874

convert date and time tmnow, tzload, tmtime, tmparse, tmfmt, tmnorm - . . . tmdate(2) 643
uart, eia � serial communication control uart(3) 740

ip, esp, gre, icmp, icmpv6, ipmux, rudp, tcp, udp, il � network protocols over IP ip(3) 698
udpecho � echo UDP packets udpecho(8) 1069

file to unicode . uhtml � convert foreign character set HTML . . uhtml(1) 320
/mptober, letomp, mptole, mptolel, mptoui, uitomp, mptoi, itomp, uvtomp, mptouv,/ mp(2) 547

leak, kmem, umem � help find memory leaks leak(1) 162
division . muldiv, umuldiv � high-precision multiplication and . . muldiv(2) 552

gzip, gunzip, bzip2, bunzip2, compress, uncompress, zip, unzip � compress and/ gzip(1) 121
lock � run a command under lock . lock(1) 166

fgetc, getc, getchar, fputc, putc, putchar, ungetc, fgets, gets, fputs, puts, fread, fwrite �/ fgetc(2) 461
internationalized domain names to and from unicode utf2idn, idn2utf � convert idn(2) 514

� convert foreign character set HTML file to unicode . uhtml uhtml(1) 320
ascii, unicode � interpret ASCII, Unicode characters . ascii(1) 24

format . UTF, Unicode, ASCII, rune � character set and utf(6) 896
/tolowerrune, totitlerune, toupperrune � Unicode character classes and cases isalpharune(2) 522

ascii, unicode � interpret ASCII, Unicode characters . ascii(1) 24
/freesubfont, installsubfont, lookupsubfont, uninstallsubfont, subfontname, readsubfont,/ . subfont(2) 633

uniq � report repeated lines in a file uniq(1) 321
mktemp � make a unique file name . mktemp(2) 544

iounit � return size of atomic I/O unit for file descriptor iounit(2) 518
/eqpt3, closept3, dot3, cross3, len3, dist3, unit3, midpt3, lerp3, reflect3, nearseg3,/ arith3(2) 375

units � conversion program units(1) 322
audio, disk, ether, kb, serial, ptp, usbd - Universal Serial Bus drivers nusb(4) 797

nusbrc - Universal Serial Bus startup script nusbrc(8) 1010
/setalpha, loadimage, cloadimage, unloadimage, readimage, writeimage,/ allocimage(2) 367

mempoly,/ /loadmemimage, cloadmemimage, unloadmemimage, memfillcolor, memarc, memdraw(2) 536
canrlock, runlock, wlock,/ lock, canlock, unlock, qlock, canqlock, qunlock, rlock, lock(2) 526
Pfmt,/ . . /flushimage, bufimage, lockdisplay, unlockdisplay, openfont, buildfont, freefont, . . graphics(2) 492

segattach, segdetach, segfree � unmap a segment in virtual memory segattach(2) 617
ml, mlmgr, mlowner � unmoderated mailing lists mlmgr(1) 185

bind, mount, unmount � change name space bind(1) 36
bind, mount, unmount � change name space bind(2) 388

quotestrfmt,/ quotestrdup, quoterunestrdup, unquotestrdup, unquoterunestrdup, quote(2) 590
loaddevstr, opendev, opendevdata, openep, unstall - USB device driver library . . . /getdev, nusb(2) 560

/machbyname, newmap, setmap, findseg, unusemap, loadmap, attachproc, get1, get2,/ . mach(2) 529
vac, unvac � create, extract a vac archive on Venti . vac(1) 324

bzip2, bunzip2, compress, uncompress, zip, unzip � compress and expand data . /gunzip, gzip(1) 121
upasfs � mail file server upasfs(4) 819

mkfs, mkext � archive or update a file system . mkfs(8) 995
sysinfo, sysupdate � report information about, update the system . sysinfo(1) 290

applychanges, applylog, compactdb, updatedb � simple client-server replica/ replica(8) 1039
init � initialize machine upon booting . init(8) 980

reboot � reboot the system upon loss of remote file server connection . . . reboot(8) 1038
fedex, ups, usps � track shipments fedex(1) 96

running . uptime � show how long the system has been . uptime(1) 323
tinyurl � shrink a URL . tinyurl(1) 307

corresponding to a/ . . hget, hpost, webpaste, urlencode � retrieve, post to a web page hget(1) 145
du � disk usage . du(1) 82

scripts . getflags, usage � command-line parsing for shell getflags(8) 957
swap � memory usage statistics and swap file control swap(3) 736

usb � USB Host Controller Interface usb(3) 741
devctl, getdev, loaddevstr, opendev,/ usbcmd, classname, closedev, configdev, nusb(2) 560

audio, disk, ether, kb, serial, ptp, usbd - Universal Serial Bus drivers nusb(4) 797
eve, iseve � privileged user . eve(9) 1091

newuser � adding a new user . newuser(8) 1006
cap � capabilities for setting the user id of processes . cap(3) 680

rendezvous � user level process synchronization rendezvous(2) 600
semacquire, tsemacquire, semrelease - user level semaphores semacquire(2) 621

users � file server user list format . users(6) 895
� console, clocks, process/process group ids, user, null, reboot, etc. cons cons(3) 683

getuser, sysname � get user or system name getuser(2) 490
passwd, netkey � change or verify user password . passwd(1) 211

/runefmtstrflush, errfmt � support for user-defined print formats and output/ fmtinstall(2) 466
5e � user-mode ARM emulation 5e(1) 10

factotum, fgui, userpasswd � authentication agent factotum(4) 770
auth_getinfo � routines for authenticating users /auth_getuserpasswd, auth(2) 379

users � file server user list format users(6) 895
dmid � MIDI to OPL3 converter using GENMIDI-type instrument banks dmid(1) 76

who, whois � who is using the machine . who(1) 338
fedex, ups, usps � track shipments fedex(1) 96

utflen, utfnlen, utfrune, utfrrune, utfutf � UTF conversion . /runenlen, fullrune, utfecpy, rune(2) 603

48-i

Permuted Index

format . UTF, Unicode, ASCII, rune � character set and . utf(6) 896
domain names to and from unicode utf2idn, idn2utf � convert internationalized . . . idn(2) 514

/runelen, runenlen, fullrune, utfecpy, utflen, utfnlen, utfrune, utfrrune, utfutf �/ . . . rune(2) 603
keyboard, params, prompter � bitsy-specific utilities bitsyload, light, pencal, bitsyload(1) 38

loadchar, Subfont, Fontchar, Font � font utilities cachechars, agefont, cachechars(2) 395
/mptolel, mptoui, uitomp, mptoi, itomp, uvtomp, mptouv, vtomp, mptov, mptod,/ mp(2) 547

32vfs, cpiofs, tapfs, tarfs, tpfs, v6fs, v10fs, zipfs � mount archival file systems tapefs(4) 814
toppm, topng,/ . jpg, gif, png, tif, ppm, bmp, v210, yuv, ico, tga, tojpg, togeordi, togif, jpg(1) 156

parseip, parseipmask, parseipandmask, v4parseip, parseether, myipaddr,/ . . . eipfmt, ip(2) 519
/maskip, equivip4, equivip6, defmask, isv4, v4tov6, v6tov4, nhgetv, nhgetl, nhgets,/ ip(2) 519

systems 32vfs, cpiofs, tapfs, tarfs, tpfs, v6fs, v10fs, zipfs � mount archival file tapefs(4) 814
/equivip4, equivip6, defmask, isv4, v4tov6, v6tov4, nhgetv, nhgetl, nhgets, hnputv,/ ip(2) 519

0a, 1a, 2a, 5a, 6a, 8a, ka, qa, va � assemblers . 2a(1) 4
Venti . vac, unvac � create, extract a vac archive on . . vac(1) 324

vacfs � a Venti-based file system vacfs(4) 822
dimenspec, targetid,/ . parsehtml, printitems, validitems, freeitems, freedocinfo, dimenkind, html(2) 496

env � environment variables . env(3) 690
getenv, putenv � access environment variables . getenv(2) 486

vblade � virtual AoE target vblade(8) 1070
0c, 1c, 2c, 5c, 6c, 7c, 8c, kc, qc, vc � C compilers . 2c(1) 5

/midpt3, lerp3, reflect3, nearseg3, pldist3, vdiv3, vrem3, pn2f3, ppp2f3, fff2p3, pdiv4,/ . arith3(2) 375
vac, unvac � create, extract a vac archive on Venti . vac(1) 324

venti � archival storage server venti(2) 650
venti � archival storage server venti(6) 897
venti � archival storage server venti(8) 1071

/tobackup, dumparenas, restore � backup venti arenas to blu-ray discs or restore from/ . backup(8) 932
vtglobaltolocal, vtlocaltoglobal � Venti block cache /vtcachesetwrite, venti-cache(2) 651

vtzerotruncate, vtzeroextend, vtzeroscore � Venti block truncation venti-zero(2) 666
vtsync, vtping, vtrpc, ventidoublechecksha1 � Venti client /vtreadpacket, vtwritepacket, venti-client(2) 653

read, write, copy � simple Venti clients . venti(1) 326
venti.conf � a venti configuration file venti.conf(6) 900

vtrootunpack, vtparsescore, vtscorefmt � venti data formats . . /vtputstring, vtrootpack, venti-fcall(2) 657
vtfiletruncate, vtfileunlock, vtfilewrite � Venti files /vtfilesetentry, vtfilesetsize, venti-file(2) 659
vtlogremove, vtlogopen, ventilogging � Venti logs /vtlogopen, vtlogprint, venti-log(2) 661

vtsend, vtrecv, vtversion, vtdebug, vthangup � Venti network connections /vtfreeconn, venti-conn(2) 655
fmtisect, syncindex � prepare and maintain a venti server /fmtarenas, fmtbloom, fmtindex, venti-fmt(8) 1076

vtsrvhello, vtlisten, vtgetreq, vtrespond � Venti server . venti-server(2) 665
rdarena, wrarena � copy arenas between venti servers .venti-backup(8) 1075

vacfs � a Venti-based file system vacfs(4) 822
venti.conf � a venti configuration file venti.conf(6) 900

/vtwritepacket, vtsync, vtping, vtrpc, ventidoublechecksha1 � Venti client venti-client(2) 653
vtlogopen, vtlogprint, vtlogremove, vtlogopen, ventilogging � Venti logs /vtlognames, venti-log(2) 661

systems . spin - verification tool for models of concurrent spin(1) 278
passwd, netkey � change or verify user password passwd(1) 211

� initialize 9P connection and negotiate version . fversion fversion(2) 484
version � negotiate protocol version version(5) 844

channel pushssl � attach SSL version 2 encryption to a communication pushssl(2) 582
filter, list, deliver, token, vf � filtering mail . filter(1) 98

/runesnprint, runeseprint, runesmprint, vfprint, vsnprint, vseprint, vsmprint,/ print(2) 576
formatted/ . . fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf, vsnprintf � print fprintf(2) 474

fscanf, scanf, sscanf, vfscanf � scan formatted input fscanf(2) 481
vga � configure a VGA card vga(8) 1079
vga � VGA controller device vga(3) 745
vgadb � VGA controller and monitor database . vgadb(6) 901

5i, ki, vi, qi � instruction simulators vi(1) 327
togeordi, togif, toppm, topng, totif, toico � view and convert pictures . . . /ico, tga, tojpg, jpg(1) 156

and typesetter output files page � view FAX, image, graphic, PostScript, PDF, . . . page(1) 208
gview � interactive graph viewer . gview(1) 119

vncs, vncv � remote frame buffer server and viewer for Virtual Network Computing (VN) . . . vnc(1) 331
qrot, scale, move, xform, ixform, persp, look, viewport � Geometric transformations . . /rot, matrix(2) 534

vblade � virtual AoE target . vblade(8) 1070
segdetach, segfree � map/unmap a segment in virtual memory segattach, segattach(2) 617

� remote frame buffer server and viewer for Virtual Network Computing (VN) . . vncs, vncv vnc(1) 331
vmx � virtual PC . vmx(1) 329

vmx � x86 virtualization interface vmx(3) 747
0l, 1l, 2l, 5l, 6l, 8l, kl, ql, vl � loaders . 2l(1) 8

vmx � virtual PC . vmx(1) 329
vmx � x86 virtualization interface vmx(3) 747

viewer for Virtual Network Computing (VN) . . . vncs, vncv � remote frame buffer server and . . vnc(1) 331
rtc � real-time clock and volatile RAM . rtc(3) 722
tinc - mesh peer to peer VPN . tinc(8) 1065

fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf, vsnprintf � print formatted/ . fprintf(2) 474
/lerp3, reflect3, nearseg3, pldist3, vdiv3, vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, add4,/ . . arith3(2) 375
/runesmprint, vfprint, vsnprint, vseprint, vsmprint, runevsnprint, runevseprint,/ print(2) 576

49-i

Permuted Index

/printf, sprintf, snprintf, vfprintf, vprintf, vsprintf, vsnprintf � print formatted output . . . fprintf(2) 474
vt � emulate a VT-100 or VT-220 terminal vt(1) 333

vtblockput, vtblockwrite,/ . . VtBlock, VtCache, vtblockcopy, vtblockdirty, vtblockduplock, . . . venti-cache(2) 651
vtfree � error-checking memory allocators . . . vtbrk, vtmalloc, vtmallocz, vtrealloc, vtstrdup, . venti-mem(2) 662

/vtblockduplock, vtblockput, vtblockwrite, vtcachealloc, vtcacheallocblock,/ venti-cache(2) 651
/vtblockwrite, vtcachealloc, vtcacheallocblock, vtcacheblocksize, vtcachefree, vtcacheglobal,/ venti-cache(2) 651
/vtcacheblocksize, vtcachefree, vtcacheglobal, vtcachelocal, vtcachesetwrite, vtglobaltolocal,/ venti-cache(2) 651

vtversion, vtdebug, vthangup � Venti/ VtConn, vtconn, vtdial, vtfreeconn, vtsend, vtrecv, venti-conn(2) 655
vtreadpacket, vtwritepacket, vtsync, vtping,/ . . vtconnect, vthello, vtread, vtwrite, venti-client(2) 653
vtentryunpack, vtfcallclear, vtfcallfmt,/ VtEntry, VtFcall, VtRoot, vtentrypack, venti-fcall(2) 657
vtfcallfmt,/ VtEntry, VtFcall, VtRoot, vtentrypack, vtentryunpack, vtfcallclear, venti-fcall(2) 657

/vtentryunpack, vtfcallclear, vtfcallfmt, vtfcallpack, vtfcallunpack, vtfromdisktype,/ . . . venti-fcall(2) 657
vtfilecreate, vtfilecreateroot, vtfileflush,/ VtFile, vtfileblock, vtfileblockscore, vtfileclose, venti-file(2) 659
vtfilecreate, vtfilecreateroot,/ VtFile, vtfileblock, vtfileblockscore, vtfileclose, venti-file(2) 659

/vtfileclose, vtfilecreate, vtfilecreateroot, vtfileflush, vtfileflushbefore, vtfilegetdirsize,/ . venti-file(2) 659
/vtfileflush, vtfileflushbefore, vtfilegetdirsize, vtfilegetentry, vtfilegetsize, vtfileincref,/ venti-file(2) 659

/vtfilegetentry, vtfilegetsize, vtfileincref, vtfilelock, vtfilelock2, vtfileopen,/ venti-file(2) 659
/vtfileincref, vtfilelock, vtfilelock2, vtfileopen, vtfileopenroot, vtfileread, vtfileremove,/ venti-file(2) 659

/vtfileopenroot, vtfileread, vtfileremove, vtfilesetdirsize, vtfilesetentry, vtfilesetsize,/ . . venti-file(2) 659
/vtfilesetdirsize, vtfilesetentry, vtfilesetsize, vtfiletruncate, vtfileunlock, vtfilewrite � Venti/ . venti-file(2) 659

vtbrk, vtmalloc, vtmallocz, vtrealloc, vtstrdup, vtfree � error-checking memory allocators . . . venti-mem(2) 662
vtdebug, vthangup �/ . VtConn, vtconn, vtdial, vtfreeconn, vtsend, vtrecv, vtversion, venti-conn(2) 655

vtsrvhello, vtlisten, vtgetreq, vtrespond � Venti server venti-server(2) 665
/vtfcallunpack, vtfromdisktype, vttodisktype, vtgetstring, vtputstring, vtrootpack,/ venti-fcall(2) 657

/vtcacheglobal, vtcachelocal, vtcachesetwrite, vtglobaltolocal, vtlocaltoglobal � Venti block/ . venti-cache(2) 651
/vtfreeconn, vtsend, vtrecv, vtversion, vtdebug, vthangup � Venti network connections venti-conn(2) 655
vtwritepacket, vtsync, vtping,/ . . . vtconnect, vthello, vtread, vtwrite, vtreadpacket, venti-client(2) 653

vtsrvhello, vtlisten, vtgetreq, vtrespond � Venti server . . . venti-server(2) 665
/vtcachelocal, vtcachesetwrite, vtglobaltolocal, vtlocaltoglobal � Venti block cache venti-cache(2) 651

vtlogdump, vtlognames, vtlogopen,/ VtLog, VtLogChunk, vtlog, vtlogclose, venti-log(2) 661
vtlogopen, vtlogprint,/ . . VtLog, VtLogChunk, vtlog, vtlogclose, vtlogdump, vtlognames, . . . venti-log(2) 661
/vtlogdump, vtlognames, vtlogopen, vtlogprint, vtlogremove, vtlogopen, ventilogging � Venti/ . venti-log(2) 661
error-checking memory/ vtbrk, vtmalloc, vtmallocz, vtrealloc, vtstrdup, vtfree � venti-mem(2) 662

/uitomp, mptoi, itomp, uvtomp, mptouv, vtomp, mptov, mptod, dtomp, mpdigdiv,/ mp(2) 547
/vtputstring, vtrootpack, vtrootunpack, vtparsescore, vtscorefmt � venti data formats . venti-fcall(2) 657

/vtfromdisktype, vttodisktype, vtgetstring, vtputstring, vtrootpack, vtrootunpack,/ venti-fcall(2) 657
vtsync, vtping, vtrpc,/ vtconnect, vthello, vtread, vtwrite, vtreadpacket, vtwritepacket, . . venti-client(2) 653
memory allocators vtbrk, vtmalloc, vtmallocz, vtrealloc, vtstrdup, vtfree � error-checking . . . venti-mem(2) 662

VtConn, vtconn, vtdial, vtfreeconn, vtsend, vtrecv, vtversion, vtdebug, vthangup � Venti/ . venti-conn(2) 655
vtsrvhello, vtlisten, vtgetreq, vtrespond � Venti server venti-server(2) 665

vtfcallclear, vtfcallfmt,/ VtEntry, VtFcall, VtRoot, vtentrypack, vtentryunpack, venti-fcall(2) 657
/vttodisktype, vtgetstring, vtputstring, vtrootpack, vtrootunpack, vtparsescore,/ venti-fcall(2) 657

/vtreadpacket, vtwritepacket, vtsync, vtping, vtrpc, ventidoublechecksha1 � Venti client . . . venti-client(2) 653
vtrootpack, vtrootunpack, vtparsescore, vtscorefmt � venti data formats . /vtputstring, venti-fcall(2) 657

Venti/ . . . VtConn, vtconn, vtdial, vtfreeconn, vtsend, vtrecv, vtversion, vtdebug, vthangup � venti-conn(2) 655
Venti server . vtsrvhello, vtlisten, vtgetreq, vtrespond � venti-server(2) 665

vtbrk, vtmalloc, vtmallocz, vtrealloc, vtstrdup, vtfree � error-checking memory/ . . . venti-mem(2) 662
/vtread, vtwrite, vtreadpacket, vtwritepacket, vtsync, vtping, vtrpc, ventidoublechecksha1 �/ venti-client(2) 653

/vtfcallpack, vtfcallunpack, vtfromdisktype, vttodisktype, vtgetstring, vtputstring,/ venti-fcall(2) 657
/vtconn, vtdial, vtfreeconn, vtsend, vtrecv, vtversion, vtdebug, vthangup � Venti network/ venti-conn(2) 655

/vthello, vtread, vtwrite, vtreadpacket, vtwritepacket, vtsync, vtping, vtrpc,/ venti-client(2) 653
vtzerotruncate, vtzeroextend, vtzeroscore � Venti block truncation venti-zero(2) 666

faces, seemail, vwhois � mailbox interface faces(1) 94
wadfs � WAD file system wadfs(4) 823

await, wait, waitpid � wait for a process to exit wait(2) 667
rc, cd, eval, exec, exit, flag, rfork, shift, wait, whatis, ., ~ � command language rc(1) 239

wol � send wake-on-lan Ethernet packet wol(8) 1081
synchronisation sleep, wakeup, tsleep, return0 � process sleep(9) 1104

walk � descend a directory hierarchy walk(5) 845
walk � walk a path . walk(1) 334

/freetree, File, createfile, closefile, removefile, walkfile, opendirfile, readdirfile, closedirfile,/ . 9pfile(2) 357
keyfs, warning � authentication database files keyfs(4) 787

error, nexterror, poperror, waserror � error handling functions error(9) 1089
midi, mole, packet, sokoban, sudoku � time wasters /life, mandel, mahjongg, memo, games(1) 109
/oggdec, oggenc, flacdec, flacenc, sundec, wavdec, pcmconv, mixfs � decode and encode/ audio(1) 26

wc � word count . wc(1) 336
msexceltables � extract/ . . . doc2txt, doc2ps, wdoc2txt, xls2txt, olefs, mswordstrings, doc2txt(1) 77

weather � print weather report weather(1) 337
abaco � browse the World-Wide Web . abaco(1) 11

httpfile � serve a single web file . httpfile(4) 783
webfs � world wide web file system . webfs(4) 826

mothra � retrieve and display World-Wide Web files . mothra(1) 186
webpaste, urlencode � retrieve, post to a web page corresponding to a url /hpost, hget(1) 145

webcookies � HTTP cookie manager webcookies(4) 825

50-i

Permuted Index

webfs � world wide web file system webfs(4) 826
httpd, save, imagemap, man2html, webls � HTTP server . httpd(8) 977

page corresponding to a url hget, hpost, webpaste, urlencode � retrieve, post to a web . hget(1) 145
errstr, rerrstr, werrstr � description of last system call error . errstr(2) 448

rc, cd, eval, exec, exit, flag, rfork, shift, wait, whatis, ., ~ � command language rc(1) 239
panic � abandon hope, all ye who enter here . panic(9) 1097

who, whois � who is using the machine who(1) 338
aliasmail � expand system wide mail aliases . aliasmail(8) 926

abaco � browse the Wide Web . abaco(1) 11
webfs � world wide web file system webfs(4) 826

mothra � retrieve and display Wide Web files . mothra(1) 186
wpa � Wi-Fi Protected Access setup wpa(8) 1082

wikifs, wikipost � wiki file system wikifs(4) 828
acme, win � interactive text windows acme(1) 16

� display a bar graph or status message window statusbar, statusmsg statusbar(8) 1061
topwindow, topnwindows, originwindow � window management /bottomnwindows, window(2) 668

rio � window system files . rio(4) 806
rio, label, window, wloc � window system rio(1) 250

acme, win � interactive text windows . acme(1) 16
acme � control files for text windows . acme(4) 750

winwatch � monitor rio windows . winwatch(1) 339
cifs - Microsoft" Windows network filesystem client cifs(4) 758

/memltofrontn, memltorear, memltorearn � windows of memory-resident images memlayer(2) 540
winwatch � monitor rio windows winwatch(1) 339

inter-integrated circuit (I²C) interface . . twsi - wire serial interface (TWS) and twsi(3) 739
rio, label, window, wloc � window system rio(1) 250

/canqlock, qunlock, rlock, canrlock, runlock, wlock, canwlock, wunlock, rsleep, rwakeup,/ . lock(2) 526
qlock, qunlock, canqlock, rlock, runlock, wlock, wunlock � serial synchronisation qlock(9) 1099

wol � send wake-on-lan Ethernet packet wol(8) 1081
wc � word count . wc(1) 336

/Memdata, Memdrawparam, memimageinit, wordaddr, byteaddr, memimagemove,/ memdraw(2) 536
bullshit � assemble a stream of bullshit from words in a file . bullshit(1) 40

writing/ /readimage, writeimage, bytesperline, wordsperline � allocating, freeing, reading, . . . allocimage(2) 367
chdir � change working directory . chdir(2) 399

pwd, pbd � working directory . pwd(1) 232
rwd, conswdir � maintain remote working directory . rwd(1) 256

webfs � world wide web file system webfs(4) 826
abaco � browse the World-Wide Web . abaco(1) 11

mothra � retrieve and display World-Wide Web files mothra(1) 186
cwfs64, cwfs64x, fs64 - worm file server, dump cwfs, cwfs(4) 762

wpa � Wi-Fi Protected Access setup wpa(8) 1082
rdarena, wrarena � copy arenas between venti servers .venti-backup(8) 1075

preadv, pwritev � scatter/gather read and write . readv, writev, readv(2) 596
read, write � transfer data from and to a file read(5) 840
read, write, copy � simple Venti clients venti(1) 326

read, readn, write, pread, pwrite � read or write file read(2) 594
bzfs � compressed write ram filesystem bzfs(4) 754
RGB, readcolmap, writecolmap � access display color map readcolmap(2) 595

/cloadimage, unloadimage, readimage, writeimage, bytesperline, wordsperline �/ allocimage(2) 367
/readmemimage, creadmemimage, writememimage, freememimage,/ memdraw(2) 536

� optical disc (CD, DVD, B) track reader and writer file system cdfs, cddb cdfs(4) 755
� spin locks, queueing rendezvous locks, writer locks, rendezvous points, and/ /decref lock(2) 526

/subfontname, readsubfont, readsubfonti, writesubfont, stringsubfont, strsubfontwidth,/ subfont(2) 633
and write . readv, writev, preadv, pwritev � scatter/gather read . . readv(2) 596

open, create, close � open a file for reading or writing, create file . open(2) 566
wordsperline � allocating, freeing, reading, writing images . . . /writeimage, bytesperline, allocimage(2) 367

/enable, disable, authsrv, guard.srv, debug, wrkey, login, newns, none, as � maintain or/ . . auth(8) 930
stat, wstat � inquire or change file attributes stat(5) 842

dirfwstat, nulldir � get and put file/ stat, fstat, wstat, fwstat, dirstat, dirfstat, dirwstat, stat(2) 626
qunlock, canqlock, rlock, runlock, wlock, wunlock � serial synchronisation qlock, qlock(9) 1099

/rlock, canrlock, runlock, wlock, canwlock, wunlock, rsleep, rwakeup, rwakeupall, incref,/ lock(2) 526
/ecpubfree, X509toECpub, X509ecdsaverify, X509ecdsaverifydigest � elliptic curve/ ec(2) 441

/X509rsagen, X509rsareq, X509rsaverify, X509rsaverifydigest � RSA encryption/ rsa(2) 601
ecencodepub, ecdecodepub, ecpubfree, X509toECpub, X509ecdsaverify,/ /ecdsaverify, ec(2) 441
/rsaprivtopub, rsapuballoc, rsapubfree, X509toRSApub, X509rsagen, X509rsareq,/ . . . rsa(2) 601

vmx � x86 virtualization interface vmx(3) 747
memory management xalloc, xallocz, xspanalloc, xfree, xsummary � basic . xalloc(9) 1106

xargs � construct argument list and execute . . xargs(1) 340
xd � hex, octal, decimal, or ASCII dump xd(1) 341

/adjoint, invertmat, xformpoint, xformpointd, xformplane, pushmat, popmat, rot, qrot,/ matrix(2) 534
management xalloc, xallocz, xspanalloc, xfree, xsummary � basic memory xalloc(9) 1106
� extract/ doc2txt, doc2ps, wdoc2txt, xls2txt, olefs, mswordstrings, msexceltables . doc2txt(1) 77
file transfer con, telnet, rx, hayes, xms, xmr � remote login, execution, and XMODEM . con(1) 53

xalloc, xallocz, xspanalloc, xfree, xsummary � basic memory management xalloc(9) 1106

51-i

Permuted Index

yacc � yet another compiler-compiler yacc(1) 342
panic � abandon hope, all ye who enter here . panic(9) 1097

dump . yesterday, diffy � print file names from the . . . yesterday(1) 344
procsave, scheddump, schedinit, sched, yield � scheduler interactions . . /procrestore, sched(9) 1102

/threadsetgrp, threadsetname, threadwaitchan, yield � thread and proc management thread(2) 638
topng,/ . . jpg, gif, png, tif, ppm, bmp, v210, yuv, ico, tga, tojpg, togeordi, togif, toppm, . . . jpg(1) 156

packetstats, packettrailer, packettrim � zero-copy network buffers /packetsplit, venti-packet(2) 663
zerotrunc � truncate input on zero byte zerotrunc(8) 1083

/bzip2, bunzip2, compress, uncompress, zip, unzip � compress and expand data gzip(1) 121
32vfs, cpiofs, tapfs, tarfs, tpfs, v6fs, v10fs, zipfs � mount archival file systems tapefs(4) 814

52-i

This book was typeset by the authors; the input
text was characters from the Unicode Standard
encoded in UTF-8.

The fonts used were Lucida Sans, in a special
version incorporating over 1700 characters
from the Unicode Standard, along with Lucida
Sans Italic, Lucida Sans DemiBold, and Lucida
Typewriter, designed by Bigelow & Holmes,
Atherton, California. The hinted Adobe Type 1
representation of the fonts was provided by
Y&Y Inc., 45 Walden Street, Concord, MA,
01742, USA.

