
8½, the Plan 9 Window System

Rob Pike
rob@plan9.bell-labs.com

ABSTRACT

The Plan 9 window system, 8½, is a modest-sized program of novel
design. It provides textual I/O and bitmap graphic services to both local
and remote client programs by offering a multiplexed file service to those
clients. It serves traditional UNIX files like /dev/tty as well as more
unusual ones that provide access to the mouse and the raw screen. Bit
map graphics operations are provided by serving a file called
/dev/bitblt that interprets client messages to perform raster opera
tions. The file service that 8½ offers its clients is identical to that it uses
for its own implementation, so it is fundamentally no more than a multi
plexer. This architecture has some rewarding symmetries and can be
implemented compactly.

Introduction

In 1989 I constructed a toy window system from only a few hundred lines of source
code using a custom language and an unusual architecture involving concurrent pro
cesses [Pike89]. Although that system was rudimentary at best, it demonstrated that
window systems are not inherently complicated. The following year, for the new Plan 9
distributed system [Pike92], I applied some of the lessons from that toy project to write,
in C, a production-quality window system called 8½. 8½ provides, on black-and-white,
grey-scale, or color displays, the services required of a modern window system, includ
ing programmability and support for remote graphics. The entire system, including the
default program that runs in the window � the equivalent of xterm [Far89] with �cut
ting and pasting� between windows � is well under 90 kilobytes of text on a Motorola
68020 processor, about half the size of the operating system kernel that supports it and
a tenth the size of the X server [Sche86] without xterm.

What makes 8½ so compact? Much of the saving comes from overall simplicity: 8½
has little graphical fanciness, a concise programming interface, and a simple, fixed user
interface. 8½ also makes some decisions by fiat � three-button mouse, overlapping
windows, built-in terminal program and window manager, etc. � rather than trying to
appeal to all tastes. Although compact, 8½ is not ascetic. It provides the fundamentals
and enough extras to make them comfortable to use. The most important contributor
to its small size, though, is its overall design as a file server. This structure may be
applicable to window systems on traditional UNIX-like operating systems.

The small size of 8½ does not reflect reduced functionality: 8½ provides service
roughly equivalent to the X window system. 8½�s clients may of course be as complex
as they choose, although the tendency to mimic 8½�s design and the clean programming
interface means they are not nearly as bloated as X applications.
__________________
Originally appeared, in a slightly different form, in Proc. of the Summer 1991 USENIX Conf., pp.

257-265, Nashville. Note that 8½ has been replaced by rio (see rio(1)).



 2 

User's Model

8½ turns the single screen, mouse, and keyboard of the terminal (in Plan 9 termi
nology) or workstation (in commercial terminology) into an array of independent virtual
terminals that may be textual terminals supporting a shell and the usual suite of tools or
graphical applications using the full power of the bitmap screen and mouse. Text is
represented in UTF, an encoding of the Unicode Standard [Pike93]. The entire program
ming interface is provided through reading and writing files in /dev.

Primarily for reasons of history and familiarity, the general model and appearance
of 8½ are similar to those of mux [Pike88]. The right button has a short menu for con
trolling window creation, destruction, and placement. When a window is created, it runs
the default shell, rc [Duff90], with standard input and output directed to the window
and accessible through the file /dev/cons (�console�), analogous to the /dev/tty
of UNIX. The name change represents a break with the past: Plan 9 does not provide a
Teletype-style model of terminals. 8½ provides the only way most users ever access
Plan 9.

Graphical applications, like ordinary programs, may be run by typing their names
to the shell running in a window. This runs the application in the same window; to run
the application in a new window one may use an external program, window, described
below. For graphical applications, the virtual terminal model is extended somewhat to
allow programs to perform graphical operations, access the mouse, and perform related
functions by reading and writing files with suggestive names such as /dev/mouse and
/dev/window multiplexed per-window much like /dev/cons. The implementation
and semantics of these files, described below, is central to the structure of 8½.

The default program that runs in a window is familiar to users of Blit terminals
[Pike83]. It is very similar to that of mux [Pike88], providing mouse-based editing of
input and output text, the ability to scroll back to see earlier output, and so on. It also
has a new feature, toggled by typing ESC, that enables the user to control when typed
characters may be read by the shell or application, instead of (for example) after each
newline. This feature makes the window program directly useful for many text-editing
tasks such as composing mail messages before sending them.

Plan 9 and 8½

Plan 9 is a distributed system that provides support for UNIX-like applications in an
environment built from distinct CPU servers, file servers, and terminals connected by a
variety of networks [Pike90]. The terminals are comparable to modest workstations
that, once connected to a file server over a medium-bandwidth network such as Ether
net, are self-sufficient computers running a full operating system. Unlike workstations,
however, their role is just to provide an affordable multiplexed user interface to the rest
of the system: they run the window system and support simple interactive tasks such as
text editing. Thus they lie somewhere between workstations and X terminals in design,
cost, performance, and function. (The terminals can be used for general computing, but
in practice Plan 9 users do their computing on the CPU servers.) The Plan 9 terminal
software, including 8½, was developed on a 68020-based machine called a Gnot and
has been ported to the NeXTstation, the MIPS Magnum 3000, SGI Indigos, and Sun
SPARCstations�all small workstations that we use as terminals�as well as PCs.

Heavy computations such as compilation, text processing, or scientific calculation
are done on the CPU servers, which are connected to the file servers by high-bandwidth
networks. For interactive work, these computations can access the terminal that instan
tiated them. The terminal and CPU server being used by a particular user are connected
to the same file server, although over different networks; Plan 9 provides a view of the
file server that is independent of location in the network.



 3 

The components of Plan 9 are connected by a common protocol based on the shar
ing of files. All resources in the network are implemented as file servers; programs that
wish to access them connect to them over the network and communicate using ordinary
file operations. An unusual aspect of Plan 9 is that the name space of a process, the set
of files that can be accessed by name (for example by an open system call) is not global
to all processes on a machine; distinct processes may have distinct name spaces. The
system provides methods by which processes may change their name spaces, such as
the ability to mount a service upon an existing directory, making the files of the service
visible in the directory. (This is a different operation from its UNIX namesake.) Multiple
services may be mounted upon the same directory, allowing the files from multiple ser
vices to be accessed in the same directory. Options to the mount system call control
the order of searching for files in such a union directory.

The most obvious example of a network resource is a file server, where permanent
files reside. There are a number of unusual services, however, whose design in a differ
ent environment would likely not be file-based. Many are described elsewhere [Pike92];
some examples are the representation of processes for debugging, much like Killian�s
process files for the 8th edition [Kill84], and the implementation of the name/value
pairs of the UNIX exec environment as files. User processes may also implement a file
service and make it available to clients in the network, much like the �mounted streams�
in the 9th Edition [Pres90]. A typical example is a program that interprets an
externally-defined file system such as that on a CD-ROM or a standard UNIX system and
makes the contents available to Plan 9 programs. This design is used by all distributed
applications in Plan 9, including 8½.

8½ serves a set of files in the conventional directory /dev with names like cons,
mouse, and screen. Clients of 8½ communicate with the window system by reading
and writing these files. For example, a client program, such as a shell, can print text by
writing its standard output, which is automatically connected to /dev/cons, or it may
open and write that file explicitly. Unlike files served by a traditional file server, how
ever, the instance of /dev/cons served in each window by 8½ is a distinct file; the
per-process name spaces of Plan 9 allow 8½ to provide a unique /dev/cons to each
client. This mechanism is best illustrated by the creation of a new 8½ client.

When 8½ starts, it creates a full-duplex pipe to be the communication medium for
the messages that implement the file service it will provide. One end will be shared by
all the clients; the other end is held by 8½ to accept requests for I/O. When a user
makes a new window using the mouse, 8½ allocates the window data structures and
forks a child process. The child�s name space, initially shared with the parent, is then
duplicated so that changes the child makes to its name space will not affect the parent.
The child then attaches its end of the communication pipe, cfd, to the directory /dev
by doing a mount system call:

mount(cfd, "/dev", MBEFΧRE, buf)

This call attaches the service associated with the file descriptor cfd � the client end of
the pipe � to the beginning of /dev so that the files in the new service take priority
over existing files in the directory. This makes the new files cons, mouse, and so on,
available in /dev in a way that hides any files with the same names already in place.
The argument buf is a character string (null in this case), described below.

The client process then closes file descriptors 0, 1, and 2 and opens /dev/cons
repeatedly to connect the standard input, output, and error files to the window�s
/dev/cons. It then does an exec system call to begin executing the shell in the win
dow. This entire sequence, complete with error handling, is 33 lines of C.

The view of these events from 8½�s end of the pipe is a sequence of file protocol
messages from the new client generated by the intervening operating system in
response to the mount and open system calls executed by the client. The message



 4 

generated by the mount informs 8½ that a new client has attached to the file service it
provides; 8½�s response is a unique identifier kept by the operating system and passed
in all messages generated by I/O on the files derived from that mount. This identifier
is used by 8½ to distinguish the various clients so each sees a unique /dev/cons;
most servers do not need to make this distinction.

A process unrelated to 8½ may create windows by a variant of this mechanism.
When 8½ begins, it uses a Plan 9 service to �post� the client end of the communication
pipe in a public place. A process may open that pipe and mount it to attach to the win
dow system, much in the way an X client may connect to a UNIX domain socket to the
server bound to the file system. The final argument to mount is passed through unin
terpreted by the operating system. It provides a way for the client and server to
exchange information at the time of the mount. 8½ interprets it as the dimensions of
the window to be created for the new client. (In the case above, the window has been
created by the time the mount occurs, and buf carries no information.) When the
mount returns, the process can open the files of the new window and begin I/O to use
it.

Because 8½�s interface is based on files, standard system utilities can be used to
control its services. For example, its method of creating windows externally is packaged
in a 16-line shell script, called window, the core of which is just a mount operation
that prefixes 8½�s directory to /dev and runs a command passed on the argument line:

mount -b $'8½serv' /dev
$* < /dev/cons > /dev/cons >[2] /dev/cons &

The window program is typically employed by users to create their initial working envi
ronment when they boot the system, although it has more general possibilities.

Other basic features of the system fall out naturally from the file-based model.
When the user deletes a window, 8½ sends the equivalent of a UNIX signal to the pro
cess group � the clients � in the window, removes the window from the screen, and
poisons the incoming connections to the files that drive it. If a client ignores the signal
and continues to write to the window, it will get I/O errors. If, on the other hand, all the
processes in a window exit spontaneously, they will automatically close all connections
to the window. 8½ counts references to the window�s files; when none are left, it shuts
down the window and removes it from the screen. As a different example, when the
user hits the DEL key to generate an interrupt, 8½ writes a message to a special file, pro
vided by Plan 9�s process control interface, that interrupts all the processes in the win
dow. In all these examples, the implementation works seamlessly across a network.

There are two valuable side effects of implementing a window system by multiplex
ing /dev/cons and other such files. First, the problem of giving a meaningful inter
pretation to the file /dev/cons (/dev/tty) in each window is solved automatically.
To provide /dev/cons is the fundamental job of the window system, rather than just
an awkward burden; other systems must often make special and otherwise irrelevant
arrangements for /dev/tty to behave as expected in a window. Second, any program
that can access the server, including a process on a remote machine, can access the files
using standard read and write system calls to communicate with the window system,
and standard open and close calls to connect to it. Again, no special arrangements need
to be made for remote processes to use all the graphics facilities of 8½.

Graphical input

Of course 8½ offers more than ASCII I/O to its clients. The state of the mouse may
be discovered by reading the file /dev/mouse, which returns a ten-byte message
encoding the state of the buttons and the position of the cursor. If the mouse has not
moved since the last read of /dev/mouse, or if the window associated with the
instance of /dev/mouse is not the �input focus�, the read blocks.



 5 

The format of the message is:

'm'
1 byte of button state
4 bytes of x, low byte first
4 bytes of y, low byte first

As in all shared data structures in Plan 9, the order of every byte in the message is
defined so all clients can execute the same code to unpack the message into a local data
structure.

For keyboard input, clients can read /dev/cons or, if they need character-at-a-
time input, /dev/rcons (�raw console�). There is no explicit event mechanism to help
clients that need to read from multiple sources. Instead, a small (365 line) external sup
port library can be used. It attaches a process to the various blocking input sources �
mouse, keyboard, and perhaps a third user-provided file descriptor � and funnels their
input into a single pipe from which may be read the various types of events in the tradi
tional style. This package is a compromise. As discussed in a previous paper [Pike89] I
prefer to free applications from event-based programming. Unfortunately, though, I see
no easy way to achieve this in single-threaded C programs, and am unwilling to require
all programmers to master concurrent programming. It should be noted, though, that
even this compromise results in a small and easily understood interface. An example
program that uses it is given near the end of the paper.

Graphical output

The file /dev/screen may be read by any client to recover the contents of the
entire screen, such as for printing (see Figure 1). Similarly, /dev/window holds the
contents of the current window. These are read-only files.

To perform graphics operations in their windows, client programs access
/dev/bitblt. It implements a protocol that encodes bitmap graphics operations.
Most of the messages in the protocol (there are 23 messages in all, about half to man
age the multi-level fonts necessary for efficient handling of Unicode characters) are
transmissions (via a write) from the client to the window system to perform a graphical
operation such as a bitblt [PLR85] or character-drawing operation; a few include
return information (recovered via a read) to the client. As with /dev/mouse, the
/dev/bitblt protocol is in a defined byte order. Here, for example, is the layout of
the bitblt message:

'b'
2 bytes of destination id
2x4 bytes of destination point
2 bytes of source id
4x4 bytes of source rectangle
2 bytes of boolean function code

The message is trivially constructed from the bitblt subroutine in the library,
defined as

void bitblt(Bitmap *dst, Point dp,
Bitmap *src, Rectangle sr, Fcode c).

The �id� fields in the message indicate another property of 8½: the clients do not
store the actual data for any of their bitmaps locally. Instead, the protocol provides a
message to allocate a bitmap, to be stored in the server, and returns to the client an
integer identifier, much like a UNIX file descriptor, to be used in operations on that bit
map. Bitmap number 0 is conventionally the client�s window, analogous to standard
input for file I/O. In fact, no bitmap graphics operations are executed in the client at all;



 6 

Figure 1. A representative 8½ screen, running on a NeXTstation under Plan 9 (with
no NeXT software). In the upper right, a program announces the arrival of mail. In
the top and left are a broswer for astronomical databases and an image of a galaxy
produced by the browser. In the lower left there is a screen editor, sam [Pike87],
editing Japanese text encoded in UTF, and in the lower right an 8½ running recur
sively and, inside that instantiation, a previewer for troff output. Underneath
the faces is a small window running the command that prints the screen by passing
/dev/screen to the bitmap printing utility.

they are all performed on its behalf by the server. Again, using the standard remote file
operations in Plan 9, this permits remote machines having no graphics capability, such
as the CPU server, to run graphics applications. Analogous features of the original
Andrew window system [Gos86] and of X [Sche86] require more complex mechanisms.

Nor does 8½ itself operate directly on bitmaps. Instead, it calls another server to
do its graphics operations for it, using an identical protocol. The operating system for
the Plan 9 terminals contains an internal server that implements that protocol, exactly as
does 8½, but for a single client. That server stores the actual bytes for the bitmaps and
implements the fundamental bitmap graphics operations. Thus the environment in
which 8½ runs has exactly the structure it provides for its clients; 8½ reproduces the
environment for its clients, multiplexing the interface to keep the clients separate.

This idea of multiplexing by simulation is applicable to more than window systems,
of course, and has some side effects. Since 8½ simulates its own environment for its
clients, it may run in one of its own windows (see Figure 1). A useful and common
application of this technique is to connect a window to a remote machine, such as a CPU
server, and run the window system there so that each subwindow is automatically on the
remote machine. It is also a handy way to debug a new version of the window system or
to create an environment with, for example, a different default font.



 7 

Implementation

To provide graphics to its clients, 8½ mostly just multiplexes and passes through
to its own server the clients� requests, occasionally rearranging the messages to main
tain the fiction that the clients have unique screens (windows). To manage the overlap
ping windows it uses the layers model, which is handled by a separate library [Pike83a].
Thus it has little work to do and is a fairly simple program; it is dominated by a couple
of switch statements to interpret the bitmap and file server protocols. The built-in win
dow program and its associated menus and text-management support are responsible
for most of the code.

The operating system�s server is also compact: the version for the 68020 proces
sor, excluding the implementation of a half dozen bitmap graphics operations, is 2295
lines of C (again, about half dealing with fonts); the graphics operations are another
2214 lines.

8½ is structured as a set of communicating coroutines, much as discussed in a
1989 paper [Pike89]. One coroutine manages the mouse, another the keyboard, and
another is instantiated to manage the state of each window and associated client. When
no coroutine wishes to run, 8½ reads the next file I/O request from its clients, which
arrive serially on the full-duplex communication pipe. Thus 8½ is entirely synchronous.

The program source is small and compiles in about 10 seconds in our Plan 9 envi
ronment. There are ten source files and one makefile totaling 5100 lines. This
includes the source for the window management process, the cut-and-paste terminal
program, the window/file server itself, and a small coroutine library (proc.c). It does
not include the layer library (another 1031 lines) or the library to handle the cutting and
pasting of text displayed in a window (960 lines), or the general graphics support library
that manages all the non-drawing aspects of graphics � arithmetic on points and rect
angles, memory management, error handling, clipping, � plus fonts, events, and non-
primitive drawing operations such as circles and ellipses (a final 3051 lines). Not all the
pieces of these libraries are used by 8½ itself; a large part of the graphics library in par
ticular is used only by clients. Thus it is somewhat unfair to 8½ just to sum these num
bers, including the 4509 lines of support in the kernel, and arrive at a total implementa
tion size of 14651 lines of source to implement all of 8½ from the lowest levels to the
highest. But that number gives a fair measure of the complexity of the overall system.

The implementation is also efficient. 8½�s performance is competitive to X win
dows�. Compared using Dunwoody�s and Linton�s gbench benchmarks on the 68020,
distributed with the ��X Test Suite��, circles and arcs are drawn about half as fast in 8½
as in X11 release 4 compiled with gcc for equivalent hardware, probably because they
are currently implemented in a user library by calls to the point primitive. Line draw
ing speed is about equal between the two systems. Unicode text is drawn about the
same speed by 8½ as ASCII text by X, and the bitblt test is runs four times faster for
8½. These numbers vary enough to caution against drawing sweeping conclusions, but
they suggest that 8½�s architecture does not penalize its performance. Finally, 8½ boots
in under a second and creates a new window apparently instantaneously.

An example

Here is a complete program that runs under 8½. It prints the string "hello
world" wherever the left mouse button is depressed, and exits when the right mouse
button is depressed. It also prints the string in the center of its window, and maintains
that string when the window is resized.



 8 

#include <u.h>
#include <libc.h>
#include <libg.h>

void
ereshaped(Rectangle r)
{

Point p;

screen.r = r;
bitblt(&screen, screen.r.min, &screen, r, Zero); /* clear */
p.x = screen.r.min.x + Dx(screen.r)/2;
p.y = screen.r.min.y + Dy(screen.r)/2;
p = sub(p, div(strsize(font, "hello world"), 2));
string(&screen, p, font, "hello world", S);

}

main(void)
{

Mouse m;

binit(0, 0, 0); /* initialize graphics library */
einit(Emouse); /* initialize event library */
ereshaped(screen.r);
for(;;){

m = emouse();
if(m.buttons & RIGHTB)

break;
if(m.buttons & LEFTB){

string(&screen, m.xy, font, "hello world", S);
/* wait for release of button */
do; while(emouse().buttons & LEFTB);

}
}

}

The complete loaded binary is a little over 26K bytes on a 68020. This program should
be compared to the similar ones in the excellent paper by Rosenthal [Rose88]. (The cur
rent program does more: it also employs the mouse.) The clumsiest part is
ereshaped, a function with a known name that is called from the event library when
ever the window is reshaped or moved, as is discovered inelegantly but adequately by a
special case of a mouse message. (Simple so-called expose events are not events at all
in 8½; the layer library takes care of them transparently.) The lesson of this program,
with deference to Rosenthal, is that if the window system is cleanly designed a toolkit
should be unnecessary for simple tasks.

Status

As of 1992, 8½ is in regular daily use by almost all the 60 people in our research
center. Some of those people use it to access Plan 9 itself; others use it as a front end
to remote UNIX systems, much as one would use an X terminal.

Some things about 8½ may change. It would be nice if its capabilities were more
easily accessible from the shell. A companion to this paper [Pike91] proposes one way
to do this, but that does not include any graphics functionality. Perhaps a textual ver
sion of the /dev/bitblt file is a way to proceed; that would allow, for example, awk
programs to draw graphs directly.



 9 

Can this style of window system be built on other operating systems? A major part
of the design of 8½ depends on its structure as a file server. In principle this could be
done for any system that supports user processes that serve files, such as any system
running NFS or AFS [Sun89, Kaza87]. One requirement, however, is 8½�s need to
respond to its clients� requests out of order: if one client reads /dev/cons in a win
dow with no characters to be read, other clients should be able to perform I/O in their
windows, or even the same window. Another constraint is that the 8½ files are like
devices, and must not be cached by the client. NFS cannot honor these requirements;
AFS may be able to. Of course, other interprocess communication mechanisms such as
sockets could be used as a basis for a window system. One may even argue that X�s
model fits into this overall scheme. It may prove easy and worthwhile to write a small
8½-like system for commercial UNIX systems to demonstrate that its merits can be won
in systems other than Plan 9.

Conclusion

In conclusion, 8½ uses an unusual architecture in concert with the file-oriented
interprocess communication of Plan 9 to provide network-based interactive graphics to
client programs. It demonstrates that even production-quality window systems are not
inherently large or complicated and may be simple to use and to program.

Acknowledgements

Helpful comments on early drafts of this paper were made by Doug Blewett, Stu
Feldman, Chris Fraser, Brian Kernighan, Dennis Ritchie, and Phil Winterbottom. 8½�s
support for color was added by Howard Trickey. Many of the ideas leading to 8½ were
tried out in earlier, sometimes less successful, programs. I would like to thank those
users who suffered through some of my previous 7½ window systems.

References

[Duff90] Tom Duff, ��Rc - A Shell for Plan 9 and UNIX systems��, Proc. of the Summer
1990 UKUUG Conf., London, July, 1990, pp. 21-33, reprinted, in a different form, in this
volume.

[Far89] Far too many people, XTERM(1), Massachusetts Institute of Technology, 1989.

[Gos86] James Gosling and David Rosenthal, ��A window manager for bitmapped dis
plays and UNIX��, in Methodology of Window Management, edited by F.R.A. Hopgood et
al., Springer, 1986.

[Kaza87] Mike Kazar, ��Synchronization and Caching issues in the Andrew File System��,
Tech. Rept. CMU-ITC-058, Information Technology Center, Carnegie Mellon University,
June, 1987.

[Kill84] Tom Killian, ��Processes as Files��, USENIX Summer Conf. Proc., Salt Lake City
June, 1984.

[Pike83] Rob Pike, ��The Blit: A Multiplexed Graphics Terminal��, Bell Labs Tech. J., V63,
#8, part 2, pp. 1607-1631.

[Pike83a] Rob Pike, ��Graphics in Overlapping Bitmap Layers��, Trans. on Graph., Vol 2,
#2, 135-160, reprinted in Proc. SIGGRAPH �83, pp. 331-356.

[Pike87] Rob Pike, ��The Text Editor sam��, Softw. - Prac. and Exp., Nov 1987, Vol 17
#11, pp. 813-845, reprinted in this volume.

[Pike88] Rob Pike, ��Window Systems Should Be Transparent��, Comp. Sys., Summer
1988, Vol 1 #3, pp. 279-296.

[Pike89] Rob Pike, ��A Concurrent Window System��, Comp. Sys., Spring 1989, Vol 2 #2,
pp. 133-153.

[Pike91] Rob Pike, ��A Minimalist Global User Interface��, USENIX Summer Conf. Proc.,



 10 

Nashville, June, 1991.

[Pike92] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil Winterbot
tom, Operating Systems Review Vol 27, #2, Apr 1993, pp. 72-76 (reprinted from Pro
ceedings of the 5th ACM SIGOPS European Workshop, Mont Saint-Michel, 1992, Paper nº
34, and reprinted in this volume).

[Pike94] Rob Pike and Ken Thompson, ��Hello World or �±»·¼Á± ºÌÃ¼µ or
��, USENIX Winter Conf. Proc., San Diego, Jan, 1993, reprinted in this volume.

[PLR85] Rob Pike, Bart Locanthi and John Reiser, ��Hardware/Software Tradeoffs for Bit
map Graphics on the Blit��, Softw. - Prac. and Exp., Feb 1985, Vol 15 #2, pp. 131-152.

[Pres90] David L. Presotto and Dennis M. Ritchie, ��Interprocess Communication in the
Ninth Edition Unix System��, Softw. - Prac. and Exp., June 1990, Vol 20 #S1, pp. S1/3-
S1/17.

[Rose88] David Rosenthal, ��A Simple X11 Client Program -or- How hard can it really be
to write ��Hello, World��?��, USENIX Winter Conf. Proc., Dallas, Jan, 1988, pp. 229-242.

[Sche86] Robert W. Scheifler and Jim Gettys, ��The X Window System��, ACM Trans. on
Graph., Vol 5 #2, pp. 79-109.

[Sun89] Sun Microsystems, NFS: Network file system protocol specification, RFC 1094,
Network Information Center, SRI International, March, 1989.


