
Troff User's Manual

Joseph F. Χssanna

Brian W. Kernighan

bwk@research.bell-labs.com

Introduction

Troff and nroff are text processors that format text for typesetter- and
typewriter-like terminals, respectively. They accept lines of text interspersed with lines
of format control information and format the text into a printable, paginated document
having a user-designed style. Troff and nroff offer unusual freedom in document styl
ing: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic
font and point-size control; arbitrary horizontal and vertical local motions at any point;
and a family of automatic overstriking, bracket construction, and line-drawing func
tions.

Troff produces its output in a device-independent form, although parameterized
for a specific device; troff output must be processed by a driver for that device to pro
duce printed output.

Troff and nroff are highly compatible with each other and it is almost always possi
ble to prepare input acceptable to both. Conditional input is provided to enable the
user to embed input expressly destined for either program. Nroff can prepare output
directly for a variety of terminal types and is capable of utilizing the full resolution of
each terminal. Nroff is the same program as troff ; in fact, on Plan 9 nroff is a shell
script that calls troff with the -N argument.

Background to the Plan 9 Edition

The primary change to troff and nroff for Plan 9 is support of the Unicode Stan
dard, which was added during 1992 and 1993. There are two results. First, there is
much less need for the myriad of two-character names that are so much a part of troff
lore; in Plan 9, for example, one naturally uses the Unicode character ½ instead of
troff �s \(12. Second, the output device, though called utf, is almost always a form of
PostScript printer; the panoply of special drivers for different typesetters has largely dis
appeared. Unfortunately, not all PostScript printers can cope with Unicode characters,
so there remains a need for programs that synthesize PostScript characters from bit
maps; this is especially true for Asian languages.

Background to the Second Edition

Troff was originally written by the late Joe Ossanna in about 1973, in assembly lan
guage for the PDP-11, to drive the Graphic Systems CAT typesetter. It was rewritten in C
around 1975, and underwent slow but steady evolution until Ossanna�s death late in
1977.

 2

In 1979, Brian Kernighan modified troff so that it would produce output for a vari
ety of typesetters, while retaining its input specifications. Over the decade from 1979 to
1989, the internals have been modestly revised, though much of the code remains as it
was when Ossanna wrote it.

Troff reads parameter files each time it is invoked, to set values for machine reso
lution, legal type sizes and fonts, and character names, character widths and the like.
Troff output is ASCII characters in a simple language that describes where each character
is to be placed and in what size and font. A post-processor must be written for each
device to convert this typesetter-independent language into specific instructions for that
device.

The output language contains information that was not readily identifiable in the
older output. In the newer language, the beginning of each page, line, and word is
marked, so post-processors can do device-specific optimizations such as sorting the
data vertically or printing it boustrophedonically, independent of troff .

Capabilities for graphics have been added: troff recognizes commands for drawing
diagonal lines, circles, ellipses, circular arcs, and quadratic B-splines. There are also
ways to pass arbitrary information to the output, unprocessed by troff .

A number of limitations have been eased or eliminated. A document may have an
arbitrary number of fonts on any page (if the output device permits it, of course). Fonts
may be accessed merely by naming them; ��mounting�� is no longer necessary. There
are no limits on the number of characters. Character height and slant may be set inde
pendently of width.

The remainder of this document contains a description of usage and command-
line options; a summary of requests, escape sequences, and pre-defined number regis
ters; a reference manual; tutorial examples; and a list of commonly-available characters.

Acknowledgements

Joe Ossanna�s troff remains a remarkable accomplishment. For more than twenty
years, it has proven a robust tool, taking unbelievable abuse from a variety of preproces
sors and being forced into uses that were never conceived of in the original design, all
with considerable grace under fire.

Recent versions of troff have profited from significant code improvements by Jaap
Akkerhuis, Dennis Ritchie, Ken Thompson, and Molly Wagner. UTF facilities owe much
to Jaap Akkerhuis. Andrew Hume, Doug McIlroy, Peter Nelson and Ravi Sethi made valu
able suggestions on the manual. I fear that the remaining bugs are my fault.

 3

Usage

Troff or nroff is invoked as

troff options files
nroff options files

where options represents any of a number of option arguments and files represents the
list of files containing the document to be formatted. An argument consisting of a sin
gle minus �-� represents standard input. If no filenames are given input is taken from
the standard input. The options, which may appear in any order so long as they appear
before the files, are:

-mname Read the macro file /sys/lib/tmac/tmac.name before the
input files.

-Tname Specifies the type of the output device. Specific devices are site-
dependent. For troff , the most useful name is utf. For nroff,
useful names include 37 for the (default) Model 37 Teletype, lp
for ��dumb�� line printer terminals (no half-line motions, no
reverse motions), and think for the HP ThinkJet printer.

-i Read standard input after the input files are exhausted.
-olist Print only pages whose page numbers appear in list, which con

sists of comma-separated numbers and number ranges. A num
ber range has the form N − M and means pages N through M; a ini
tial − N means from the beginning to page N; and a final N −
means from N to the end.

-nN Number first generated page N.
-raN Set number register a (one-character) to N.
-sN Stop every N pages. Nroff will halt prior to every N pages (default

N = 1) to allow paper loading or changing, and will resume upon
receipt of a newline. Troff will include a ��pause�� code every N
pages; its meaning, if any, depends on the output device.

-uN Set amount of emboldening for the bd request to N.
-Fpath Look in directory path for font information; the defaults are

/sys/lib/troff/font and /sys/lib/troff/term for
troff and nroff respectively.

troff Only
-a Send a printable approximation of the results to the standard out

put.

nroff Only
-e Produce equally-spaced words in adjusted lines, using full termi

nal resolution.
-h Use tabs instead of spaces to speed up printing.
-q Invoke the simultaneous input-output mode of the rd request.

Each option is a separate argument; for example,

troff -Tutf -ms -mpictures -o4,6,8-10 file1 file2

requests formatting of pages 4, 6, and 8 through 10 of a document contained in the
files named file1 and file2, specifies the output in UTF, and invokes the macro packages
-ms and -mpictures.

Various pre- and post-processors are available for use with nroff and troff . These
include the equation preprocessor eqn (for troff only), the table-construction preproces
sor tbl, and pic and grap for various forms of graphics.

 4

Request Summary

In the following table, the notation ±N in the Request Form column means that the
forms N, + N, or − N are permitted, to set the parameter to N, increment it by N, or
decrement it by N, respectively. Plain N means that the value is used to set the parame
ter. Initial Values separated by ; are for troff and nroff respectively. In the Notes col
umn,

B Request normally causes a break. The use of ' as control charac
ter (instead of .) suppresses the break function.

D Mode or relevant parameters associated with current diversion
level.

E Relevant parameters are a part of the current environment.
O Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical out

put.
T troff only; no effect in nroff.

v, p, m, u Default scale indicator; if not specified, scale indicators are
ignored.

Request Initial If No
Form Value Argument Notes Explanation

1. General Information

2. Font and Character Size Control

.ps ±N 10 point previous E,T Point size; also \s±N.

.ss N 12/36m ignored E,T Space-character size set to N/36 em.

.cs F N M off - P,T Constant character space (width) mode (font F).

.bd F N off - P,T Embolden font F by N − 1 units.

.bd S F N off - P,T Embolden Special Font when current font is F.

.ft F Roman previous E Change to font F; also \fx, \f(xx, \fN.

.fp N F L R,I,B,...,S ignored - Mount font named F on physical position Nf1;
long name is L if given.

3. Page Control
.pl ±N 11i 11i v Page length.
.bp ±N N = 1 - B,v Eject current page; next page number N.
.pn ±N N = 1 ignored - Next page number N.
.po ±N 1i; 0 previous v Page offset.
.ne N - N = 1v D,v Need N vertical space.
.mk R none internal D Mark current vertical place in register R.
.rt ±N none internal D,v Return (upward only) to marked vertical place.

4. Text Filling, Adjusting, and Centering
.br - - B Break.
.fi fill - B,E Fill output lines.
.nf fill - B,E No filling or adjusting of output lines.
.ad c adj, both adjust E Adjust output lines with mode c; c = l,r,c,b,none
.na adjust - E No output line adjusting.
.ce N off N = 1 B,E Center next N input text lines.

5. Vertical Spacing
.vs N 12p; 1/6i previous E,p Vertical baseline spacing (V).
.ls N N = 1 previous E Output N − 1 v�s after each text output line.
.sp N - N = 1v B,v Space vertical distance N in either direction.
.sv N - N = 1v v Save vertical distance N.
.os - - - Output saved vertical distance.
.ns space - D Turn no-space mode on.
.rs - - D Restore spacing; turn no-space mode off.

 5

6. Line Length and Indenting
.ll ±N 6.5i previous E,m Line length.
.in ±N N = 0 previous B,E,m Indent.
.ti ±N - ignored B,E,m Temporary indent.

7. Macros, Strings, Diversion, and Position Traps
.de xx yy - .yy = .. - Define or redefine macro xx; end at call of yy.
.am xx yy - .yy = .. - Append to a macro.
.ds xx string - ignored - Define a string xx containing string.
.as xx string - ignored - Append string to string xx.
.rm xx - ignored - Remove request, macro, or string.
.rn xx yy - ignored - Rename request, macro, or string xx to yy.
.di xx - end D Divert output to macro xx.
.da xx - end D Divert and append to xx.
.wh N xx - - v Set location trap; negative is w.r.t. page bottom.
.ch xx N - - v Change trap location.
.dt N xx - off D,v Set a diversion trap.
.it N xx - off E Set an input-line count trap.
.em xx none none - End macro is xx.

8. Number Registers
.nr R ±N M - u Define and set number register R;

auto-increment by M.
.af R c arabic - - Assign format to register R (c = 1,i,I,a,A).
.rr R - - - Remove register R.

9. Tabs, Leaders, and Fields
.ta Nt ... 0.5i; 0.8n none E,m Tab settings; left-adjusting, unless

t = R (right), C (centered).
.tc c none none E Tab repetition character.
.lc c . none E Leader repetition character.
.fc a b off off - Set field delimiter a and pad character b.

10. Input and Χutput Conventions and Character Translations
.ec c \ \ - Set escape character.
.eo on - - Turn off escape character mechanism.
.lg N on; - on T Ligature mode on if N > 0.
.ul N off N = 1 E Underline (italicize in troff) N input lines.
.cu N off N = 1 E Continuous underline in nroff; in troff , like ul.
.uf F Italic Italic - Underline font set to F (to be switched to by ul).
.cc c . . E Set control character to c.
.c2 c ' ' E Set no-break control character to c.
.tr abcd.... none - O Translate a to b, etc., on output.

11. Local Horizontal and Vertical Motions, and the Width Function

12. Χverstrike, Bracket, Line-drawing, Graphics, and Zero-width Functions

13. Hyphenation.
.nh hyphenate - E No hyphenation.
.hy N hyphenate hyphenate E Hyphenate; N = mode.
.hc c \% \% E Hyphenation indicator character c.
.hw word ... ignored - Add words to hyphenation dictionary.

14. Three-Part Titles.
.tl ′l ′c ′r ′ - - Three-part title; delimiter may be any character.
.pc c % off - Page number character.
.lt ±N 6.5i previous E,m Length of title.

15. Χutput Line Numbering.
.nm ±N M S I off E Number mode on or off, set parameters.
.nn N - N = 1 E Do not number next N lines.

 6

16. Conditional Acceptance of Input
.if c any - - If condition c true, accept any as input;

for multi-line, use \{any\}.
.if !c any - - If condition c false, accept any.
.if N any - u If expression N > 0, accept any.
.if !N any - u If expression Nf0 [sic], accept any.
.if ′s1 ′s2 ′ any - - If string s1 identical to s2, accept any.
.if !′s1 ′s2 ′ any - - If string s1 not identical to s2, accept any.
.ie c any - u If portion of if-else; all above forms (like if).
.el any - - Else portion of if-else.

17. Environment Switching
.ev N N = 0 previous - Environment switch (push down).

18. Insertions from the Standard Input
.rd prompt - prompt=BEL - Read insertion.
.ex - - - Exit.

19. Input/Χutput File Switching
.so filename - - Switch source file (push down).
.nx filename end-of-file - Next file.
.sy string - - Execute program string. Output not interpolated.
.pi string - - Pipe output to program string.
.cf filename - - Copy file contents to troff output.

20. Miscellaneous
.mc c N - off E,m Set margin character c and separation N.
.tm string - newline - Print string on terminal (standard error).
.ab string - newline - Print string on standard error, exit program.
.ig yy - .yy = .. - Ignore input until call of yy.
.lf N f - - Set input line number to N and filename to f.
.pm t - all - Print macro names, sizes; if t present, print total.
.fl - - B Flush output buffer.

21. Χutput and Error Messages

22. Χutput Language

23. Device and Font Description Files

Alphabetical Request and Section Number Cross Reference

ab 20
ad 4
af 8
am 7
as 7
bd 2
bp 3
br 4
c2 10
cc 10

ce 4
cf 19
ch 7
cs 2
cu 10
da 7
de 7
di 7
ds 7
dt 7

ec 10
el 16
em 7
eo 10
ev 17
ex 18
fc 9
fi 4
fl 20
fp 2

ft 2
hc 13
hw 13
hy 13
ie 16
if 16
ig 20
in 6
it 7
lc 9

lg 10
lf 20
ll 6
ls 5
lt 14
mc 20
mk 3
na 4
ne 3
nf 4

nh 13
nm 15
nn 15
nr 8
ns 5
nx 19
os 5
pc 14
pi 19
pl 3

pm 20
pn 3
po 3
ps 2
rd 18
rm 7
rn 7
rr 8
rs 5
rt 3

so 19
sp 5
ss 2
sv 5
sy 19
ta 9
tc 9
ti 6
tl 14
tm 20

tr 10
uf 10
ul 10
vs 5
wh 7

 7

Escape Sequences for Characters, Indicators, and Functions

SSeeccttiioonn EEssccaappee
RReeffeerreennccee SSeeqquueennccee MMeeaanniinngg

10.1 \\ \ prevents or delays the interpretation of \
10.1 \e Printable version of the current escape character.

2.1 \' ´ (acute accent); equivalent to \(aa
2.1 \` ` (grave accent); equivalent to \(ga
2.1 \� � Minus sign in the current font
7. \. Period (dot) (see de)

11.1 \space Unpaddable space-size space character
11.1 \0 Digit width space
11.1 \| 1/6 em narrow space character (zero width in nroff)
11.1 \^ 1/12 em half-narrow space character (zero width in nroff)

4.1 \& Non-printing, zero width character
10.6 \! Transparent line indicator
10.8 \" Beginning of comment; continues to end of line
13. \% Default optional hyphenation character

2.1 \(xx Character named xx
7.1 *x, *(xx Interpolate string x or xx
7.3 \$N Interpolate argument 1fNf9
9.1 \a Non-interpreted leader character

12.3 \b'abc...' Bracket building function
4.2 \c Connect to next input text
2.1 \C'xyz' Character named xyz

11.1 \d Downward 1/2 em vertical motion (1/2 line in nroff)
12.5 \D'c...' Draw graphics function c with parameters ...; c = l,c,e,a,~

2.2 \fx, \f(xx, \fN Change to font named x or xx, or position N
8. \gx, \g(xx Format of number register x or xx

11.1 \h'N' Local horizontal motion; move right N (negative left)
2.3 \H'N' Height of current font is N

11.3 \kx Mark horizontal input place in register x
12.4 \l'Nc' Horizontal line drawing function (optionally with c)
12.4 \L'Nc' Vertical line drawing function (optionally with c)

8. \nx, \n(xx Contents of number register x or xx
2.1 \N'N' Character number N on current font

12.1 \o'abc...' Overstrike characters a, b, c, ...
4.1 \p Break and spread output line

11.1 \r Reverse 1 em vertical motion (reverse line in nroff)
2.3 \sN, \s±N Point-size change function; also \s(nn, \s±(nn
2.2 \S'N' Slant output N degrees
9.1 \t Non-interpreted horizontal tab

11.1 \u Reverse (up) 1/2 em vertical motion (1/2 line in nroff)
11.1 \v'N' Local vertical motion; move down N (negative up)
11.2 \w'string' Width of string

5.2 \x'N' Extra line-space function (negative before, positive after)
10.7 \X'string' Output string as device control function
12.2 \zc Print c with zero width (without spacing)
16. \{ Begin conditional input
16. \} End conditional input
10.8 \newline Concealed (ignored) newline

- \Z Z, any character not listed above

The escape sequences \\, \., \", \$, *, \a, \n, \t, \g, and \newline are inter
preted in copy mode (§7.2).

 8

Predefined Number Registers

SSeeccttiioonn RReeggiisstteerr
RReeffeerreennccee NNaammee DDeessccrriippttiioonn

3. % Current page number.
11.2 ct Character type (set by \w function).

7.4 dl Width (maximum) of last completed diversion.
7.4 dn Height (vertical size) of last completed diversion.
- dw Current day of the week (1-7).
- dy Current day of the month (1-31).

15. ln Output line number.
- mo Current month (1-12).
4.1 nl Vertical position of last printed text baseline.

11.2 sb Depth of string below baseline (generated by \w function).
11.2 st Height of string above baseline (generated by \w function).

- yr Last two digits of current year.

Predefined Read-Χnly Number Registers

SSeeccttiioonn RReeggiisstteerr
RReeffeerreennccee NNaammee DDeessccrriippttiioonn

19. $$ Process id of troff or nroff.
7.3 .$ Number of arguments available at the current macro level.
5.2 .a Post-line extra line-space most recently used in \x'N'.
- .A Set to 1 in troff , if −a option used; always 1 in nroff.
2.3 .b Emboldening level.

20. .c Number of lines read from current input file.
7.4 .d Current vertical place in current diversion; equal to nl, if no diversion.
2.2 .f Current font number.

20. .F Current input file name [sic].
4. .h Text baseline high-water mark on current page or diversion.

11.1 .H Available horizontal resolution in basic units.
6. .i Current indent.
4.2 .j Current ad mode.
4.1 .k Current output horizontal position.
6. .l Current line length.
5.1 .L Current ls value.
4. .n Length of text portion on previous output line.
3. .o Current page offset.
3. .p Current page length.
7.5 .R Number of unused number registers.
- .T Set to 1 in nroff, if -T option used; always 0 in troff .
2.3 .s Current point size.
7.5 .t Distance to the next trap.
4.1 .u Equal to 1 in fill mode and 0 in nofill mode.
5.1 .v Current vertical line spacing.

11.1 .V Available vertical resolution in basic units.
11.2 .w Width of previous character.

- .x Reserved version-dependent register.
- .y Reserved version-dependent register.
7.4 .z Name [sic] of current diversion.

 9

Reference Manual

1. General Explanation

11..11.. FFoorrmm ooff iinnppuutt.. Input consists of text lines, which are destined to be printed,
interspersed with control lines, which set parameters or otherwise control subsequent
processing. Control lines begin with a control character�normally . (period) or ' (sin
gle quote)�followed by a one or two character name that specifies a basic request or
the substitution of a user-defined macro in place of the control line. The control char
acter ' suppresses the break function�the forced output of a partially filled line�
caused by certain requests. The control character may be separated from the
request/macro name by white space (spaces and/or tabs) for aesthetic reasons. Names
should be followed by either space or newline. Control lines with unrecognized names
are ignored.

Various special functions may be introduced anywhere in the input by means of an
escape character, normally \. For example, the function \nR causes the interpolation of
the contents of the number register R in place of the function; here R is either a single
character name as in \nx, or a two-character name introduced by a left-parenthesis, as
in \n(xx.

11..22.. FFoorrmmaatttteerr aanndd ddeevviiccee rreessoolluuttiioonn.. Troff internally stores and processes dimen
sions in units that correspond to the particular device for which output is being pre
pared; values from 300 to 1200/inch are typical. See §23. Nroff internally uses 240
units/inch, corresponding to the least common multiple of the horizontal and vertical
resolutions of various typewriter-like output devices. Troff rounds horizontal/vertical
numerical parameter input to the actual horizontal/vertical resolution of the output
device indicated by the -T option (default post). Nroff similarly rounds numerical
input to the actual resolution of its output device (default Model 37 Teletype).

11..33.. NNuummeerriiccaall ppaarraammeetteerr iinnppuutt.. Both nroff and troff accept numerical input with the
appended scale indicators shown in the following table, where S is the current type size
in points and V is the current vertical line spacing in basic units.

Scale

Indicator Meaning__________________________________
i Inch
c Centimeter
P Pica = 1/6 inch
m Em = S points
n En = Em/2
p Point = 1/72 inch
u Basic unit
v Vertical line space V

none Default, see below__________________________________

In nroff, both the em and the en are taken to be equal to the nominal character width,
which is output-device dependent; common values are 1/10 and 1/12 inch. Actual
character widths in nroff need not be all the same and constructed characters such as
-> (�) are often extra wide. The default scaling is m for the horizontally-oriented
requests and functions ll, in, ti, ta, lt, po, mc, \h, \l, and horizontal coordi
nates of \D; v for the vertically-oriented requests and functions pl, wh, ch, dt, sp,
sv, ne, rt, \v, \x, \L, and vertical coordinates of \D; p for the vs request; and u for
the requests nr, if, and ie. All other requests ignore any scale indicators. When a
number register containing an already appropriately scaled number is interpolated to
provide numerical input, the unit scale indicator u may need to be appended to prevent
an additional inappropriate default scaling. The number, N, may be specified in
decimal-fraction form but the parameter finally stored is rounded to an integer number

 10

of basic units. Internal computations are performed in integer arithmetic.

The absolute position indicator | may be prefixed to a number N to generate the
distance to the vertical or horizontal place N. For vertically-oriented requests and func
tions, |N becomes the distance in basic units from the current vertical place on the
page or in a diversion (§7.4) to the vertical place N. For all other requests and func
tions, |N becomes the distance from the current horizontal place on the input line to
the horizontal place N. For example,

.sp |3.2c

will space in the required direction to 3.2 centimeters from the top of the page.

11..44.. NNuummeerriiccaall eexxpprreessssiioonnss.. Wherever numerical input is expected, an expression
involving parentheses, the arithmetic operators +, -, /, ∗, % (mod), and the logical oper
ators <, >, <=, >=, = (or ==), & (and), : (or) may be used. Except where controlled by
parentheses, evaluation of expressions is left-to-right; there is no operator precedence.
In the case of certain requests, an initial + or - is stripped and interpreted as an incre
ment or decrement indicator respectively. In the presence of default scaling, the desired
scale indicator must be attached to every number in an expression for which the desired
and default scaling differ. For example, if the number register x contains 2 and the cur
rent point size is 10, then

.ll (4.25i+\nxP+3)/2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 3 ems.

11..55.. NNoottaattiioonn.. Numerical parameters are indicated in this manual in two ways. ±N
means that the argument may take the forms N, + N, or − N and that the corresponding
effect is to set the parameter to N, to increment it by N, or to decrement it by N respec
tively. Plain N means that an initial algebraic sign is not an increment indicator, but
merely the sign of N. Generally, unreasonable numerical input is either ignored or trun
cated to a reasonable value. For example, most requests expect to set parameters to
non-negative values; exceptions are sp, wh, ch, nr, and if. The requests ps, ft,
po, vs, ls, ll, in, and lt restore the previous parameter value in the absence of an
argument.

Single character arguments are indicated by single lower case letters and one/two
character arguments are indicated by a pair of lower case letters. Character string argu
ments are indicated by multi-character mnemonics.

2. Font and Character Size Control

22..11.. CChhaarraacctteerr sseett.. The troff character set is defined by a description file specific to
each output device (§23). There are normally several regular fonts and one or more
special fonts. Characters are input as themselves, as \(xx, as \C'name', or as
\N'n'. The form \C'name' permits a name of any length; the form \N'n' refers to
the n-th character on the current font, whether named or not.

Normally the input characters `, ', and - are printed as �, �, and - respectively; \`,
\', and \- produce `, ´, and �. If the character does not exist in the font, troff
assumes the width is 1 em and outputs the character with a C name as defined in Sec
tion 22. (This is independent of how the device handles characters unknown to it.)

Nroff has an analogous, but different, mechanism for defining legal characters and
how to print them. By default all characters are valid. There are such additional charac
ters as may be available on the output device, such characters as may be constructed by
overstriking or other combination, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table prepared for
each device.

22..22.. FFoonnttss.. Troff begins execution by reading information for a set of defaults fonts,

 11

said to be mounted; conventionally, the first four are Times Roman (R), Times Italic (I),
Times Bold (B), and Times Bold Italic (BI) , and the last is a Special font (S) containing
miscellaneous characters. (This document uses Lucida Sans in place of Times.) The set
of fonts and positions is determined by the device description file, described in §23.

The current font, initially Roman, may be changed by the ft request, or by embed
ding at any desired point \fx, \f(xx, or \fN, where x and xx are the name of a font
and N is a numerical font position.

It is not necessary to change to the Special font; characters on that font are auto
matically handled as if they were physically part of the current font. The Special font
may actually be several fonts; the name S is reserved and is generally used for one of
these. All special fonts must be mounted after regular fonts.

Troff can be informed that any particular font is mounted by use of the fp
request. The list of known fonts is installation dependent. In the subsequent discus
sion of font-related requests, F represents either a one/two-character font name or the
numerical font position. The current font is available (as a numerical position) in the
read-only number register .f.

A request for a named but not-mounted font is honored if the font description
information exists. In this way, there is no limit on the number of fonts that may be
printed in any part of a document. Mounted fonts may be handled more efficiently, and
they may be referred to by their mount positions, but there is no other difference. Men
tion of an unmounted font loads it temporarily at font position zero, which serves as a
one-font cache.

The function \S'±N' causes the current font to be slanted by ±N degrees. Not all
devices support slanting.

Nroff understands font control and normally underlines italic characters (see
§10.5).

22..33.. CChhaarraacctteerr ssiizzee.. Character point sizes available depend on the specific output
device; a typical (historical) set of values is 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24,
28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is used to change
or restore the point size. Alternatively the point size may be changed between any two
characters by embedding a \sN at the desired point to set the size to N, or a \s±N
(1fNf9) to increment/decrement the size by N; \s0 restores the previous size.
Requested point size values that are between two valid sizes yield the larger of the two.

Note that through an accident of history, a construction like \s39 is parsed as size
39, and thus converted to size 36 (given the sizes above), while \s40 is parsed as size
4 followed by 0. The forms \s(nn and \s±(nn permit specification of sizes that
would otherwise be ambiguous.

The current size is available in the .s register. Nroff ignores type size requests.

The function \H'±N' sets the height of the current font to N, or increments it by
+ N, or decrements it by − N; if N = 0, the height is restored to the current point size. In
each case, the width is unchanged. Not all devices support independent height and
width for characters.

Request Initial If No
Form Value Argument Notes

.ps ±N* 10point previous E

Point size set to ±N. Alternatively, embed \sN or \s±N. Any positive size
value may be requested; if invalid, the next larger valid size will result, with
a maximum of 36. A paired sequence + N, − N will work because the

*The fields have the same meaning as described earlier in the Request Summary.

 12

previous requested value is also remembered. Ignored in nroff.

.ss N 12/36em ignored E

Space-character size (i.e., inter-word gap) is set to N/36 ems. This size is
the minimum word spacing in adjusted text. Ignored in nroff.

.csF N M off - P

Constant character space (width) mode is set on for font F (if mounted); the
width of every character will be taken to be N/36 ems. If M is absent, the
em is that of the character�s point size; if M is given, the em is M points. All
affected characters are centered in this space, including those with an actual
width larger than this space. Special Font characters occurring while the
current font is F are also so treated. If N is absent, the mode is turned off.
The mode must be in effect when the characters are physically printed.
Ignored in nroff.

.bd F N off - P

The characters in font F will be artificially emboldened by printing each one
twice, separated by N − 1 basic units. A reasonable value for N is 3 when the
character size is near 10 points. If N is missing the embolden mode is
turned off. The emboldening value N is in the .b register.

TThhiiss ppaarraaggrraapphh iiss pprriinntteedd wwiitthh .bd R 3.. TThhee mmooddee mmuusstt bbee iinn eeffffeecctt
wwhheenn tthhee cchhaarraacctteerrss aarree pphhyyssiiccaallllyy pprriinntteedd.. IIggnnoorreedd iinn nroff..

.bd S F N off - P

The characters in the Special font will be emboldened whenever the current
font is F. The mode must be in effect when the characters are physically
printed. Ignored in nroff.

.ft F Roman previous E

Font changed to F. Alternatively, embed \fF. The font name P is reserved
to mean the previous font, and the name S for the special font.

.fp N F L R,I,B,...,S ignored -

Font position. This is a statement that a font named F is associated with
position N. It is a fatal error if F is not known. For fonts with names longer
than two characters, L refers to the long name, and F becomes a synonym.
There is generally a limit of about 10 mounted fonts.

3. Page control

Top and bottom margins are not automatically provided; it is conventional to
define two macros and to set traps for them at vertical positions 0 (top) and − N (dis
tance N up from the bottom). See §7 and Tutorial Examples §T2. A pseudo-page tran
sition onto the first page occurs either when the first break occurs or when the first
non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the
current diversion (§7.4) mean that the mechanism being described works during both
ordinary and diverted output (the former considered as the top diversion level).

The limitations on troff and nroff output dimensions are device dependent.

.pl ±N 11 in 11 in v

Page length set to ±N. The current page length is available in the .p regis
ter.

.bp ±N N=1 - B,v

Begin page. The current page is ejected and a new page is begun. If ±N is
given, the new page number will be ±N. Also see request ns.

 13

.pn ±N N=1 ignored -

Page number. The next page (when it occurs) will have the page number
±N. A pn must occur before the initial pseudo-page transition to affect the
page number of the first page. The current page number is in the % regis
ter.

.po ±N 1 in; 0 previous v

Page offset. The current left margin is set to ±N. The troff initial value
provides 1 inch of paper margin on a typical device. The current page offset
is available in the .o register.

.ne N - N=1V D,v

Need N vertical space. If the distance D to the next trap position (see §7.5)
is less than N, a forward vertical space of size D occurs, which will spring
the trap. If there are no remaining traps on the page, D is the distance to
the bottom of the page. If D <V, another line could still be output and
spring the trap. In a diversion, D is the distance to the diversion trap, if any,
or is very large.

.mk R none internal D

Mark the current vertical place in an internal register (both associated with
the current diversion level), or in register R, if given. See rt request.

.rt ±N none internal D,v

Return upward only to a marked vertical place in the current diversion. If
±N (with respect to current place) is given, the place is ±N from the top of
the page or diversion or, if N is absent, to a place marked by a previous mk.
The sp request (§5.3) may be used instead of rt by spacing to the absolute
place stored in a explicit register, e.g., using .mk Rsp |\nRu; this
also works when the motion is downwards.

4. Text Filling, Adjusting, and Centering

44..11.. FFiilllliinngg aanndd aaddjjuussttiinngg.. Normally, words are collected from input text lines and
assembled into a output text line until some word does not fit. An attempt is then made
to hyphenate the word to put part of it into the output line. The spaces between the
words on the output line are then increased to spread out the line to the current line
length minus any current indent. A word is any string of characters delimited by the
space character or the beginning/end of the input line. Any adjacent pair of words that
must be kept together (neither split across output lines nor spread apart in the adjust
ment process) can be tied together by separating them with the unpaddable space char
acter ��\ �� (backslash-space). The adjusted word spacings are uniform in troff and the
minimum interword spacing can be controlled with the ss request (§2). In nroff, they
are normally nonuniform because of quantization to character-size spaces; however, the
command line option -e causes uniform spacing with full output device resolution. Fill
ing, adjustment, and hyphenation (§13) can all be prevented or controlled. The text
length on the last line output is available in the .n register, and text baseline position
on the page for this line is in the nl register. The text baseline high-water mark (low
est place) on the current page is in the .h register. The current horizontal output posi
tion is in the .k register.

An input text line ending with ., ?, or !, optionally followed by any number of ",
',),], *, or , is taken to be the end of a sentence, and an additional space character
is automatically provided during filling. To prevent this, add \& to the end of the input
line. Multiple inter-word space characters found in the input are retained, except for
trailing spaces; initial spaces also cause a break.

 14

When filling is in effect, a \p may be embedded or attached to a word to cause a
break at the end of the word and have the resulting output line spread out to fill the cur
rent line length.

A text input line that happens to begin with a control character can be made not to
look like a control line by prefixing it with the non-printing, zero-width filler character
\&. Still another way is to specify output translation of some convenient character into
the control character using tr (§10.5).

44..22.. IInntteerrrruupptteedd tteexxtt.. The copying of a input line in nofill (non-fill) mode can be inter
rupted by terminating the partial line with a \c. The next encountered input text line
will be considered to be a continuation of the same line of input text. Similarly, a word
within filled text may be interrupted by terminating the word (and line) with \c; the
next encountered text will be taken as a continuation of the interrupted word. If the
intervening control lines cause a break, any partial line will be forced out along with any
partial word.

.br - - B

Break. The filling of the line currently being collected is stopped and the
line is output without adjustment. Text lines beginning with space charac
ters (but not tabs) and empty text lines (blank lines) also cause a break.

.fi fill on - B,E

Fill subsequent output lines. The register .u is 1 in fill mode and 0 in nofill
mode.

.nf fill on - B,E

Nofill. Subsequent output lines are neither filled nor adjusted. Input text
lines are copied directly to output lines without regard for the current line
length.

.ad c adj, both adjust E

Line adjustment is begun. If fill mode is not on, adjustment will be deferred
until fill mode is back on. If the type indicator c is present, the adjustment
type is changed as shown in the following table.

Indicator Adjust Type_____________________________________

l adjust left margin only
r adjust right margin only
c center

b or n adjust both margins
absent unchanged_____________________________________

The number register .j contains the current value of the ad setting; its
value can be recorded and used subsequently to set adjustment.

.na adjust - E

Noadjust. Adjustment is turned off; the right margin will be ragged. The
adjustment type for ad is not changed. Output line filling still occurs if fill
mode is on.

.ce N off N = 1 B,E

Center the next N input text lines within the current available horizontal
space (line-length minus indent). If N = 0, any residual count is cleared. A
break occurs after each of the N input lines. If the input line is too long, it
will be left adjusted.

 15

5. Vertical Spacing

55..11.. BBaasseelliinnee ssppaacciinngg.. The vertical spacing (V) between the baselines of successive
output lines can be set using the vs request. V should be large enough to accommo
date the character sizes on the affected output lines. For the common type sizes (9-12
points), usual typesetting practice is to set V to 2 points greater than the point size;
troff default is 10-point type on a 12-point spacing (as in this document). The current
V is available in the .v register. Multiple-V line separation (e.g., double spacing) may
be requested with ls, but it is better to use a large vs instead; certain preprocessors
assume single spacing. The current line spacing is available in the .L register.

55..22.. EExxttrraa lliinnee--ssppaaccee.. If a word contains a tall construct requiring the output line con
taining it to have extra vertical space before and/or after it, the extra-line-space func
tion \x'N' can be embedded in or attached to that word. If N is negative, the output
line containing the word will be preceded by N extra vertical space; if N is positive, the
output line containing the word will be followed by N extra vertical space. If successive
requests for extra space apply to the same line, the maximum values are used. The
most recently utilized post-line extra line-space is available in the .a register.

In \x'...' and other functions having a pair of delimiters around their parameter,
the delimiter choice (here ') is arbitrary, except that it can not look like the continuation
of a number expression for N.

55..33.. BBlloocckkss ooff vveerrttiiccaall ssppaaccee.. A block of vertical space is ordinarily requested using
sp, which honors the no-space mode and which does not space past a trap. A contigu
ous block of vertical space may be reserved using sv.

.vs N 12pts; 1/6in previous E,p

Set vertical baseline spacing size V. Transient extra vertical space is avail
able with \x'N ' (see above).

.ls N N = 1 previous E

Line spacing set to ±N. N − 1 Vs (blank lines) are appended to each output
text line. Appended blank lines are omitted, if the text or previous
appended blank line reached a trap position.

.sp N - N = 1 V B,v

Space vertically in either direction. If N is negative, the motion is backward
(upward) and is limited to the distance to the top of the page. Forward
(downward) motion is truncated to the distance to the nearest trap. (Recall
the use of .sp |N from §1.3.) If the no-space mode is on, no spacing
occurs (see ns and rs below).

.sv N - N = 1 V v

Save a contiguous vertical block of size N. If the distance to the next trap is
greater than N, N vertical space is output. No-space mode has no effect. If
this distance is less than N, no vertical space is immediately output, but N is
remembered for later output (see os). Subsequent sv requests will over
write any still remembered N.

.os - - -

Output saved vertical space. No-space mode has no effect. Used to finally
output a block of vertical space requested by an earlier sv request.

.ns space - D

No-space mode turned on. When on, no-space mode inhibits sp requests
and bp requests without a next page number. No-space mode is turned off
when a line of output occurs, or with rs.

.rs space - D

 16

Restore spacing. The no-space mode is turned off.

Blank text line. - B

Causes a break and output of a blank line exactly like sp 1.

6. Line Length and Indenting

The maximum line length for fill mode may be set with ll. The indent may be set
with in; an indent applicable to only the next output line may be set with ti. The line
length includes indent space but not page offset space. The line length minus the
indent is the basis for centering with ce. The effect of ll, in, or ti is delayed, if a
partially collected line exists, until after that line is output. In fill mode the length of
text on an output line is less than or equal to the line length minus the indent. The cur
rent line length and indent are available in registers .l and .i respectively. The length
of three-part titles produced by tl (see §14) is independently set by lt.

.ll ±N 6.5 in previous E,m

Line length is set to ±N.

.in ±N N=0 previous B,E,m

Indent is set to ±N. The indent is prefixed to each output line.

.ti ±N - ignored B,E,m

Temporary indent. The next output text line will be indented a distance ±N
with respect to the current indent. The resulting total indent may not be
negative. The current indent is not changed.

7. Macros, Strings, Diversion, and Position Traps

77..11.. MMaaccrrooss aanndd ssttrriinnggss.. A macro is a named set of arbitrary lines that may be
invoked by name or with a trap. A string is a named string of characters, not including
a newline character, that may be interpolated by name at any point. Request, macro,
and string names share the same name list. Macro and string names may be one or two
characters long and may usurp previously defined request, macro, or string names; this
implies that built-in operations may be (irrevocably) redefined. Any of these entities
may be renamed with rn or removed with rm.

Macros are created by de and di, and appended to by am and da; di and da
cause normal output to be stored in a macro. A macro is invoked in the same way as a
request; a control line beginning .xx will interpolate the contents of macro xx. The
remainder of the line may contain up to nine arguments.

Strings are created by ds and appended to by as. The strings x and xx are inter
polated at any desired point with \∗x and \∗(xx respectively. String references and
macro invocations may be nested.

77..22.. CCooppyy mmooddee iinnppuutt iinntteerrpprreettaattiioonn.. During the definition and extension of strings
and macros (not by diversion) the input is read in copy mode. In copy mode, input is
copied without interpretation except that:

� The contents of number registers indicated by \n are interpolated.
� Strings indicated by \∗ are interpolated.
� Arguments indicated by \$ are interpolated.
� Concealed newlines indicated by \newline are eliminated.
� Comments indicated by \" are eliminated.
� \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
� \\ is interpreted as \.
� \. is interpreted as ��.��.

These interpretations can be suppressed by prefixing a \. For example, since \\ maps
into a \, \\n will copy as \n, which will be interpreted as a number register indicator

 17

when the macro or string is reread.

77..33.. AArrgguummeennttss.. When a macro is invoked by name, the remainder of the line is taken
to contain up to nine arguments. The argument separator is the space character (not
tab), and arguments may be surrounded by double quotes to permit embedded space
characters. Pairs of double quotes may be embedded in double-quoted arguments to
represent a single double-quote character. The argument "" is explicitly null. If the
desired arguments won�t fit on a line, a concealed newline may be used to continue on
the next line. A trailing double quote may be omitted.

When a macro is invoked the input level is pushed down and any arguments avail
able at the previous level become unavailable until the macro is completely read and the
previous level is restored. A macro�s own arguments can be interpolated at any point
within the macro with \$N, which interpolates the Nth argument (1fNf9). If an
invoked argument does not exist, a null string results. For example, the macro xx may
be defined by

.de xx \" begin definition
Today is \\$1 the \\$2.
.. \" end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that each \$ was concealed in the definition with a prefixed \. The number of
arguments is in the .$ register.

No arguments are available at the top (non-macro) level, within a string, or within a
trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for refer
ence. It is advisable to conceal string references (with an extra \) to delay interpolation
until argument reference time.

77..44.. DDiivveerrssiioonnss.. Processed output may be diverted into a macro for purposes such as
footnote processing (see Tutorial §T5) or determining the horizontal and vertical size of
some text for conditional changing of pages or columns. A single diversion trap may be
set at a specified vertical position. The number registers dn and dl respectively con
tain the vertical and horizontal size of the most recently ended diversion. Processed
text that is diverted into a macro retains the vertical size of each of its lines when reread
in nofill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd)
text that is diverted can be reread correctly only if these modes are again or still in
effect at reread time. One way to do this is to embed in the diversion the appropriate
cs or bd requests with the transparent mechanism described in §10.6.

Diversions may be nested and certain parameters and registers are associated with
the current diversion level (the top non-diversion level may be thought of as the 0th
diversion level). These are the diversion trap and associated macro, no-space mode,
the internally-saved marked place (see mk and rt), the current vertical place (.d regis
ter), the current high-water text baseline (.h register), and the current diversion name
(.z register).

77..55.. TTrraappss.. Three types of trap mechanisms are available�page traps, a diversion
trap, and an input-line-count trap. Macro-invocation traps may be planted using wh at
any page position including the top. This trap position may be changed using ch. Trap
positions at or below the bottom of the page have no effect unless or until moved to
within the page or rendered effective by an increase in page length. Two traps may be
planted at the same position only by first planting them at different positions and then

 18

moving one of the traps; the first planted trap will conceal the second unless and until
the first one is moved (see Tutorial Examples). If the first one is moved back, it again
conceals the second trap. The macro associated with a page trap is automatically
invoked when a line of text is output whose vertical size reaches or sweeps past the trap
position. Reaching the bottom of a page springs the top-of-page trap, if any, provided
there is a next page. The distance to the next trap position is available in the .t regis
ter; if there are no traps between the current position and the bottom of the page, the
distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using
dt. The .t register works in a diversion; if there is no subsequent trap a large distance
is returned. For a description of input-line-count traps, see it below.

.de xx yy - .yy=.. -

Define or redefine the macro xx. The contents of the macro begin on the
next input line. Input lines are copied in copy mode until the definition is
terminated by a line beginning with .yy, whereupon the macro yy is called.
In the absence of yy, the definition is terminated by a line beginning with
��..��. A macro may contain de requests provided the terminating macros
differ or the contained definition terminator is concealed. ��..�� can be con
cealed as \\.. which will copy as \.. and be reread as ��..��.

.am xx yy - .yy=.. -

Append to macro xx (append version of de).

.ds xx string - ignored -

Define a string xx containing string. Any initial double quote in string is
stripped off to permit initial blanks.

.as xx string - ignored -

Append string to string xx (append version of ds).

.rm xx - ignored -

Remove request, macro, or string. The name xx is removed from the name
list and any related storage space is freed. Subsequent references will have
no effect. If many macros and strings are being created dynamically, it may
become necessary to remove unused ones to recapture internal storage
space for newer registers.

.rn xx yy - ignored -

Rename request, macro, or string xx to yy. If yy exists, it is first removed.

.di xx - end D

Divert output to macro xx. Normal text processing occurs during diversion
except that page offsetting is not done. The diversion ends when the
request di or da is encountered without an argument; extraneous requests
of this type should not appear when nested diversions are being used.

.da xx - end D

Divert, appending to macro xx (append version of di).

.wh N xx - - v

Install a trap to invoke xx at page position N; a negative N will be interpreted
as a distance from the page bottom. Any macro previously planted at N is
replaced by xx. A zero N refers to the top of a page. In the absence of xx,
the first trap found at N, if any, is removed.

.ch xx N - - v

Change the trap position for macro xx to be N. In the absence of N, the

 19

trap, if any, is removed.

.dt N xx - off D,v

Install a diversion trap at position N in the current diversion to invoke macro
xx. Another dt will redefine the diversion trap. If no arguments are given,
the diversion trap is removed.

.it N xx - off E

Set an input-line-count trap to invoke the macro xx after N lines of text
input have been read (control or request lines do not count). The text may
be inline text or text interpolated by inline or trap-invoked macros.

.em xx none none -

The macro xx will be invoked when all input has ended. The effect is almost
as if the contents of xx had been at the end of the last file processed, but all
processing ceases at the next page eject.

8. Number Registers

A variety of parameters are available to the user as predefined number registers
(see Summary, page 7). In addition, users may define their own registers. Register
names are one or two characters long and do not conflict with request, macro, or string
names. Except for certain predefined read-only registers, a number register can be
read, written, automatically incremented or decremented, and interpolated into the
input in a variety of formats. One common use of user-defined registers is to automati
cally number sections, paragraphs, lines, etc. A number register may be used any time
numerical input is expected or desired and may be used in numerical expressions (§1.4).

Number registers are created and modified using nr, which specifies the name,
numerical value, and the auto-increment size. Registers are also modified, if accessed
with an auto-incrementing sequence. If the registers x and xx both contain N and have
the auto-increment size M, the following access sequences have the effect shown:

__
Effect on Value

Sequence Register Interpolated__
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+(xx xx incremented by M N+M
\n-(xx xx decremented by M N-M__

When interpolated, a number register is converted to decimal (default), decimal with
leading zeros, lower-case Roman, upper-case Roman, lower-case sequential alphabetic,
or upper-case sequential alphabetic according to the format specified by af.

.nr R ±N M - u

The number register R is assigned the value ±N with respect to the previous
value, if any. The increment for auto-incrementing is set to M.

.af R c arabic - -

Assign format c to register R. The available formats are:

 20

Numbering

Format Sequence___
1 0, 1, 2, 3, 4, 5, ...
001 000, 001, 002, 003, 004, 005, ...
i 0, i, ii, iii, iv, v, ...
I 0, I, II, III, IV, V, ...
a 0, a, b, c, ..., z, aa, ab, ..., zz, aaa, ...
A 0, A, B, C, ..., Z, AA, AB, ..., ZZ, AAA, ...___

An arabic format having N digits specifies a field width of N digits (example
2 above). The read-only registers and the width function \w (§11.2) are
always arabic. Warning: the value of a number register in a non-Arabic for
mat is not numeric, and will not produce the expected results in expres
sions.

The function \gx or \g(xx returns the format of a number register in a
form suitable for af; it returns nothing if the register has not been used.

.rr R - ignored -

Remove number register R. If many registers are being created dynamically,
it may become necessary to remove unused registers to recapture internal
storage space for newer registers. The register .R contains the number of
number registers still available.

9. Tabs, Leaders, and Fields

99..11.. TTaabbss aanndd lleeaaddeerrss.. The ASCII horizontal tab character and the ASCII SOH (control-
A, hereafter called the leader character) can both be used to generate either horizontal
motion or a string of repeated characters. The length of the generated entity is gov
erned by internal tab stops specifiable with ta. The default difference is that tabs gen
erate motion and leaders generate a string of periods; tc and lc offer the choice of
repeated character or motion. There are three types of internal tab stops�left adjust
ing, right adjusting, and centering. In the following table, D is the distance from the
current position on the input line (where a tab or leader was found) to the next tab stop,
next-string consists of the input characters following the tab (or leader) up to the next
tab (or leader) or end of line, and W is the width of next-string.

Tab Length of motion or Location of
type repeated characters next-string___
Left D Following D

Right D-W Right adjusted within D
Centered D-W/2 Centered on right end of D___

The length of generated motion is allowed to be negative, but that of a repeated charac
ter string cannot be. Repeated character strings contain an integer number of charac
ters, and any residual distance is prepended as motion. Tabs or leaders found after the
last tab stop are ignored, but may be used as next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a
non-interpreted tab and leader respectively, and are equivalent to actual tabs and lead
ers in copy mode.

99..22.. FFiieellddss.. A field is contained between a pair of field delimiter characters, and con
sists of substrings separated by padding indicator characters. The field length is the
distance on the input line from the position where the field begins to the next tab stop.
The difference between the total length of all the substrings and the field length is
incorporated as horizontal padding space that is divided among the indicated padding
places. The incorporated padding is allowed to be negative. For example, if the field

 21

delimiter is # and the padding indicator is ^, #^xxx^right# specifies a right-adjusted
string with the string xxx centered in the remaining space.

.ta Nt ... 0.8; 0.5in none E,m

Set tab stops and types. t=R, right adjusting; t=C, centering; t absent, left
adjusting. Troff tab stops are preset every 0.5in., nroff every 0.8in. The
stop values are separated by spaces, and a value preceded by + is treated as
an increment to the previous stop value.

.tc c none none E

The tab repetition character becomes c, or is removed, thus specifying
motion.

.lc c . none E

The leader repetition character becomes c, or is removed, thus specifying
motion.

.fc a b off off -

The field delimiter is set to a; the padding indicator is set to the space char
acter or to b, if given. In the absence of arguments the field mechanism is
turned off.

10. Input and Χutput Conventions and Character Translations

1100..11.. IInnppuutt cchhaarraacctteerr ttrraannssllaattiioonnss.. Ways of inputting the valid character set were dis
cussed in §2.1. The ASCII control characters horizontal tab (§9.1), SOH (§9.1), and back
space (§10.3) are discussed elsewhere. The newline delimits input lines. In addition,
STX, ETX, ENQ, ACK, and BEL are accepted, and may be used as delimiters or translated
into a graphic with tr (§10.5). All others are ignored.

The escape character \ introduces escape sequences, which cause the following
character to mean another character, or to indicate some function. A complete list of
such sequences is given in the Summary on page 7. The escape character \ should not
be confused with the ASCII control character ESC. The escape character \ can be input
with the sequence \\. The escape character can be changed with ec, and all that has
been said about the default \ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. The escape mechanism may be
turned off with eo, and restored with ec.

.ec c \ \ -

Set escape character to \, or to c, if given.

.eo on - -

Turn escape mechanism off.

1100..22.. LLiiggaattuurreess.. The set of available ligatures is device and font dependent, but is
often a subset of fi, fl, ff, ffi, and ffl. They may be input by \(fi, \(fl, \(ff,
\(Fi, and \(Fl respectively. The ligature mode is normally on in troff , and automati
cally invokes ligatures during input.

.lg N on; off on -

Ligature mode is turned on if N is absent or non-zero, and turned off if
N = 0. If N = 2, only the two-character ligatures are automatically invoked.
Ligature mode is inhibited for request, macro, string, register, or file names,
and in copy mode. No effect in nroff.

1100..33.. BBaacckkssppaacciinngg,, uunnddeerrlliinniinngg,, oovveerrssttrriikkiinngg,, eettcc.. Unless in copy mode, the ASCII

backspace character is replaced by a backward horizontal motion having the width of
the space character. Underlining as a form of line-drawing is discussed in §12.4. A
generalized overstriking function is described in §12.1.

 22

Nroff automatically underlines characters in the underline font, specifiable with uf,
normally that on font position 2. In addition to ft and \fF, the underline font may be
selected by ul and cu. Underlining is restricted to an output-device-dependent subset
of reasonable characters.

.ul N off N = 1 E

Italicize in troff (underline in nroff) the next N input text lines. Actually,
switch to underline font, saving the current font for later restoration; other
font changes within the span of a ul will take effect, but the restoration will
undo the last change. Output generated by tl (§14) is affected by the font
change, but does not decrement N. If N >1, there is the risk that a trap
interpolated macro may provide text lines within the span; environment
switching can prevent this.

.cu N off N = 1 E

Continuous underline. A variant of ul that causes every character to be
underlined in nroff. Identical to ul in troff .

.uf F Italic Italic -

Underline font set to F. In nroff, F may not be on position 1.

1100..44.. CCoonnttrrooll cchhaarraacctteerrss.. Both the control character . and the no-break control char
acter ' may be changed. Such a change must be compatible with the design of any
macros used in the span of the change, and particularly of any trap-invoked macros.

.cc c . . E

The basic control character is set to c, or reset to ��.��.

.c2 c ' ' E

The no-break control character is set to c, or reset to ��'��.

1100..55.. ΧΧuuttppuutt ttrraannssllaattiioonn.. One character can be made a stand-in for another charac
ter using tr. All text processing (e.g., character comparisons) takes place with the
input (stand-in) character, which appears to have the width of the final character. The
graphic translation occurs at the moment of output (including diversion).

.tr abcd.... none - O

Translate a into b, c into d, etc. If an odd number of characters is given, the
last one will be mapped into the space character. To be consistent, a partic
ular translation must stay in effect from input to output time.

1100..66.. TTrraannssppaarreenntt tthhrroouugghhppuutt.. An input line beginning with a \! is read in copy
mode and transparently output (without the initial \!); the text processor is otherwise
unaware of the line�s presence. This mechanism may be used to pass control informa
tion to a post-processor or to embed control lines in a macro created by a diversion.

1100..77.. TTrraannssppaarreenntt oouuttppuutt The sequence \X'anything' copies anything to the out
put, as a device control function of the form x X anything (§22). Escape sequences in
anything are processed.

1100..88.. CCoommmmeennttss aanndd ccoonncceeaalleedd nneewwlliinneess.. An uncomfortably long input line that must
stay one line (e.g., a string definition, or nofilled text) can be split into several physical
lines by ending all but the last one with the escape \. The sequence \newline is always
ignored, except in a comment. Comments may be embedded at the end of any line by
prefacing them with \". The newline at the end of a comment cannot be concealed. A
line beginning with \" will appear as a blank line and behave like .sp 1; a comment
can be on a line by itself by beginning the line with .\".

 23

11. Local Horizontal and Vertical Motions, and the Width Function

1111..11.. LLooccaall MMoottiioonnss.. The functions \v'N' and \h'N' can be used for local vertical
and horizontal motion respectively. The distance N may be negative; the positive direc
tions are rightward and downward. A local motion is one contained within a line. To
avoid unexpected vertical dislocations, it is necessary that the net vertical local motion
within a word in filled text and otherwise within a line balance to zero. The escape
sequences providing local motion are summarized in the following table.

Vertical Effect in Horizontal Effect in
Local Motion troff nroff Local Motion troff nroff___

\v'N' Move distance N
\h'N' Move distance N

\space Unpaddable space-size space

\u ½ em up ½ line up \0 Digit-size space
\d ½ em down ½ line down

__

\r 1 em up 1 line up \| 1/6 em space ignored
\^ 1/12 em space ignored

As an example, E2 could be generated by a sequence of size changes and motions:
E\s-2\v'-0.4m'2\v'0.4m'\s+2; note that the 0.4 em vertical motions are at the
smaller size.

1111..22.. WWiiddtthh FFuunnccttiioonn.. The width function \w'string' generates the numerical width
of string (in basic units). Size and font changes may be embedded in string, and will
not affect the current environment. For example, .ti -\w'\fB1. 'u could be used
to temporarily indent leftward a distance equal to the size of the string ��1. �� in font B.

The width function also sets three number registers. The registers st and sb are
set respectively to the highest and lowest extent of string relative to the baseline; then,
for example, the total height of the string is \n(stu-\n(sbu. In troff the number
register ct is set to a value between 0 and 3. The value 0 means that all of the charac
ters in string were short lower case characters without descenders (like e); 1 means that
at least one character has a descender (like y); 2 means that at least one character is tall
(like H); and 3 means that both tall characters and characters with descenders are pre
sent.

1111..33.. MMaarrkk hhoorriizzoonnttaall ppllaaccee.. The function \kx causes the current horizontal position
in the input line to be stored in register x. For example, the construction
\kxword\h'|\nxu+3u'word will embolden word by backing up to almost its begin
ning and overprinting it, resulting in wordword.

12. Χverstrike, Bracket, Line-drawing, Graphics, and Zero-width Functions

1122..11.. ΧΧvveerrssttrriikkiinngg.. Automatically centered overstriking of up to nine characters is
provided by the overstrike function \o'string'. The characters in string are over
printed with centers aligned; the total width is that of the widest character. string may
not contain local vertical motion. As examples, \o'e\'' produces é, and
\o'\(mo\(sl' produces ∈/ .

1122..22.. ZZeerroo--wwiiddtthh cchhaarraacctteerrss.. The function \zc will output c without spacing over it,
and can be used to produce left-aligned overstruck combinations. As examples, \z¡+
will produce ¡+, and \(br\z\(rn\(ul\(br will produce a small badly constructed
box _.
1122..33.. LLaarrggee BBrraacckkeettss.. The Special Font usually contains a number of bracket con
struction pieces that can be combined into various bracket styles.
The function \b'string' may be used to pile up vertically the characters in string (the
first character on top and the last at the bottom); the characters are vertically separated

 24

by 1 em and the total pile is centered 1/2 em above the current baseline (½ line in
nroff). For example,

\b'\(lc\(lf'E\b'\(rc\(rf'\x'-0.5m'\x'0.5m'

produces

E

 .

1122..44.. LLiinnee ddrraawwiinngg.. The function \l'Nc' (backslash-ell) draws a string of repeated
c�s towards the right for a distance N. If c looks like a continuation of an expression for
N, it may be insulated from N with \&. If c is not specified, the _ (baseline rule) is used
(underline character in nroff). If N is negative, a backward horizontal motion of size N is
made before drawing the string. Any space resulting from N/(size of c) having a remain
der is put at the beginning (left end) of the string. If N is less than the width of c, a sin
gle c is centered on a distance N. In the case of characters that are designed to be con
nected, such as baseline-rule _ , under-rule _ , and root-en , the remainder space is
covered by overlapping. As an example, a macro to underscore a string can be written

.de us
\\$1\l'|0\(ul'
..

or one to draw a box around a string

.de bx
\(br\|\\$1\|\(br\l'|0\(rn'\l'|0\(ul'
..

such that

.ul "underlined words"

and

.bx "words in a box"

yield underlined words_________________ and words in a box________________.

The function \L'Nc' draws a vertical line consisting of the (optional) character c
stacked vertically apart 1em (1 line in nroff), with the first two characters overlapped, if
necessary, to form a continuous line. The default character is the box rule (\(br); the
other suitable character is the bold vertical (\(bv). The line is begun without any ini
tial motion relative to the current baseline. A positive N specifies a line drawn down
ward and a negative N specifies a line drawn upward. After the line is drawn no com
pensating motions are made; the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to
produce large boxes. The zero-width box-rule and the ½-em wide under-rule were
designed to form corners when using 1-em vertical spacings. For example the macro
.de eb

.sp -1 \"compensate for next automatic baseline spacing

.nf \"avoid possibly overflowing word buffer

\h'-.5n'\L'|\\nau-1'\l'\\n(.lu+1n\(ul'\L'-|\\nau+1'\l'|0u-.5n\(ul'

.fi

..

will draw a box around some text whose beginning vertical place was saved in number
register a (e.g., using .mk a) as was done for this paragraph.

__

__

1122..55.. GGrraapphhiiccss.. The function \D'c...' draws a graphic object of type c according to
a sequence of parameters, which are generally pairs of numbers.

\D'l dh dv' draw line from current position by dh, dv
\D'c d' draw circle of diameter d with left side at current position
\D'e d1 d2' draw ellipse of diameters d1 and d2

 25

\D'a dh1 dv1 dh2 dv2'draw arc from current position to dh1 + dh2, dv1 + dv2,
with center at dh1 , dv1 from current position

\D'~ dh1 dv1 dh2 dv2 ...'draw B-spline from current position by dh1, dv1,
then by dh2 ,dv2, then by dh2 ,dv2, then ...

For example, \D'e0.2i 0.1i' draws the ellipse , and \D'l.2i
-.1i'\D'l.1i .1i' the line . A \D with an unknown c is processed and
copied through to the output for unspecified interpretation; coordinates are interpreted
alternately as horizontal and vertical values.

Numbers taken as horizontal (first, third, etc.) have default scaling of ems; vertical
numbers (second, fourth, etc.) have default scaling of V s (§1.3). The position after a
graphical object has been drawn is at its end; for circles and ellipses, the ��end�� is at the
right side.

13. Hyphenation.

Automatic hyphenation may be switched off and on. When switched on with hy,
several variants may be set. A hyphenation indicator character may be embedded in a
word to specify desired hyphenation points, or may be prefixed to suppress hyphen
ation. In addition, the user may specify a small list of exception words.

Only words that consist of a central alphabetic string surrounded by (usually null)
non-alphabetic strings are candidates for automatic hyphenation. Words that contain
hyphens (minus), em-dashes (\(em), or hyphenation indicator characters are always
subject to splitting after those characters, whether automatic hyphenation is on or off.

.nh hyphenate - E

Automatic hyphenation is turned off.

.hy N on, N = 1 on, N = 1 E

Automatic hyphenation is turned on for Ng1, or off for N = 0. If N = 2, last
lines (ones that will cause a trap) are not hyphenated. For N = 4 and 8, the
last and first two characters respectively of a word are not split off. These
values are additive; i.e., N = 14 will invoke all three restrictions.

.hc c \% \% E

Hyphenation indicator character is set to c or to the default \%. The indica
tor does not appear in the output.

.hw word ... ignored -

Specify hyphenation points in words with embedded minus signs. Versions
of a word with terminal s are implied; i.e., dig-it implies dig-its. This
list is examined initially and after each suffix stripping. The space available
is small.

14. Three-Part Titles.

The titling function tl provides for automatic placement of three fields at the left,
center, and right of a line with a title length specifiable with lt. tl may be used any
where, and is independent of the normal text collecting process. A common use is in
header and footer macros.

.tl 'left'center'right' - -

The strings left, center, and right are respectively left-adjusted, centered,
and right-adjusted in the current title length. Any of the strings may be
empty, and overlapping is permitted. If the page-number character (initially
%) is found within any of the fields it is replaced by the current page number
in the format assigned to register %. Any character may be used in place of
' as the string delimiter.

 26

.pc c % off -

The page number character is set to c, or removed. The page number regis
ter remains %.

.lt ±N 6.5 in previous E,m

Length of title is set to ±N. The line length and the title length are indepen
dent. Indents do not apply to titles; page offsets do.

15. Χutput Line Numbering.

Automatic sequence numbering of output lines may be requested with nm.
When in effect, a three-digit, arabic number plus a digit-space is prefixed to out

3 put text lines. The text lines are thus offset by four digit-spaces, and otherwise
retain their line length; a reduction in line length may be desired to keep the right
margin aligned with an earlier margin. Blank lines, other vertical spaces, and lines

6 generated by tl are not numbered. Numbering can be temporarily suspended
with nn, or with an .nm followed by a later .nm +0. In addition, a line number
indent I, and the number-text separation S may be specified in digit-spaces. Fur

9 ther, it can be specified that only those line numbers that are multiples of some
number M are to be printed (the others will appear as blank number fields).

.nm ±N M S I off E

Line number mode. If ±N is given, line numbering is turned on, and the
next output line numbered is numbered ±N. Default values are M = 1, S = 1,
and I = 0. Parameters corresponding to missing arguments are unaffected; a
non-numeric argument is considered missing. In the absence of all argu
ments, numbering is turned off; the next line number is preserved for possi
ble further use in number register ln.

.nn N - N = 1 E

The next N text output lines are not numbered.

As an example, the paragraph portions of this section are numbered with
12 M= 3: .nm 1 3 was placed at the beginning; .nm was placed at the end of the

first paragraph; and .nm +0 was placed in front of this paragraph; and .nm
finally placed at the end. Line lengths were also changed (by \w'0000'u) to

15 keep the right side aligned. Another example is .nm +5 5 x 3, which turns on
numbering with the line number of the next line to be 5 greater than the last num
bered line, with M = 5, with spacing S untouched, and with the indent I set to 3.

16. Conditional Acceptance of Input

In the following, c is a one-character built-in condition name, ! signifies not, N is a
numerical expression, string1 and string2 are strings delimited by any non-blank, non-
numeric character not in the strings, and anything represents what is conditionally
accepted.

.if c anything - -

If condition c true, accept anything as input; in multi-line case use \{any
thing \}.

.if !c anything - -

If condition c false, accept anything.

.if N anything - u

If expression N > 0, accept anything.

.if !N anything - u

If expression N d 0 [sic], accept anything.

 27

.if 'string1'string2' anything -

If string1 identical to string2, accept anything.

.if !'string1'string2' anything -

If string1 not identical to string2, accept anything.

.ie c anything - u

If portion of if-else; all of the forms for if above are valid.

.el anything - -

Else portion of if-else.

The built-in condition names are:
__
Condition

Name True If__
o Current page number is odd
e Current page number is even
t Formatter is troff
n Formatter is nroff__

If the condition c is true, or if the number N is greater than zero, or if the strings com
pare identically (including motions and character size and font), anything is accepted as
input. If a ! precedes the condition, number, or string comparison, the sense of the
acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over.
The anything can be either a single input line (text, macro, or whatever) or a number of
input lines. In the multi-line case, the first line must begin with a left delimiter \{ and
the last line must end with a right delimiter \}.

The request ie (if-else) is identical to if except that the acceptance state is
remembered. A subsequent and matching el (else) request then uses the reverse sense
of that state. ie-el pairs may be nested.

Some examples are:

.if e .tl 'Even Page %'''

which outputs a title if the page number is even; and

.ie \n%>1 \{\
' sp 0.5i
. tl 'Page %'''
' sp |1.2i \}
.el .sp |2.5i

which treats page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text processing are gathered together
into an environment, which can be switched by the user. The environment parameters
are those associated with requests noting E in their Notes column; in addition, partially
collected lines and words are in the environment. Everything else is global; examples
are page-oriented parameters, diversion-oriented parameters, number registers, and
macro and string definitions. All environments are initialized with default parameter
values.

.ev N N = 0 previous -

Environment switched to environment 0fNf2. Switching is done in push-
down fashion so that restoring a previous environment must be done with

 28

.ev rather than specific reference. Note that what is pushed down and
restored is the environment number, not its contents.

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard input with rd, which
will switch back when two consecutive newlines are found (the extra blank line is not
used). This mechanism is intended for insertions in form-letter-like documentation.
The standard input can be the user�s keyboard, a pipe, or a file.

.rd prompt - prompt=BEL -

Read insertion from the standard input until two newlines in a row are
found. If the standard input is the user�s keyboard, prompt (or a BEL) is writ
ten onto the standard output. rd behaves like a macro, and arguments may
be placed after prompt.

.ex - - -

Exit from nroff/troff . Text processing is terminated exactly as if all input
had ended.

If insertions are to be taken from the terminal keyboard while output is being
printed on the terminal, the command line option -q will turn off the echoing of key
board input and prompt only with BEL. The regular input and insertion input cannot
simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the
insertions for all the copies in one file to be used as the standard input, and causing the
file containing the letter to reinvoke itself with nx (§19); the process would ultimately
be ended by an ex in the insertion file.

19. Input/Χutput File Switching

.so filename - -

Switch source file. The top input (file reading) level is switched to filename.
When the new file ends, input is again taken from the original file. so�s may
be nested.

.nx filename end-of-file -

Next file is filename. The current file is considered ended, and the input is
immediately switched to filename.

.sy string - -

Execute program from string, which is the rest of the input line. The output
is not collected automatically. The number register $$, which contains the
process id of the troff process, may be useful in generating unique file
names for output.

.pi string - -

Pipe output to string, which is the rest of the input line. This request must
occur before any printing occurs; typically it is the first line of input.

.cf filename - -

Copy contents of file filename to output, completely unprocessed. The file
is assumed to contain something meaningful to subsequent processes.

 29

20. Miscellaneous

.mc c N - off E,m
Specifies that a margin character c appear a distance N to the right of the
right margin after each non-empty text line (except those produced by tl).
If the output line is too long (as can happen in nofill mode) the character will
be appended to the line. If N is not given, the previous N is used; the initial
N is 0.2 inches in nroff and 1 em in troff . The margin character used with
this paragraph was a 12-point box-rule.

.tm string - newline -

After skipping initial blanks, string (rest of the line) is read in copy mode
and written on the standard error.

.ab string - newline -

After skipping initial blanks, string (rest of the line) is read in copy mode
and written on the standard error. Troff or nroff then exit.

.ig yy - .yy=.. -

Ignore input lines. ig behaves exactly like de (§7) except that the input is
discarded. The input is read in copy mode, and any auto-incremented regis
ters will be affected.

.lf N filename - -

Set line number to N and filename to filename for purposes of subsequent
error messages, etc. The number register [sic] .F contains the name of the
current input file, as set by command line argument, so, nx, or lf. The
number register .c contains the number of input lines read from the cur
rent file, again perhaps as modified by lf.

.pm t - all -

Print macros. The names and sizes of all of the defined macros and strings
are printed on the standard error; if t is given, only the total of the sizes is
printed. The sizes is given in blocks of 128 characters.

.fl - - B

Flush output buffer. Force output, including any pending position informa
tion.

21. Χutput and Error Messages.

The output from tm, pm, and the prompt from rd, as well as various error mes
sages, are written onto the standard error. The latter is different from the standard out
put, where formatted text goes. By default, both are written onto the user�s terminal,
but they can be independently redirected.

Various error conditions may occur during the operation of nroff and troff . Certain
less serious errors having only local impact do not cause processing to terminate. Two
examples are word overflow, caused by a word that is too large to fit into the word
buffer (in fill mode), and line overflow, caused by an output line that grew too large to
fit in the line buffer. In both cases, a message is printed, the offending excess is dis
carded, and the affected word or line is marked at the point of truncation with a � in
nroff and a in troff . Processing continues if possible, on the grounds that output
useful for debugging may be produced. If a serious error occurs, processing termi
nates, and a message is printed, along with a list of the macro names currently active.
Examples of serious errors include the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely to be useful.

 30

22. Χutput Language

Troff produces its output in a language that is independent of any specific output
device, except that the numbers in it have been computed on the basis of the resolution
of the device, and the sizes, fonts, and characters that that device can print. Neverthe
less it is quite possible to interpret that output on a different device, within the latter�s
capabilities.

sn set point size to n
fn set font to n
cc print character c
Cname print the character called name; terminate name by white space
Nn print character n on current font
Hn go to absolute horizontal position n (ng0)
Vn go to absolute vertical position n (ng0, down is positive)
hn go n units horizontally; n <0 is to the left
vn go n units vertically; n <0 is up
nnc move right nn, then print UTF character c; nn must be exactly 2 digits
pn new page n begins�set vertical position to 0
nb a end of line (information only�no action); b = space before line, a = after
w paddable word space (information only�no action)
Dc ...\n graphics function c; see below
x ...\n device control functions; see below
...\n comment

All position values are in units. Sequences that end in digits must be followed by a
non-digit. Blanks, tabs and newlines may occur as separators in the input, and are
mandatory to separate constructions that would otherwise be confused. Graphics func
tions, device control functions, and comments extend to the end of the line they occur
on.

The device control and graphics commands are intended as open-ended families,
to be expanded as needed. The graphics functions coincide directly with the \D
sequences:

Dl dh dv draw line from current position by dh, dv
Dc d draw circle of diameter d with left side here
De dh1 dv2 draw ellipse of diameters dh1 and dv2

Da dh1 dv1 dh2 dv2 draw arc from current position to dh1 + dh2 , dv1 + dv2,
center at dh1 , dv1 from current position

D~ dh1 dv1 dh2 dv2 ... draw B-spline from current position to dh1 , dv1,
then to dh2 , dv2, then to ...

Dz dh1 dv1 dh2 dv2 ... for any other z is uninterpreted

In all of these, dh, dv is an increment on the current horizontal and vertical position,
with down and right positive. All distances and dimensions are in units.

The device control functions begin with x, then a command, then other parame
ters.

x T s name of typesetter is s
x r n h v resolution is n units/inch;

h = minimum horizontal motion, v = minimum vertical
x i initialize
x f n s mount font s on font position n
x p pause�can restart
x s stop�done forever
x t generate trailer information, if any
x H n set character height to n
x S n set slant to n

 31

x X any generated by the \X function
x any to be ignored if not recognized

Subcommands like ��i�� may be spelled out like ��init��.

The commands x T, x r ..., and x i must occur first; fonts must be mounted
before they can be used; x s comes last. There are no other order requirements.

The following is the output from ��hello, world�� for a typical printer, as
described in §23:

x T utf
x res 720 1 1
x init
V0
p1

x font 1 R
x font 2 I
x font 3 B
x font 4 BI
x font 5 CW
x font 6 H
x font 7 HB
x font 8 HX
x font 9 S1
x font 10 S

s10
f1
H0
s10
f1
V0
H720
V120
ch
50e44l28l28o50,w58w72o50r33l28dn120 0
x trailer
V7920
x stop

Troff output is normally not redundant; size and font changes and position infor
mation are not included unless needed. Nevertheless, each page is self-contained, for
the benefit of postprocessors that re-order pages or process only a subset.

23. Device and Font Description Files

The parameters that describe a output device name are read from the directory
/sys/lib/troff/font/devname, each time troff is invoked. The device name is
provided by default, by the environment variable TYPESETTER, or by a command-line
argument -Tname. The default device name is utf, for UTF-encoded Unicode charac
ters. The pre-defined string .T contains the name of the device. The -F command-
line option may be used to change the default directory.

2233..11.. DDeevviiccee ddeessccrriippttiioonn ffiillee.. General parameters of the device are stored, one per
line, in the file /sys/lib/troff/font/devname/DESC, as a sequence of names
and values. Troff recognizes these parameters, and ignores any others that may be pre
sent for specific drivers:

fonts n F1 F2 ... Fn

sizes s1 s2 ...0

 32

res n
hor n
vert n
unitwidth n
charset
list of multi-character character names (optional)

The F i are font names to be initially mounted. The list of sizes is a set of integers repre
senting some or all of the legal sizes the device can produce, terminated by a zero. The
res parameter gives the resolution of the machine in units per inch; hor and ver give
the minimum number of units that can be moved horizontally and vertically.

Character widths for each font are assumed to be given in machine units at point
size unitwidth. (In other words, a character with a width of n is n units wide at size
unitwidth.) All widths are integers at all sizes.

A list of valid character names may be introduced by charset; the list of names
is optional.

A line whose first non-blank character is # is a comment. Except that charset
must occur last, parameters may appear in any order.

Here is a subset of the DESC file for a typical Postscript printer:

Description file for Postscript printers.

fonts 10 R I B BI CW H HB HX S1 S
sizes 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 38 40 44 48 54 60 72 0
res 720
hor 1
vert 1
unitwidth 10
charset
hy ct fi fl ff Fi Fl dg em 14 34 12 en aa
ga ru sc dd -> br Sl ps cs cy as os =. ld
rd le ge pp -+ ob vr
sq bx ci fa te ** pl mi eq ~= *A *B *X *D
*E *F *G *Y *I *K *L *M *N *Χ *P *R *H *S *T *U *W
*C *Q *Z ul rn *a *b *x *d *e *f *g *y *i *k
*l *m *n *o *p *h *r *s *t *u *w *c *q *z

2233..22.. FFoonntt ddeessccrriippttiioonn ffiilleess.. Each font is described by an analogous description file,
which begins with parameters of the font, one per line, followed by a list of characters
and widths. The file for font f is /sys/lib/troff/font/devname/f.

name str name of font is str
ligatures . . . 0 list of ligatures
spacewidth n width of a space on this font
special this is a special font
charset
list of character name, width, ascender/descender, code, tab separated

The name and charset fields are mandatory; charset must be last. Comments are
permitted, as are other unrecognized parameters.

Each line following charset describes one character: its name, its width in units
as described above, ascender/descender information, and a decimal, octal or hexadeci
mal value by which the output device knows it (the \N ��number�� of the character). The
character name is arbitrary, except that --- signifies an unnamed character. If the
width field contains ", the name is a synonym for the previous character. The
ascender/descender field is 1 if the character has a descender (hangs below the

 33

baseline, like y), is 2 if it has an ascender (is tall, like Y), is 3 if both, and is 0 if neither.
The value is returned in the ct register, as computed by the \w function (§11.2).

Here are excerpts from a typical font description file for the same Postscript
printer.

hy 33 0 45 hyphen \(hy
- " - is a synonym for \(hy

Q 72 3 81

a 44 0 97
b 50 2 98
c 44 0 99
d 50 2 100
y 50 1 121

em 100 0 208
--- 44 2 220 Pound symbol £, \N'220'
--- 36 0 221 centered dot \N'221'

This says, for example, that the width of the letter a is 44 units at point size 10, the
value of unitwidth. Point sizes are scaled linearly and rounded, so the width of a
will be 44 at size 10, 40 at size 9, 35 at size 8, and so on.

 34

Tutorial Examples

Introduction

It is almost always necessary to prepare at least a small set of macro definitions to
describe a document. Such common formatting needs as page margins and footnotes
are deliberately not built into nroff and troff . Instead, the macro and string definition,
number register, diversion, environment switching, page-position trap, and conditional
input mechanisms provide the basis for user-defined implementations.

For most uses, a standard package like -ms or -mm is the right choice. The next
stage is to augment that, or to selectively replace macros from the standard package.
The last stage, much harder, is to write one�s own from scratch. This is not a task for
the novice.

The examples discussed here are intended to be useful and somewhat realistic, but
will not necessarily cover all relevant contingencies. Explicit numerical parameters are
used in the examples to make them easier to read and to illustrate typical values. In
many cases, number registers would be used to reduce the number of places where
numerical information is kept, and to concentrate conditional parameter initialization
like that which depends on whether troff or nroff is being used.

Page Margins

As discussed in §3, header and footer macros are usually defined to describe the
top and bottom page margin areas respectively. A trap is planted at page position 0 for
the header, and at -N (N from the page bottom) for the footer. The simplest such defi
nitions might be

.de hd \"define header
'sp 1i
.. \"end definition
.de fo \"define footer
'bp
.. \"end definition
.wh 0 hd
.wh -1i fo

which provide blank 1 inch top and bottom margins. The header will occur on the first
page only if the definition and trap exist prior to the initial pseudo-page transition (§3).
In fill mode, the output line that springs the footer trap was typically forced out because
some part or whole word didn�t fit on it. If anything in the footer and header that fol
lows causes a break, that word or part word will be forced out. In this and other exam
ples, requests like bp and sp that normally cause breaks are invoked using the no-
break control character ' to avoid this. When the header/footer design contains mate
rial requiring independent text processing, the environment may be switched, avoiding
most interaction with the running text.

A more realistic example would be

 35

.de hd \"header

.if \\n%>1 \{\
'sp 0.5i-1 \"tl base at 0.5i
.tl ''- % -'' \"centered page number
.ps \"restore size
.ft \"restore font
.vs \} \"restore vs
'sp 1.0i \"space to 1.0i
.ns \"turn on no-space mode
..
.de fo \"footer
.ps 10 \"set footer/header size
.ft R \"set font
.vs 12p \"set baseline spacing
.if \\n%=1 \{\
'sp \\n(.pu-0.5i-1 \"tl base 0.5i up
.tl ''- % -'' \} \"first page number
'bp
..
.wh 0 hd
.wh -1i fo

which sets the size, font, and baseline spacing for the header/footer material, and ulti
mately restores them. The material in this case is a page number at the bottom of the
first page and at the top of the remaining pages. The sp�s refer to absolute positions to
avoid dependence on the baseline spacing. Another reason for doing this in the footer
is that the footer is invoked by printing a line whose vertical spacing swept past the trap
position by possibly as much as the baseline spacing. No-space mode is turned on at
the end of hd to render ineffective accidental occurrences of sp at the top of the run
ning text.

This method of restoring size, font, etc., presupposes that such requests (that set
previous value) are not used in the running text. A better scheme is to save and restore
both the current and previous values as shown for size in the following:

.de fo

.nr s1 \\n(.s \"current size

.ps

.nr s2 \\n(.s \"previous size

. --- \"rest of footer

..

.de hd

. --- \"header stuff

.ps \\n(s2 \"restore previous size

.ps \\n(s1 \"restore current size

..

Page numbers may be printed in the bottom margin by a separate macro triggered dur
ing the footer�s page ejection:

.de bn \"bottom number

.tl ''- % -'' \"centered page number

..

.wh -0.5i-1v bn \"tl base 0.5i up

Paragraphs and Headings

The housekeeping associated with starting a new paragraph should be collected in
a paragraph macro that, for example, does the desired preparagraph spacing, forces the
correct font, size, baseline spacing, and indent, checks that enough space remains for

 36

more than one line, and requests a temporary indent.

.de pg \"paragraph

.br \"break

.ft R \"force font,

.ps 10 \"size,

.vs 12p \"spacing,

.in 0 \"and indent

.sp 0.4 \"prespace

.ne 1+\\n(.Vu \"want more than 1 line

.ti 0.2i \"temp indent

..

The first break in pg will force out any previous partial lines, and must occur before the
vs. The forcing of font, etc., is partly a defense against prior error and partly to permit
things like section heading macros to set parameters only once. The prespacing param
eter is suitable for troff ; a larger space, at least as big as the output device vertical reso
lution, would be more suitable in nroff. The choice of remaining space to test for in the
ne is the smallest amount greater than one line (the .V is the available vertical resolu
tion).

A macro to automatically number section headings might look like:

.de sc \"section

. --- \"force font, etc.

.sp 0.4 \"prespace

.ne 2.4+\\n(.Vu \"want 2.4+ lines

.fi
\\n+S.
..
.nr S 0 1 \"init S

The usage is .sc, followed by the section heading text, followed by .pg. The ne test
value includes one line of heading, 0.4 line in the following pg, and one line of the para
graph text. A word consisting of the next section number and a period is produced to
begin the heading line. The format of the number may be set by af (§8).

Another common form is the labeled, indented paragraph, where the label pro
trudes left into the indent space.

.de lp \"labeled paragraph

.pg

.in 0.5i \"paragraph indent

.ta 0.2i 0.5i \"label, paragraph

.ti 0
\t\\$1\t\c \"flow into paragraph
..

The intended usage is ��.lp label ��; label will begin at 0.2 inch, and cannot exceed a
length of 0.3 inch without intruding into the paragraph. The label could be right
adjusted against 0.4 inch by setting the tabs instead with .ta 0.4iR 0.5i. The last
line of lp ends with \c so that it will become a part of the first line of the text that fol
lows.

Multiple Column Χutput

The production of multiple column pages requires the footer macro to decide
whether it was invoked by other than the last column, so that it will begin a new column
rather than produce the bottom margin. The header can initialize a column register that
the footer will increment and test. The following is arranged for two columns, but is
easily modified for more.

 37

.de hd \"header

. ---

.nr cl 0 1 \"init column count

.mk \"mark top of text

..

.de fo \"footer

.ie \\n+(cl<2 \{\

.po +3.4i \"next column; 3.1+0.3

.rt \"back to mark

.ns \} \"no-space mode

.el \{\

.po \\nMu \"restore left margin

. ---
'bp \}
..
.ll 3.1i \"column width
.nr M \\n(.o \"save left margin

Typically a portion of the top of the first page contains full width text; the request for
the narrower line length, as well as another .mk would be made where the two column
output was to begin.

Footnotes

The footnote mechanism to be described is used by embedding the footnotes in
the input text at the point of reference, demarcated by an initial .fn and a terminal
.ef:

.fn
Footnote text and control lines...
.ef

In the following, footnotes are processed in a separate environment and diverted for
later printing in the space immediately prior to the bottom margin. There is provision
for the case where the last collected footnote doesn�t completely fit in the available
space.

.de hd \"header

. ---

.nr x 0 1 \"init footnote count

.nr y 0-\\nb \"current footer place

.ch fo -\\nbu \"reset footer trap

.if \\n(dn .fz \"leftover footnote

..

.de fo \"footer

.nr dn 0 \"zero last diversion size

.if \\nx \{\

.ev 1 \"expand footnotes in ev1

.nf \"retain vertical size

.FN \"footnotes

.rm FN \"delete it

.if "\\n(.z"fy" .di \"end overflow di

.nr x 0 \"disable fx

.ev \} \"pop environment

. ---
'bp
..

 38

.de fx \"process footnote overflow

.if \\nx .di fy \"divert overflow

..

.de fn \"start footnote

.da FN \"divert (append) footnote

.ev 1 \"in environment 1

.if \\n+x=1 .fs \"if 1st, separator

.fi \"fill mode

..

.de ef \"end footnote

.br \"finish output

.nr z \\n(.v \"save spacing

.ev \"pop ev

.di \"end diversion

.nr y -\\n(dn \"new footer position,

.if \\nx=1 .nr y -(\\n(.v-\\nz) \
\"uncertainty correction

.ch fo \\nyu \"y is negative

.if (\\n(nl+1v)>(\\n(.p+\\ny) \

.ch fo \\n(nlu+1v \"didn't fit

..

.de fs \"separator
\l'1i' \"1 inch rule
.br
..

.de fz \"get leftover footnote

.fn

.nf \"retain vertical size

.fy \"where fx put it

.ef

..

.nr b 1.0i \"bottom margin size

.wh 0 hd \"header trap

.wh 12i fo \"footer trap->temp pos

.wh -\\nbu fx \"fx at footer position

.ch fo -\\nbu \"conceal fx with fo

The header hd initializes a footnote count register x, and sets both the current
footer trap position register y and the footer trap itself to a nominal position specified
in register b. In addition, if the register dn indicates a leftover footnote, fz is invoked
to reprocess it. The footnote start macro fn begins a diversion (append) in environ
ment 1, and increments the count x; if the count is one, the footnote separator fs is
interpolated. The separator is kept in a separate macro to permit user redefinition.

The footnote end macro ef restores the previous environment and ends the diver
sion after saving the spacing size in register z. y is then decremented by the size of
the footnote, available in dn; then on the first footnote, y is further decremented by the
difference in vertical baseline spacings of the two environments, to prevent the late trig
gering of the footer trap from causing the last line of the combined footnotes to over
flow. The footer trap is then set to the lower (on the page) of y or the current page
position (nl) plus one line, to allow for printing the reference line.

 39

If indicated by x, the footer fo rereads the footnotes from FN in nofill mode in
environment 1, and deletes FN. If the footnotes were too large to fit, the macro fx will
be trap-invoked to redivert the overflow into fy, and the register dn will later indicate
to the header whether fy is empty.

Both fo and fx are planted in the nominal footer trap position in an order that
causes fx to be concealed unless the fo trap is moved. The footer then terminates the
overflow diversion, if necessary, and zeros x to disable fx, because the uncertainty cor
rection together with a not-too-late triggering of the footer can result in the footnote
rereading finishing before reaching the fx trap.

A good exercise for the student is to combine the multiple-column and footnote
mechanisms.

The Last Page

After the last input file has ended, nroff and troff invoke the end macro (§7), if
any, and when it finishes, eject the remainder of the page. During the eject, any traps
encountered are processed normally. At the end of this last page, processing termi
nates unless a partial line, word, or partial word remains. If it is desired that another
page be started, the end-macro

.de en \"end-macro
\c
'bp
..
.em en

will deposit a null partial word, and produce another last page.

 40

Special Character Names

The following table lists names for a set of characters, most of which have tradi
tionally been provided by troff using the �special� or �symbol� font. Many of these
sequences are old ways to get what are now Unicode characters; Lucida Sans, for exam
ple, has glyphs corresponding to many of these but does not have the special
sequences. Therefore the troff sequence \(*F gives the character Φ from the Times
font instead of the character ¦ from the current font, in this case Lucida Sans. Not all
sequences print on any particular device, including this one; Peter faces appear in their
place.

´ \' µ \(*m C \(|=
` \` ν \(*n ∼ \(ap
� \(em ξ \(*c ` \(!=
� \(en ο \(*o � \(->
 \(hy π \(*p � \(<-
� \- ρ \(*r � \(ua
� \(bu σ \(*s � \(da
¡ \(sq ς \(ts × \(mu
_ \(ru τ \(*t ÷ \(di

\(14 υ \(*u ± \(+-
\(12 φ \(*f * \(cu
\(34 χ \(*x) \(ca
\(fi ψ \(*q � \(sb
\(fl ω \(*w � \(sp
\(ff Α \(*A � \(ib
\(Fi Β \(*B � \(ip
\(Fl Γ \(*G � \(if

° \(de ∆ \(*D � \(pd
 \(dg Ε \(*E � \(gr
′ \(fm Ζ \(*Z ¬ \(no

\(ct Η \(*Y + \(is
® \(rg Θ \(*H � \(pt
 \(co Ι \(*I � \(es
+ \(pl Κ \(*K ∈ \(mo
− \(mi Λ \(*L \(br
= \(eq Μ \(*M ! \(dd
� \(** Ν \(*N \(rh

\(sc Ξ \(*C \(lh
´ \(aa Ο \(*Χ \(bs
` \(ga Π \(*P | \(or
_ \(ul Ρ \(*R Ë \(ci
/ \(sl Σ \(*S \(lt
α \(*a Τ \(*T \(lb
β \(*b Υ \(*U \(rt
γ \(*g Φ \(*F \(rb
δ \(*d Χ \(*X \(lk
ε \(*e Ψ \(*Q \(rk
ζ \(*z Ω \(*W \(bv
η \(*y � \(sr \(lf
θ \(*h \(rn \(rf
ι \(*i g \(>= \(lc
κ \(*k f \(<= \(rc
λ \(*l a \(== \(LH

